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ABSTRACT

The multi-tier architecture style has become an industry standard in modern data centers
with each tier providing certain functionality. To avoid congestion and to adhere the SLA
under fluctuating workload and unpredictable failures of Mission Critical Multi-tier applica-
tions hosted in the cloud, we need a Dynamic admission control policy, such that the requests
must be processed from the first tier to the last without any delay. This paper presents the
least strict admission control policy, which will induce the maximal throughput, for a two-
tier system with parallel servers. We propose an optimization model to minimize the total
number of virtual machines for computing resources in each tier by dynamically varying
the mean service rate of the VMs. Some performance indicators and computational results
showing the effect of model parameters are presented. This model is also applicable to
priority as well as real-time based applications in Cloud based environment.
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1. INTRODUCTION
Cloud computing greatly lowers the threshold for deploying and maintaining web applications since it pro-

vides infrastructure as a service (IaaS) and platform as a service (PaaS) for web applications [1]. Consequently, a
number of web applications, particularly the web applications of medium and small enterprises, have been built into
a cloud environment. Meanwhile, leading IT companies have established public commercial clouds. For example,
Google App Engine enables enterprises to build and host web applications on the same systems that power Google
applications. App Engine offers fast development and deployment; simple administration, with no need to worry about
hardware, patches or backups; and effortless scalability [2]. IBM also provides cloud options [3]. Amazon Elastic
Compute Cloud (Amazon EC2) is a web service that provides resizable compute capacity in the cloud. It is designed
to make web-scale computing easier for developers [4]. We even can establish a private cloud with Ubuntu Enterprise
Cloud to offer immediacy and elasticity in the infrastructure of web applications [5]. In summary, both of the numbers
of cloud applications and providers have kept gradually increasing for a couple of years [6, 7]. As a result, comput-
ing resource scheduling and performance managing have been one of the most important aspects of cloud computing
[8, 9].

This paper focuses on queueing-based analytical model for performance of web based applications with
multi-tiered architecture. It is quite difficult to predict the traffic in web based applications. In case of Real-time
or Mission-Critical applications, requests must be processed from the 1st tier to the last without any delay. If the
release and processing times of requests are known, the problem for determining the processing order of requests
is typically a scheduling problem. However, if requests arrive randomly, in order to prevent any delay of requests
currently in the system and ensure that the new request will go through all the tiers successfully, an admission control
should be used to decide whether or not to accept the new request. This paper deals with the admission control
policies for no-wait tandem queueing systems. We present the least strict admission control policy, which will induce
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the maximal throughput, for a two-tier system with parallel servers (VMs). This policy can be easily extended for
multi-tier systems.

In order to maximize the total profit, the system dynamically decides whether to accept a new request based
on his bandwidth requirement and duration time and the system data (the numbers of requests in system and their
remaining service times). Based on the known service times at all tiers of the new request and the system information
upon arrival, the system decides whether to accept this new request such that all accepted requests will go through the
rest of tiers successfully. In this paper, we present a feasible admission control policy, called the new never block the
old [10] (NNBO) policy. The main idea of this policy is that the presence of a newly admitted request will not block
other existing requests. It can be easily shown that the NNBO policy is the least strict policy. For a controlled system,
an important performance measurement is the resulting loss probability of any request or, equivalently, the loss rate of
the system. It is a greedy system in the sense that requests try their best to enter all tiers. Therefore, intuitively, the
total loss rate from all tiers in a free system may be smaller than the loss rate in a controlled system. However, it is
evident that, under the exponential service times, the loss rates of NNBO system and the free system are equal when
there is only one server at the 1st tier.

The rest of the paper is organized as follows. Section 2 briefly reviews the related works. Section 3 presents
the system description. Model description and its analysis is carried out in Section 4. Various performance measures
are evaluated in Section 5. Section 6 contains computational numerical illustrations with a variety of Results and
Discussion in the form of graphs to show the effectiveness of the model parameters. Section 7 concludes our paper.

2. RELATED WORK
Jung et al. [11] proposed a generating adoption for multi-tier applications in virtualized consolidated server

environments. It provides dynamic management method and optimizes offline resources to generate suitable config-
urations by evaluating a model consisting of multi-tier M/M/n queues. Urgaonkar et al. [12] proposed a model for
multi-tier internet applications to provide the resources to each tier of the application, and combine predictive and
reactive methods. The closed system model of muti-tier business applications based on mean value analysis (MVA)
algorithm to predict performance of multi-tier applications has been discussed in Chen et al. [13]. A nonlinear integer
optimization model for determining the number of machines at each tier in a multi-tier server network has been stud-
ied in Zhang et al. [14]. A single queue model for all tiers to prevent overload and maintain absolute client response
time has been reported in Kamra et al. [15]. Wang et al. [16] presented a new self-adaptive capacity management
framework for multi-tier virtualized environments. It executes periodically and reassigns resources by evaluating a
model consisting of multi-tier M/M/1 queues and solves an optimization problem [17].

A model for dynamic resource provisioning in multi-tier internet applications captures various characteristics
of an arbitrary number of heterogeneous tiers has been reported in Urgaonkar et al. [18]. Ardagna et al. [19] developed
a heuristic solution for maximization of profits using a cost model for multi-tier data controller center. Chang et al. [10]
proposed a model for Admission control policies for two-stage tandem queues with no waiting spaces to provide the
resources to each tier of the just-in-time based production lines and compare the resulting loss rate of the controlled
system with the loss rate of a system without any admission control called the free system. This model is also
applicable to systems where the system manager must maintain the no-wait privilege for the higher priority customers
in order to differentiate the qualities of the services. In our work we propose an optimization model to minimize the
total number of virtual machines for computing resources in each tier by dynamically varying the mean service rate of
the virtual machines (VMs).

3. SYSTEM DESIGN
This section presents the architecture of the hosting platform required in our work.

3.1. Architecture overview

Model View Controller (MVC) framework comprises of multiple tiers such as web-tier, middle-tier and
persistence tier. Web-tier typically consists of web-servers whereas middle-tier consists of app-servers, file-servers to
host middleware technologies and persistence-tier consists of Databases or backend systems such as legacy systems.
The MVC design pattern is a way of taking an application and breaking it into three distinct parts: the model, the
view, and the controller. The advantage of using the MVC pattern is that there is no business or Model-specific
processing within the presentation, or view, component itself. The opposite is also true; that is, there is no presentation
logic in the model and business layers. This improves component reuse there and also improve the ability to change
a tier implementations with minimal effect on the other tiers [20, 21]. Figure 1 shows the request processing flow
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Figure 1. A typical 3-tier application in cloud

of a typical three tier MVC based web application deployed in cloud, in which each rectangle represents a tier. A
request moves through the tiers , may visit a tier multiple times and get processed at the visited tier. Finally, the
processing completes and returns to request senders from the front tier. Since different tiers are designed to provide
different functionalities, tiers could be clustered by a group of servers with similar resource characteristics. For
example, a middle-tier business logic server would be better to have fast processing capability, while a backend-tier
database server is usually required to provide high I/O operation rate and Web-Tier doesn’t have any processing logic
rather it works as a request forwarding agent. Therefore, physical servers are clustered into different groups (VMs),
serving different tiers of applications. The architecture of a shared data center is shown in Figure 2, which consists

Figure 2. Virtualized Data Center architecture consisting of VMs in IaaS

of heterogeneous physical nodes (IaaS), shared by multiple independent applications, hosting web application from
different companies or organizations. Modern transactional web applications are designed using multiple tiers, which
are often distributed across different servers. Active VM Load Balancer maintains information about each VM along
with the number of requests currently allocated to VMs in a intended tier. When a request to allocate a new VM
arrives, it identifies an existing free VM.

3.2. Virtualized Multi-tier Application Queueing Model

A virtualized multi-tier application in cloud computing environment is deployed on multiple virtual machines,
and each tier provides certain functionality to its preceding tier. Let us consider an online application that consists
of n tiers, T1, T2, . . . , Tn. We assume that there are c parallel identical VMs in each tier but they are provisioned
when needed. The load balancer distributes the load to different parallel VMs queueing models of that tier to execute.
Each tier is assumed to employ a perfect load-balancing element for a virtualized application that is responsible for
processing requests at that tier, and each request is forwarded to its succeeding tier for further processing. Figure
3 represents Tandem queueing system with zero-buffer and there are multiple nodes with multiple Servers (VMs) at
each node.

4. MODEL DESCRIPTION AND ANALYSIS
We discuss the dynamic admission control to a two-tier no-wait tandem queueing system with N1 VMs at

tier 1 and N VMs at tier 2. We consider the epoch when a new request X , whose service time at stage j is denoted

Multi-tier Applications in Cloud Data Center
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Figure 3. Zero-Buffer Tandem queues

by Xj ; j = 1, 2, arrives. Suppose that there are n1 and n2 requests already at stage 1 and stage 2, respectively. As per
NNBO admission control policy: X is admitted if and only if: (i) When X arrives, there is at least one free VM at
tier 1. (ii) Based on the system data observed upon X ′s arrival, there should be at least one free VM at tier 2 when X
enters tier 2. (iii) During the X ′s sojourn at tier 2, any of those n1 requests left behind by X at tier 1 can still enter tier
2. Here we consider a no-wait tandem queueing system in which there is only one server (n1 = 1) at stage 1. Assume
that requests arrive according to a Poisson process with rate λ and the service times of each request at stages 1 and 2
are exponentially distributed with rate µ1 and µ2, respectively. In this section, we define the states as (n1, n2), where
n1 and n2 are the numbers of requests at stages 1 and 2, respectively. The stationary state balance equations are given
as

λP0,0 = µ2P0,1, (1)
(λ+ n2µ2)P0,n2

= µ1P1,n2−1 + (n2 + 1)µ2P0,n2+1, 1 ≤ n2 ≤ N − 1, (2)
(µ1 + n2µ2)P1,n2

= λP0,n2
+ (n2 + 1)µ2P1,n2+1, 0 ≤ n2 ≤ N − 1, (3)

(λ+Nµ2)P0,N = µ1 (P1,N−1 + P1,N ) , (4)
(µ1 +Nµ2)P1,N = λP0,N . (5)

From (5), we get

P1,N =
λ

µ1 +Nµ2
P0,N . (6)

Using (6) in (4) and simplifying, we have

P1,N−1 =
Nµ2(λ+ µ1 +Nµ2)

(µ1 +Nµ2)µ1
P0,N . (7)

Substituting n2 = N − 1 in (3), yield

P0,N−1 =

{
(µ1 + (N − 1)µ2)(λ+ µ1 +Nµ2)Nµ2

(µ1 +Nµ2)λµ1
− Nµ2

µ1 +Nµ2

}
P0,N . (8)

Solving (2) and (3), recursively, we obtain

P1,n2−1 =
λ+ n2µ2

µ1
P0,n2

− n2 + 1

µ1
P0,n2+1, n2 = N − 1, . . . , 2, 1, (9)

P0,n2 =
µ1 + n2µ2

λ
P1,n2 −

(n2 + 1)µ2

λ
P1,n2+1, n2 = N − 1, . . . , 1, 0. (10)

We can obtain P0,N by applying Normalizing condition
N∑

n2=0
(P0,n2 + P1,n2) = 1.

4.1. Recursive algorithm

In this section, we establish a computational algorithm to compute recursively stationarity state probabilities
according to the following algorithm:
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Step 1: Assume P0,N = 1.
Step 2: Calculate P1,N from (6).
Step 3: Calculate P1,N−1 and P0,N−1, using (7) and (8).
Step 4: Balance equations for states (1, N − 2), (1, N − 3), . . . , (1, 0) yield P1,n2 , n2 = N − 2, N − 3, . . . , 0 as
function of P0,n2

.
Step 5: Balance equations for states (0, N − 2), (0, N − 3), . . . , (0, 0) yield P0,n2

, n2 = N − 2, N − 3, . . . , 0 as
function of P1,n2

.
Step 6: Repeat Steps 4 and 5 for n2 = N − 2, . . . , 0.

Step 7: Normalization:
N∑

n2=0
(P0,n2

+ P1,n2
) = 1 yields P0,N .

Step 8: Compute Pn1,n2
= Pn1,n2

× P0,N for n1 = 0, 1;n2 = 0, 1, . . . , N .

5. PERFORMANCE MEASURES
Performance measures are the means to examine the efficiency of the queueing system under consideration.

As the steady-state probabilities at various epochs are known, the main performance measures of the queueing system
can be obtained as follows:

• The probability that an arrival finds Node-1 (tier-1) full is given by L1 =
N∑

n2=0
P1,n2 .

• Average number of lost customers per unit time at Tier-1 is LT1 = λ
N∑

n2=0
P1,n2

.

• Average number of lost customers per unit time at Tier-2 is LT2 = µ1P1,N .

• Loss rate of the NNBO System is given by LLoss =
N∑

n2=0
P1,n2

+
(

µ1

µ1+Nµ2

)
P0,N .

5.1. Cost analysis

We develop a total expected cost function per unit time for the tandem queuing system where the number of
nodes are represented by n and number of VMs in each node is represented by c. Our objective is to determine the
optimum number of VMs c, say c∗, and the optimum number of nodes n, say n∗, as decision variables so that the
expected cost function is minimized. Let,
Ch = holding cost per unit time for each client request present in the system.
C1 = fixed cost per unit time during the busy period for node 1
C2 = fixed cost per unit time during the busy period for node 2.
C3 = fixed cost for every lost client.
Let F (c, n) be the expected cost per unit time. Using the definitions of each cost element and its corresponding system
characteristics, we have

F (c, n) = Ch(N + 1) + C1LT1 + C2LT2 + C3λLLoss (11)

The objective is to determine the optimum number of VMs c and optimum system size (nodes) n to minimize the
cost function F (c, n). Here, we are specifically considering 2-Nodes, hence n = 2. Hence, the cost function reduces
to F (c). We have implemented the numerical searching approach for the cost function using the genetic algorithm.
The genetic algorithm is a probabilistic search algorithm that iteratively transforms a set (called a population) of
mathematical objects, each with an associated fitness value, into a new population of offspring objects using the
natural selection and mutation. Haupt et al. [22]. Genetic algorithms are adaptive search algorithms based on the
evolutionary ideas of natural selection and genetics. It represents potential solutions by bit strings of a fixed length.
By analogy to genetics, the strings can be rendered as chromosomes with individual bits referring the presence (bit =
1) or absence (bit = 0) of a gene. A genetic algorithm allows a population composed of many individuals to evolve
under specified selection rules that minimize the fitness function, that is, the cost function in this paper. A population
of alternative possible solutions (chromosomes) is created and allowed to evolve through a number of generations.
Old generations beget new generations in a fashion that mimics genetic change in nature. The solution procedure is as
follows:
INPUT: λ, µ1, µ2, Ch, C1, C2, C3, c, n and genes, probability of crossover, and probability of mutation.

Multi-tier Applications in Cloud Data Center
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OUTPUT: approximate solution c∗, n∗, F ∗.
Step 1: Population Initialization. An implementation of genetic algorithm initiates with a encoding of each input into
a chromosomes. Each gene value either 0 or 1 is randomly generated.
Step 2: Fitness Computation. To determine the optimal expected profit per unit time for optimal virtual machines and
system capacity, the fitness of a chromosome is computed using the expected cost function F (c, n) in equation (11).
Step 3: Selection and Crossover. The selection is a process which mimics the natural survival of the fittest creatures.
Each chromosome has a fitness value obtained through the fitness function. The chromosomes which perform better
fitness values are given more chances and it discards poor quality genes based on their fitness value. Crossover
is done by selecting two parents during reproduction and combining their genes to produce offspring. The parent
chromosomes are then mated to generate a new set of offspring chromosomes. This mated procedure is also called
crossover.
Step 4: Mutation. Mutation is the random changing of one or more bits in a chromosome. It is useful to create new
genes that are not in the initial set of population, or ones that have evolved out of the population, but now would be
beneficial.
Step 5: Repeat Step 2 - Step 4 until the stopping criterion is met. We use 50 generations as our stopping criterion.

6. RESULTS AND DISCUSSION
In this section some numerical results are discussed. Numerical results for various system performance

measures are presented in Table 1. We observe that for fixed µ1 as µ2 increases: (i) The optimum cost increases. This
is because the number of the VMs in the system also increases. But for fixed µ2 as µ1 increases: (i) The optimum
cost and other performance measures such as Ploss decreases. This is because the number of the VMs in the system
remains the same. With the same number of VMs and fixed µ2, as µ1 increases both LT1 & LT2 decreases. Figures

Table 1: Optimal system performance measures

µ1 µ2 c F (c, n) LT1 LT2 PLoss

0.5 1 5 196.00 1.6 0.00001 0.8
2 10 347.45 1.63516 0.04394 0.81757
4 12 408.57 1.85527 0.00081 0.92763
5 14 466.67 1.66667 0.00024 0.83333

0.75 1 5 194.55 1.45455 0.00001 0.72727
2 10 347.32 1.51703 0.08592 0.75851
4 12 408.03 1.79648 0.00243 0.89823
5 14 465.73 1.57143 0.00069 0.78571

1 1 5 193.33 1.33333 0.00000 0.66667
2 10 347.61 1.42327 0.13490 0.71163
4 12 407.58 1.74471 0.00518 0.87235
5 14 465.04 1.5 0.00142 0.74999

1.25 1 5 192.31 1.23077 0.00001 0.61541
2 10 348.18 1.34683 0.18860 0.67341
4 12 407.22 1.69883 0.00912 0.84941
5 14 464.51 1.44444 0.00244 0.72222

4 and 5 show the effect of µ2 on the expected number of lost customers per unit time at Tier-1 and Tier-2, respectively.
It is seen that as µ2 increases, LT1 and LT2 increases monotonically to certain extend then monotonically decreases.
From Figure 4, as µ1 increases, lost customers per unit time at tier-1 LT1 decreases. Whereas from Figure 5, lost
customers per unit time at tier-2 LT2 increases as µ1 increases. This is because of the admission control policy.
Figure 6 depicts the impact of VMs on the Cost. It can be observed that cost increases as the c and µ2 increases. For
the fixed number of VMs and µ2, the cost involved remains almost same, that is, the small variation in cost is due to
the variation in µ1. The effect of VMs on the PLoss is represented in Figure 7. It is seen that as µ2 increases, PLoss
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increases (with a small variation at µ2 = 4) and hence resulting more loss. This is because of more loss at node-1, that
is, LT1.
The impact of different parameters on Cost and PLoss is shown on Figure 8 and Figure 9, respectively. It can be seen
from Figure 8, the Cost increases monotonically as the µ2 and number of VMs increases. But in case of Figure 9, with
the increase of µ2 and µ1, the PLoss increases monotonically till µ2 = 4 and then decreases. This shows that due to
dynamic admission policy more loss is happening at node-1, that is, LT1.

7. CONCLUSION
Highly performance sensitive mission critical as well as real-time applications are rarely hosted in public

Clouds. With a dynamic admission control policy, we can easily address these type of application specific issues where
extra cost is incurred to ensure high-availability as well fault tolerance. In this paper, we propose an optimal policy for
provisioning of VMs in cloud data center to minimize the congestion in the network by varying the service rate of the
virtual machines. An analytical model is developed to fit cloud environment with heterogeneous servers (as required
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for different tiers) to minimize the total number of VMs and finally cutting down the cost involved. The objective is to
improve the efficiency and flexibility in cloud environment for resource provisioning. A variety of numerical results in
the form of tables and graphs are discussed to display the effect of the system parameters on the performance measures.
Cost analysis has been done to improve the grade of service by selection of appropriate system parameters using
genetic algorithm. To achieve significant performance level, we adopted Service Level Agreement based negotiation
of prioritized applications to determine the costs and penalties. It is a trade-off that potential applications need to
consider in deciding the performance evaluation of server farms as an important aspect of cloud computing which is
of crucial interest for both cloud providers and cloud customers. As future work, research will be carried out on useful
algorithms for measuring deployment costs of virtual resources in multi-cloud environments.
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