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 In weed management, the distinction between monocots and dicots species is 
an important issue. Indeed, the yield is much higher with the application of a 
selective treatment instead of using a broadcast herbicide overall the parcel. 
This article presents a fast shape descriptor designed to distinguish between 
these two families of weeds. The efficiency of the descriptor is evaluated by 
analyzing data with the pattern recognition process known as the 
discriminant factor analysis (DFA). Excellent results have been obtained in 
the differentiation between these two weed species. Keyword: 
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1. INTRODUCTION 

The weed control is a key element in smart agriculture. The chemical weed control is widely 
practiced in order to reduce the infestation rates and to improve harvests. Weeds are divided into two big 
families: the Monocotyledonous family which is characterized by long and thin leaves; and the 
Dicotyledonous family with short leaves (see Figure 1). In view of this diversity, the weed control 
performance is even better with the application of a selective treatment instead of using a single broadcast 
herbicide overall the parcel.In this regard, recent researches in computer vision have given birth to several 
efficient techniques for detection and / or classification of weeds. Traditionally, two main approaches are 
used: 
 A spectral approach : this approach consists in decoding the spectral information to detect the presence of 

weed in the parcels. In [1] and [2], respectively, the authors used the information revealed by the near 
infrared (NIR) and the simple (RGB) pictures to detect weeds. In [3], the authors used the UV 
fluorescence spectrum. In [4], the authors analyzed the hyperspectral images to properly detect and select 
the weeds.Despite his performance, this technique requires an expensive equipment. 

 A spatial approach : this technique focuses on the distribution of weeds in the parcel or on their 
morphological forms [5] in order to identify them. In [6] and [7], the authors detected weeds by observing 
their presence in the seed line spacing. In [8], the authors examined the shape of weeds by using the seven 
moments of Hu [9] and six shape descriptors to achieve a better selection of weeds. The results are very 
satisfactory in spite of the processing time of about two frames per second. 
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In this study, we present a new innovative, fast and efficient approach for the selection of weeds 
species. Our approach based essentially by the application of binary descriptor designed for this purpose. 
This descriptor called Adjacencies Descriptor returns the number of horizontal, vertical and diagonal 
adjacencies for a given 2D object. This technique allow distinguishing between the shapes with a rounded 
morphology (Dicot) and others with a long thin morphology (Monocot). 

 
 

 
 

Figure 1. Weed samples: monocot in first line and dicot in second line 
 
 
2. MATERIAL AND METHOD 

The imaging system is composed of a standard RGB camera. The camera held in vertical position at 
25 to 30 cm above the region of interest. Thus, the visible scene covers an area of 50 × 50 cm2 (see Figure 2). 
This setup allows us to overcome the perspective view problem and improve the spatial resolution. 

 

 
 

Figure 2. Acquisition process: camera on a tripod at approximately 0.3 m height pointing  
vertically downward 

 
2.1. The Adjacencies Descriptor 

Our region-based descriptor calculates the number of horizontal, vertical and diagonal adjacencies 
between a given original pixel and their adjacent ones (see Figure 3). The original pixel (green cell), is 
surrounded by eight other peripheral pixels (yellow and blue cells).  

Cells in yellow show horizontal and vertical adjacencies and the blue ones show diagonally 
adjacencies with respect to the original cell. 
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Figure 3. Descriptor structure 

 
 
The proposed descriptor calculates two numbers of adjacencies between a given original pixel (C0) 

and their adjacent pixels (CA, such as A = 1, 2, 3, 4, 5, 6, 7, 8).  The first is the number of horizontal and 
vertical adjacencies (NHV), the second is the number of diagonal adjacencies (ND). The adjacency (Adj) is the 
result of the binary operator XNOR between the original cell and an adjacent cell as followings: 

 
Adj (CA) = C0 (XNOR) CA (1) 
  
Thereby, in a binary image, the adjacency numbers for a given original pixel C(x,y) are calculated 

according to the following formulas: 
 
NHV  = Adj(C(x-step, y)) + Adj(C(x+step, y)) + Adj(C(x, y-step)) + Adj(C(x, y+step)) (2) 
 
ND  = Adj(C(x-step,y-step)) + Adj(C(x-step,y+step)) + Adj(C(x+step,y-step))   
+Adj(C(x+step,y+step)) (3) 
 
Applying this descriptor on all pixels belonging to one particular object, allow to distinguish 

between shapes with rounded and filled morphology (Dicot) and others shapes with a long and thin 
morphology (Monocot). 

The Step variable must then be adapted to the resolution of the object to describe. Indeed, a small 
value retains only noise, while too large value encompasses the object without defining its characteristics. 
Good results are obtained using the following empirical formula: 

 

 (4) 

 
Where S is the area (in pixels) of the object to describe. 

 
2.2. Implementation 

In digital image segmentation applications, clustering technique is used to segment regions of 
interest and to detect borders of objects in an image [10]. The gradient magnitude and coherence is used to 
segment fingerprint image [11]. In our application, the obtained image is segmented in order to isolate the 
vegetation of the rest of the scene. According to [12], this operation is effectively carried out by thresholding 
the image given by the following formula: 

 
Gray = r × R + g × G + b × B (5) 
 

With: r = −0.884, g = 1.262 and b = −0.311. 
Where R, G and B represent red, green and blue components of each pixel. Thus, the pixels related 

to the vegetation are obtained for: Gray > 30 (see Figure 4).  
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The application of descriptor is realized on the segmented image by assuming a [32×32] pixels 
sliding window. Then, the results returned by the descriptor are classified according to DFA discrimination 
function (6). A majority of votes provided by the sliding window obtains the final classification of a region in 
the image.  

 
 

 
 

Figure 4. Segmentation Vegetation / ground, vegetation and the rest of the scene are represented respectively 
by white and black pixels 

 
 
3. RESULTS AND DISCUSSIONS 

The Local Binary Pattern (LBP) [13] inspires our descriptor. It allows describing the size and the 
morphological form of weeds by two integers ND and NHV. To assess and evaluate its performance, we 
designed a database constituted of 40 images of the most frequent weeds. Then,  each  image  is shifted  and  
rotated  randomly to increase the size of our database. Finally, these images are standardized to the working 
size [32 * 32], For DFA method, more  than 100 subjects are suggested, but according to [14] the general rule 
is to have a ratio of 10 subjects per variable inserted in the analysis. For a total of 86 images, we used half of 
the images for learning and the other half to the test. The procedure of DFA was performed by means of 
XLSTAT software. 

DFA is probably the most frequently used supervised pattern recognition method and the best-
studied one [15]. DFA is based on the determination of discriminant functions, which maximize the ratio of  
between-class variance and  minimize the ratio of  within-class variance. As in PCA, this technique is a 
factorial method. In fact, using this method, data are separated in ݇ a priori defined classes. The objective 
sought using DFA is to investigate if the variables ND and  NHV  are sufficient or not to allow a good a 
posteriori classification of data in their a priori groups. The following tables (Table 1 and 2) show 
respectively the Wilks' Lambda test (Rao approximation) and the Bartlett's test of sphericity: 

 
 

Table 1.Wilks' Lambda test (Rao approximation)        Table 2. Sphericity Bartlett's test 
 
 
 
 
 
 
 
 
 
Wilks' Lambda test interpretation : 

Lambda 0,448 
F (Valeur observée) 24,669 
F (Valeur critique) 3,232 

DDL1 2 
DDL2 40 
p-value < 0,0001 
alpha 0,05 

Khi² (Valeur observée) 55,95 
Khi² (Valeur critique) 3,841 

DDL 1 
p-value < 0,0001 
alpha 0,05 
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H0: The mean vectors of the two classes are equal. 
Ha: At least one of the mean vectors is different from another. 

Since the calculated p-value is less than the significance level of alpha = 0.05, one must reject the 
null hypothesis H0, and retain the alternative hypothesis Ha. The risk of rejecting the null hypothesis H0 
when it is true is less than 0.01%. 

Sphericity Bartlett's test interpretation: 
H0: There is no significantly different correlation of 0 between variables. 
Ha: At least one of the correlations between the variables is significantly different from 0. 

Since the calculated p-value is less than the significance level of alpha = 0.05, one must reject the 
null hypothesis H0, and retain the alternative hypothesis Ha. The risk of rejecting the null hypothesis H0 
when it is true is less than 0.01%. 

The canonical discriminant functions returned by DFA as: 
 
F1 = 0.013 NHV – 0.01 ND   – 0.96 (6) 
 
This function is used to classify the weeds into two classes Monocot and Dicot (see Figure 5). The 

classification quality is shown by the ROC curve (see Figure 6). 
 

 
Applying DFA on database images, a good separation between weeds species was obtained. (Figure 

5) shows how the first DFA function discriminate among clusters. DFA model was cross-validated using 
leave-one-out approach.  An accuracy of  94.74 % success rate in the recognition of dicots. On the other 
hand, DFA classifier for the monocots has reached 95.83 % of the correct classification. Total accuracy is of 
95.35% success rate (see Table 3). 
 
 

Table 3. Confusion matrix for the results of cross-validation 
From \ To Dicot Monocot Total % correct 

Dicot 18 1 19 0,9474 
Monocot 1 23 24 0,9583 

Total 19 24 43 0,9535 

 
 

In addition, the main advantage of our descriptor resides in its speed (See Table 4) and ease of 
implementation. Indeed: Step is the only parameter to adjust. Hence, the descriptor presents robustness 
against the brightness change, rotation and translation.  

In this table, we can clearly notice that our descriptor has a low computational cost. In practice, in 
precision agriculture, a scene is never covered with vegetation to 100%. The experiments were conducted on 
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Figure 5. Weed classification according to canonical 
discriminant functions returned by DFA 

Figure 6. The ROC curve : sensitivity / 
specificity report. 
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a computer with i5 processor at 2.2 GHz with 4GOctets DDR4 ram. The execution time is less than 5.10-3 s 
by image. 
  
 

Table 4. Number of possible comparisons depending on the size of the sliding window 
Window Size 

Number of comparisons 
Height Width 

H L H ×L×8 
32 32 8192 

640 480 2457600 

 
  
 This allows our descriptor to work at real time with a standard value of 25 frames per second. In 
practice, a majority of votes provided by the sliding window obtains the final classification of a region in the 
image. The results of our experiment are very promising. We got a correct classification rate of around 85% 
on a set of 50 images analyzed. Monocotyledonous weeds have been classified correctly up to 90% of cases, 
while the dicotyledonous weeds have been recognized to about 80%. Figure 7 shows an example of 
processing performed by our approach, monocotyledonous weeds are marked in blue and dicotyledonous 
weeds are marked in red. This figure also shows two errors out of 26 classifications. 
 
 

 
 
Figure 7. Classification results: Monocotyledonous in blue, dicotyledonous in red and classification errors 

 
 

4. CONCLUSION 
We achieved a system for discriminating between monocotyledonous and dicotyledonous weeds 

species. This system is based on our adjacencies descriptor designed for this purpose. This is a robust binary 
descriptor, fast and easy to use. The results obtained were very satisfactory for a fast execution time of the 
order of 25 frames per second. We plan to improve these results by other adopters of learning and 
classification methods. In the light of these results, the proposed classification systems represent an excellent, 
fast and efficient shape descriptor for an advanced weed type classification approach. 
 
 
REFERENCES 
[1] M. M. Siddiqi, et al., “A real time specific weed discrimination system using multi-level wavelet decomposition,” 

Int. J. Agric. Biol., vol/issue: 11(5), pp. 559-565, 2009. 
[2] A. Tannouche, et al., “A real time efficient management of onions weeds based on a multilayer perceptron neural 

networks technique,” Intl J Farm & Alli Sci., vol/issue: 4(2), pp. 161-166, 2015. 
[3] L. Longchamps, et al., “Discrimination of corn, grasses and dicot weeds by their UV-induced fluorescence spectral 

signature,” Precision Agric, vol. 11, pp. 181-197, 2010, DOI: 10.1007/s11119-009-9126-0. 
[4] X. Hadoux, et al., “Weeds-wheat discrimination using hyperspectral imagery,” CIGR-Ageng 2012, International 

Conference on Agricultural Engineering, Valencia, Spain, pp. 6, 2012. 



                ISSN: 2088-8708 

IJECE  Vol. 6, No. 3, June 2016 :  1168 – 1175 

1174

[5] H. T. Sogaard, “Weed classification by active shape models,” Biosystems Engineering, vol/issue: 91(3), pp. 271-
281, 2005. 

[6] A. Tannouche, et al., “A fast and efficient approach for weeds identification using Haar-like features,” American- 
Eurasian Journal of Sustainable Agriculture, vol/issue: 9(4), pp. 44-48, 2015. 

[7] A. Tellaechea, et al., “A computer vision approach for weeds identification through Support Vector Machines,” 
Applied Soft Computing, vol. 11, pp. 908-915, 2011. 

[8] P. J. Herrera, et al., “A novel approach for weed type classification based on shape descriptors and a fuzzy 
decision-making method,” Sensors, vol. 14, pp. 15304-15324, 2014. DOI: 10.3390/s140815304. 

[9] M. K. Hu, “Pattern recognition by moment invariants,” Proc. IRE (Correspondence), vol. 49, pp.1428, 1961.  
[10] J. Harikiran, et al., “Multiple feature fuzzy c-means clustering algorithm for segmentation of microarray           

images,” International Journal of Electrical and Computer Engineering, vol/issue: 5(5), pp. 1045-1053, 2015. 
[11] Saparudin, et al., “Segmentation of fingerprint image based on gradient magnitude and coherence,” International 

Journal of Electrical and Computer Engineering, vol/issue: 5(5), pp. 1202-1215, 2015. 
[12] X. P. Burgos-Artizzu, et al., “Real-time image processing for crop/weed discrimination in maize fields,” Comput. 

Electron. Agric., vol. 75, pp. 337-346, 2011. 
[13] T. Ojala, et al., “A comparative study of texture measures with classification based on feature distributions,” 

Pattern Recognition, vol/issue: 19(3), pp. 51-59, 1996. 
[14] J. F. Hair, et al., “Multivariate Data Analysis,” 5th ed., Prentice‐Hall, Upper Saddle River, NJ, 1998.  
[15] D. F. Morrison, “Multivariate Statistical Methods,” McGraw-Hill, Singapore, 2nd edition, 1988. 
 
 
BIOGRAPHIES OF AUTHORS 
 

 

  
 

Adil Tannouche is currently a PhD student at the Laboratoire d’Etude des Mateériaux Avanceés 
et Applications, Moulay Ismail University, Faculty of Sciences in Meknes, Morocco. His 
research interests are focused in machine vision, artificial intelligence and theirs application in 
agriculture. 

 

 

 

 
 

Khalid Sbai is a full professor since 2001 in Electronics. He received his M.sc. Degree in 
Electronics from Valencienne University (France) in 1996 and his Habilitation in Physics from 
Moulay Ismail University in 2008. His research interests include Structural studies, vibrational 
and electronic properties of carbon nanotubes 

 

 

 
 

Miloud Rahmoune is a full professor at Moulay Ismail University. He received his Msc. Degree 
in applied mechanics from Universite´ Montpellier 2 (France) and his Ph.D. degrees in 
Mechatronics from Universit Montpellier 2 (France) and Universite´ Hassan II Mohammedia, in 
1993 and 1996 respectively. His research interests include structural Dynamics, active control, 
and smart materials. 

 

 

 
 

Amine Zoubir is a senior lecturer at University Moulay Ismail, Morocco. He received the MSc. 
Degree (Magister) in fluid mechanics from the University of Lyon 1 (France) and the Ph.D 
degree in Mechanics, Energetics, Civil Engineering and Acoustics of INSA Lyon (France). He is 
an active researcher at Thermal & Material Research Unit (advanced materials and energy 
system). His area of research are focused on the numerical modeling of convective heat transfer 
and around the diagnosis of energy performance in buildings. 

 



IJECE  ISSN: 2088-8708  
 

A Fast and Efficient Shape Descriptor for an Advanced Weed Type Classification .... (Adil Tannouche) 

1175 

 

 
 

Rachid Agounoun is a senior lecturer at University Moulay Ismail, Morocco. He received the 
MSc. Degree (Magister) in mechanics and energetic system from the Université de Lorraine, 
Nancy, France and the Ph.D degree in science for engineers from the Universite´ de Lorraine, 
Nancy, France. He is an active researcher at Thermal & Material Research Unit (advanced 
materials and energy system). His area of research includes Thermal Comfort, Building Thermal 
Simulation, renewable energy and Porous Media. 

 

 
 

Rachid Saadani is a senior lecturer at University Moulay Ismail, Morocco. Was born in 
Morocco in 1977. He received the MSc. Degree (Magister) in thermal and energetic system from 
the Universit Marne La Vallée, Paris Est, Paris, France and the Ph.D degree in science for 
engineers from the Universite´ Paris Est, Créteil, Paris. He is an active researcher at Thermal & 
Material Research Unit (advanced materials and energy system). His area of research includes 
Thermal Comfort, Building Thermal Simulation, renewable energy and Porous Media. 

 

 

 
 

Abdelali Rahmani is a full professor at University Moulay Ismail, Morocco. He received the 
MSc. Degree in theoretical physics from the Universite´ Montpellier 2, France and the Ph.D 
degree in Materials science from the the Université Montpellier 2, France. He is the Director of 
Laboratory of Studies of Avanced Materials and Applications). His area of research includes 
Computational physics and nanomaterials. 

 

 

 


