
International Journal of Electrical and Computer Engineering (IJECE) 
Vol. 6, No. 3, June 2016, pp. 1096 ~ 1105 
ISSN: 2088-8708, DOI: 10.11591/ijece.v6i3.10328      1096 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJECE 

Efficient Low-Complexity Digital Predistortion for Power 
Amplifier Linearization 

 
 

Siba Monther Yousif1,4, Roslina M. Sidek1, Anwer Sabah Mekki2, Nasri Sulaiman1, Pooria Varahram3 
 1Department of Electrical and Electronic Engineering, Universiti Putra Malaysia (UPM), Malaysia 

2Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia (UPM), Malaysia 
3Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland 

4Department of Electronic and Communication Engineering, Al-Nahrain University, Baghdad, Iraq 
 
 

Article Info  ABSTRACT

Article history: 

Received Feb 9, 2016 
Revised May 11, 2016 
Accepted May 20, 2016 
 

 In this paper, a low-complexity model is proposed for linearizing power 
amplifiers with memory effects using the digital predistortion (DPD) 
technique. In the proposed model, the linear, low-order nonlinear and high-
order nonlinear memory effects are computed separately to provide 
flexibility in controlling the model parameters so that both high performance 
and low model complexity can be achieved. The performance of the 
proposed model is assessed based on experimental measurements of a 
commercial class AB power amplifier by applying a single-carrier wideband 
code division multiple access (WCDMA) signal. The linearity performance 
and the model complexity of the proposed model are compared with the 
memory polynomial (MP) model and the DPD with single-feedback model. 
The experimental results show that the proposed model outperforms the latter 
model by 5 dB in terms of adjacent channel leakage power ratio (ACLR) 
with comparable complexity. Compared to MP model, the proposed model 
shows improved ACLR performance by 10.8 dB with a reduction in the 
complexity by 17% in terms of number of floating-point operations (FLOPs) 
and 18% in terms of number of model coefficients. 
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1. INTRODUCTION 

Power amplifier (PA) is a major source of nonlinearity in a communication system since it is often 
driven close to the saturation region to achieve high power efficiency. The nonlinearity includes out-of-band 
emission which causes adjacent channel interference and in-band distortion that degrades the bit error rate 
performance. In modern high speed communications, transmission schemes with high spectral efficiency 
such as Orthogonal Frequency Division Multiplexing (OFDM) and Wideband Code Division Multiple 
Access (WCDMA) are more sensitive to PA nonlinearity and memory effects. This issue can be solved by 
backing-off the operating region of the PA into a linear mode at the expense of the degradation of the power 
amplifier efficiency. To overcome the conflict between the power efficiency and the linearity of the power 
amplifier, a linearization technique is required. One of the most cost-effective linearization techniques is the 
digital predistortion (DPD) [1]. 

Many DPD structures have been presented in the literature, containing the Volterra-based models 
[2]-[6], the polynomial-based models [7], the neural-network models [8],[9], and the LUT-based models 
[10],[11]. Even though the Volterra model is generally the most accurate structure in compensating the 
nonlinearity with memory effects of the power amplifier, it is mainly restricted to compensate mild 



IJECE  ISSN: 2088-8708  
 

Efficient Low Complexity Digital Predistortion for Power Amplifier Linearization (Siba Monther Yousif) 

1097

nonlinearity with memory effects of the PA. This is because of its high complexity in extracting Volterra 
kernels. Therefore, several special cases of Volterra model were proposed, such as the dynamic deviation 
reduction model [12]. 

However, high complexity DPD is undesirable because it leads to high power consumption and 
long-time delay due to intensive processing. Moreover, the main justification for the DPD technique is to 
gain more power-efficient PA, which is the most power consuming device in transmitters [13]-[15]. 
Therefore, it is essential that the power saved, by using DPD, is not spent on a high complexity DPD 
algorithm. Indeed, the MP model proposed in [2] is well-known for PA linearization. This model 
compensates for nonlinearities with memory effects using considerably lower model dimensions than the 
models reported in [4]. However, the linearity performance of the PA using the MP model is generally lower 
than the performance when using the models presented in [3],[4]. Therefore, achieving high linearity 
performance and simultaneously minimizing the DPD model complexity is crucial. 

In this paper, a low-complexity DPD model is proposed and experimentally validated for linearizing 
power amplifiers with memory effects. The proposed model is constructed by separating the linear from the 
nonlinear memory effects to enhance linearization. The low-order nonlinear memory effect is then separated 
from its high-order terms to reduce the model computational complexity. Consequently, this algorithm will 
provide flexibility in controlling the dimensions of the model that can improve the linearity performance 
while reducing the computational complexity of the DPD model. Therefore, the main contribution of this 
paper is that the proposed model gives a better experimentally adjacent channel leakage power ratio (ACLR) 
performance than the MP model [2] with a considerable reduction in the model computational complexity. 
Moreover, the experimental results show that the proposed model outperforms the DPD model with single-
feedback [3] in terms of ACLR performance with a comparable model complexity. 
 
 
2. MODEL DESCRIPTION 

In this section, the memory polynomial model is presented and the proposed model with its 
identification algorithm is clarified. 

 
2.1. Memory Polynomial Model 

The baseband predistorter can be modelled using the MP model, which is a good model as 
considered in [2], as shown in Equation (1): 

 
  (1) 

 
where z(n) and x(n)  are the complex output and input signals of the MP predistorter model, respectively. 

, K, and Q are the model coefficients, nonlinearity order, and memory length, respectively.  

In [2], the MP model, which was used as a digital predistorter, offers a good trade-off between 
performance and complexity. It has a good advantage since its parameters (i.e. the MP’s coefficients) can 
easily be extracted using least square solutions with an indirect learning architecture proposed in [16] as 
shown in Figure 1. However, the MP model uses the same high nonlinearity order in all of the memory 
branches, which results in an oversized model and an increase in the computational complexity of its model. 
 

 
Figure 1. Indirect learning architecture 
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2.2. Proposed Model 
To reduce the complexity of the DPD model and enhance the compensating performance of the 

nonlinearities with memory effects of the power amplifier, a DPD model is derived from the Volterra-series 
model represented in complex baseband [17] as shown in Equation (2): 
 

(2) 
 
where  and  are the complex baseband output and input signals of the Volterra-series predistorter, 
respectively.  is the nonlinearity order,  is the memory depth,  are the th-order Volterra 
kernels, and the symbol  denotes the complex conjugate operator.  

If the Volterra kernels are equal to zero except along the diagonal where 
only  are considered, this will reduce the model complexity without significant 
reduction in the linearity performance. Thus, the expression in Equation (2) is reduced to Equation (3): 
 

 (3) 
 

By combining the terms of the linear memory effects (i.e. when k = 1) and separating them from the 
other terms, which represent the dynamic nonlinearity effects. Consequently, the linear memory effects can 
be efficiently compensated as shown in Equation (4): 

 
 (4) 

 
Then, for properly controlling the compensation of the nonlinearity with memory effects and 

reducing at the same time the computational complexity of the proposed model, the effects of the dynamic 
low-order are split from the high-order nonlinearity effects by sorting out the nonlinearity terms of  
from the higher nonlinearity order as illustrated in Equation (5): 

 

  (5) 
 
By changing the model coefficients , , and  to  ,  , and  

respectively, the proposed method can be expressed as in Equation (6): 
 

 (6) 
 

where and  are the complex coefficients of the first and second branches of the proposed model, 
respectively, and the  values include the complex model coefficients of the third branch.   and  
represent the memory depth for the first, second, and third branches, respectively, and  denotes the 
nonlinearity order for the third branch. It is worth noting that the third term starts with nonlinearity order 

 to avoid redundancy with the first and second terms.  
As modern wireless systems utilize wider bandwidths with higher speed, the design for an 

accurately DPD model must take into account the linear memory effects and the dynamic nonlinearities. 
Thus, the proposed predistorter shown in Figure 2 has an important property, which is separating the purely 
linear memory effects (represented in the first branch) from the low-order nonlinearity dynamic one 
(considered in the second branch) and finally adds these branches to the high-order nonlinearity memory 
effects branch. Consequently, the proposed model provides an efficient way to present an effective distortion 
compensation approach for power amplifier linearization. Moreover, the proposed model also allows for 
more flexibility in modelling the memory effects in which the model dimensions of each branch are 
controlled separately, which reduces the model complexity while enhancing the linearity performance of 
PAs. 
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Figure 2. Basic architecture of the proposed model 

 
 

2.3. Model Identification Procedure 
The proposed predistorter has the property of linearity in model parameters as shown in Equation 

(6), which means that the model output is linear with its coefficients, since it was derived from Volterra-
series model. Hence, the coefficients of the proposed model can be extracted in a direct way using the least 
squares (LS) technique. The identification of the proposed model is an offline procedure and all of the 
branches of Equation (6) are identified simultaneously as shown in Equation (7): 

 
  (7) 

 
where the  vector is the output of the three dynamic branches based on Equation (6), the  matrix includes 
the basis functions of the three polynomial branches, and the  vector contains the coefficients of the 
proposed model. The vectors  and  are defined in Equations (8) and (9) respectively, where N is the input 
samples length used for the identification: 

 
  (8) 

 
 (9) 

 
The matrix  is analysed into sub-matrices as shown in Equation (10): 
 

  (10) 
 

where the sub-matrices,  , are composed from the basis functions of the linear memory 
effects, low-order nonlinearity with dynamic effects, and dynamic high-order nonlinearity branches, 
respectively. The indirect learning architecture is used for extracting the coefficients of the proposed model 
as shown in Figure 1. Accordingly, a new sequence is defined in Equation (11): 

 

  (11) 

 
where  is the complex baseband input signal of the predistorter during identification process,  is the 
complex baseband output signal of the PA, and  is the gain of the linearized PA. The vector  can be 
expressed in Equation (12): 

 
  (12) 

 
The sub-matrices are expressed in Equations (13), (14), and (15) respectively: 
 

  (13) 
 

  (14) 
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 (15) 
 
Finally, the coefficients of the proposed model in Equation (6) can be determined using least-

squares solution for Equation (7) as shown in Equation (16), where (.)H represents complex conjugate 
transpose: 

 
  (16) 

 
 

3. EXPERIMENTAL SETUP 
To demonstrate the linearization ability of the proposed predistorter, measurements was performed 

using the experimental setup shown in Figure 3. It consists of a personal computer (PC), Agilent - EXG 
vector signal generator N5172B, Agilent – PXA signal analyzer N9030A, ATM attenuator – PNR AV084-
30, and PA under test. The PC contains three software, which are Agilent SystemVue 2015.01, Matlab 
2014a, and Agilent 89600 VSA software. The complex input baseband signal was generated in Matlab. Then, 
by using SystemVue simulator, this signal was downloaded, through Local Area Network (LAN), into the 
EXG in order to excite the PA under test by the RF input signal. Then, the RF output from the power 
amplifier was attenuated by 10 dB and received by the PXA. This PXA was utilized to down-convert and 
demodulate the RF output signal to baseband signal cooperating with the VSA 89600 software. Then, the 
baseband input and output waveforms were used to extract the coefficients of the predistortion functions in 
Matlab. After that, synthesizing the predistorted signal and downloading this signal into the EXG were 
carried out using SystemVue software. 

The PA under test used was the HMC-C074 single stage class AB power amplifier, from Hittite 
Microwave Corporation, which provides 13 dB gain and 29.5 dBm output power at 1 dB gain compression 
and can operate from 10 MHz to 6 GHz. The PA was operated at 2.14 GHz with an input peak power back-
off of 1 dB and tested under 5-MHz bandwidth of a single-carrier WCDMA signal with peak-to-average 
power ratio (PAPR) of 8.7 dB and the signal was sampled at 25 MHz. 

 

 
 

Figure 3. Measurement setup used for the proposed DPD validation 
 
 

The complex input and output baseband waveforms, from the real PA, containing 20000 samples 
were utilized to extract the coefficients of the MP model according to Equation (1) and the proposed model 
based on Equation (6) using the training path shown in Figure 1. The dimensions of the models were 
appropriately selected to make a suitable trade-off between complexity and accuracy. The computational 
complexity will be discussed in section 5 and the model accuracy of the proposed and MP models were 
evaluated using the normalized mean squared error (NMSE) criterion, which is described in Equation (17): 
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  (17) 

 
where y  is the desired output waveform,   is the measured output waveform, and N is the number 
of samples utilized in these output waveforms.  

The calculated NMSE and model dimensions of the proposed and MP models are listed in Table 1 as 
well as the NMSE and model dimensions of the model proposed in [3]. From Table 1, it can be observed that 
the proposed model has higher accuracy than the accuracy of the MP model by 2.1 dB and slightly 
comparable accuracy with respect to the proposed model in [3]. 

 
 

Table 1. Comparison of model dimensions and NMSE of different DPD models 
 
 
 
 

 
 
4. MEASUREMENT RESULTS 

In order to assess the effectiveness of the proposed predistorter, the PA was linearized using the 
well-known MP model based on Equation (1) with Q =3 and K =7, and the proposed model based on 
Equation (6) with M = 3, L = 3, K = 7, and Q = 2. The measured output spectra of the power amplifier before 
and after applying the proposed and MP DPDs are shown in Figure 4 and listed in Table 2 with the measured 
results of the DPD model illustrated in [3].  Before applying DPD, the ACLR of the PA output was -40.5 dBc 
while after applying MP model, the compensation of dynamic nonlinearity was -51.3 dBc. Moreover, the 
model presented in [3] and listed in Table 2 has more reduction in ACLR than the MP model where -57 dBc 
was obtained. However, further ACLR improvement can be achieved when using the proposed model and the 
ACLR performance was -62.1 dBc. Therefore, the experimental results illustrate a better linearization 
performance using the proposed model than the performance achieved by the MP model and the model 
proposed in [3] by 10.8 dB and 5 dB, respectively. This achievement was obtained because of addressing the 
linear memory effects and separately compensating the effects of the low-order and the high-order nonlinear 
memory effects in the proposed model.  

 

 
Figure 4. Measured spectra of the PA with 5-MHz WCDMA signal excitation. (a) Without DPD (b) With MP 

model (K= 7 and Q=3). (c) With proposed model (M=3, L=3, K= 7, and Q=2) 
 

 
Table 2.  Comparison of ACLR performance of the PA 

 
 
 
 
 

DPD model Model dimensions NMSE (dB) 
MP [2] (K,Q) = (7,3)  -34.7 

DPD model [3] (Kodd order,Q) = (11,3) -37.1 
Proposed model (M)(L)(K,Q) = (3)(3)(7,2) -36.8 

DPD model 
ACLR (dBc) 

 -5 MHz               +5 MHz      
Without DPD -40.5  -41 
MP model [2] -51.3 -50.5 

DPD model [3] -57 -56 
Proposed model -62.1 -61 
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To further demonstrate the effectiveness of the proposed predistorter, dynamic AM/AM and 
AM/PM characteristics of the power amplifier, driven by a single-carrier WCDMA signal with 5-MHz 
bandwidth, before and after applying the proposed and MP predistorters are shown in Figure 5 and Figure 6, 
respectively. From these figures, the dispersions and bending of the PA characteristics are shown before 
applying the proposed and MP models due to the electrical memory effects and nonlinearities, respectively. 
Figure 5 shows that the dispersions with bending of the actual PA characteristics are better compensated after 
applying the proposed model than the MP model. While, Figure 6, illustrates that the linearization capability 
on the dynamic AM/PM characteristics of the real PA of both the MP and proposed predistorters is mainly 
the same.  

 

 
 

Figure 5. Dynamic AM/AM characteristics of the real PA driven by 5-MHz WCDMA signal 
 

 
 

Figure 6. Dynamic AM/PM characteristics of the real PA driven by 5-MHz WCDMA signal 
 

 
5. COMPUTATIONAL COMPLEXITY ANALYSIS 

To evaluate the proposed predistorter in terms of computational complexity reduction, the model 
complexity of the proposed algorithm is determined and compared with the computational complexity of 
both the MP model [2] and the DPD model presented in [3]. In [18], it has been demonstrated that 
considering even order nonlinearities give a better model performance than using only odd order terms. 
Therefore, both even and odd orders of nonlinearities in the proposed model are considered in this 
comparison.  

The complexity of the DPD models is evaluated based on the number of floating-point operations 
(FLOPs) and the number of model coefficients, as in [14],[19]. FLOPs are an actual measure for model 
complexity that gives the number of subtractions, additions, and multiplications used when the output of the 
DPD model is calculated. As explained in [19], the number of FLOPs required in each DPD model includes 
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FLOPs during the construction of the basis functions and FLOPs when these basis functions are filtered by 
the model coefficients. 

The number of FLOPs and model coefficients of the MP, DPD model presented in [3], and proposed 
model are reported in Table 3. The MP model has equal nonlinearity order in all of the memory branches and 
MP dimensions were set to 7 and 3 for K and Q, respectively. Consequently, this results in 244 FLOPs and 
28 coefficients according to Equation (1). Conversely, the use of three dynamic branches in the proposed 
predistorter makes it possible to reduce the memory depth of the third branch to be applied with flexibility in 
the other two branches as shown in Figure 2. Accordingly, the dimensions of the proposed predistorter were 
set to 3, 3, 7, and 2 for M, L, K started from 3, and Q, respectively. Thus, the FLOPs and number of 
coefficients are reduced to 204 and 23, respectively, based on Equation (6). Therefore, as shown in Table 3, it 
can be concluded that the proposed model has computational complexity reduction of approximately 17% in 
terms of FLOPs and 18% in terms of model dimensions with respect to the MP model. These complexity 
reduction results were achieved because the MP model is an oversized model since it uses the same high 
nonlinearity order in all of the memory branches. In the DPD model with single-feedback, 11th odd-order 
nonlinearity and memory depth of three were employed, as reported in [3]. Hence, the number of FLOPs and 
coefficients are slightly increased to 210 and 24, respectively, as compared with the proposed model.   
 
 

Table 3. Comparison of DPD models’ computational complexity and number of coefficients 

 
 

In summary, the proposed model outperforms both the DPD model presented in [3] in terms of 
ACLR performance by 5 dB with a comparable computational complexity and MP model in terms of 
linearity performance by 10.8 dB with a complexity reduction of almost 17% in the FLOPs as well as a 
reduction of 18% in the number of model coefficients. These results demonstrates that a high linearity 
performance was achieved while the computational complexity of the proposed DPD model was minimized. 
Consequently, these improvements will lead to reduction in transmitter power consumption and also 
reduction in hardware resources required for DPD implementation. 

 
 

6. CONCLUSION 
In this paper, a DPD model with low-complexity was proposed for linearization of PAs. The 

proposed model consists of three parallel dynamic branches using a linear memory effects, a low-order 
nonlinearity memory effects, and a high-order nonlinearity memory effects functions. The linearity 
performance of the proposed model was validated using a class AB power amplifier driven by a single-carrier 
WCDMA signal and compared to the MP model as well as the DPD with single-feedback model. The 
experimental results clearly illustrated that the proposed model had a better performance than the previous 
models in reducing the ACLR by 10.8 dB and 5dB, respectively. Moreover, the computational complexity of 
the proposed model was reduced by 17% and 18% in terms of FLOPs and number of model coefficients, 
respectively, as compared to the complexity of the MP model. The enhanced performance and complexity 
reduction of the proposed predistorter are expected to improve the PA efficiency and reduce the overall 
power consumption in transmitters, respectively. 
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