International Journal of Electrical and Computer Engineering (IJECE)
Vol. 6, No. 3, June 2016, pp. 945 — 954
ISSN: 2088-8708, DOI: 10.11591/ijece.v6i3.9030 | 945

Fast Document Summarization using Locality Sensitive
Hashing and Memory Access Efficient Node Ranking

Ercan Canhasi’
"Faculty of Computer Science, University of Prizren

Article Info ABSTRACT

Article history: Text modeling and sentence selection are the fundamental steps of a typical extractive doc-
Received Feb 5, 2016 ument summarization algorithm. The common text modeling method connects a pair of
: sentences based on their similarities. Even thought it can effectively represent the sentence

Revised May 7, 2016 - o ld 'Vb' dugblk' | vely rep i O
Accepte d May 19.2016 similarity graph of given document(s) its big drawback is a large time complexity o (n),
’ where n represents the number of sentences. The quadratic time complexity makes it im-
Keyword: practical for large documents. In this paper we propose the fast approximation algorithms
Document summarization for the text modeling and the sentence selection. Our text modeling algorithm reduces the
time complexity to near-linear time by rapidly finding the most similar sentences to form

Locality Sensitive Hashing h nilari b In doi ilized Localitv-Sensitive Hashi f
/O Access Efficient Node the sentences similarity graph. In doing so we utilized Locality-Sensitive Hashing, a fast

algorithm for the approximate nearest neighbor search. For the sentence selection step we
propose a simple memory-access-efficient node ranking method based on the idea of scan-
ning sequentially only the neighborhood arrays. Experimentally, we show that sacrificing a
rather small percentage of recall and precision in the quality of the produced summary can
Comparative summarization reduce the quadratic to sub-linear time complexity. We see the big potential of proposed
method in text summarization for mobile devices and big text data summarization for in-
ternet of things on cloud. In our experiments, beside evaluating the presented method on
the standard general and query multi-document summarization tasks, we also tested it on
few alternative summarization tasks including general and query, timeline, and comparative
summarization.

Ranking
Min-Hashing
Timeline summarization

Copyright (©) 2016 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Ercan Canhasi

Faculty of Computer Science, University of Prizren
Rruga e Shkronjave, nr. 1 20000 Prizren, Kosove
ercan.canhasi @uni-prizren.com

1. INTRODUCTION

The world is floating on data. These data are mainly coming from the word wide web which is expanding
exponentially making massive volume of the online information available for users. For years we have been affected
by the quantity of data streaming through and produced by our systems. Automatic document summarization as the
complementary tool to regular web search engines can be used to scale down this problem of information overload.
Since the most of mobile and interactive ubiquitous multimedia devices have restricted hardware such as CPU, mem-
ory, and display screen it is essential to compress an document collection to a brief summary before it is delivered to
the user of these devices. Other technology trends which can largely benefit from a scalable document summarization
methods are the Internet of Things (IoT) on Cloud and Big data. The later is about the processing and analysis of
large data repositories on Cloud computing. Big document summarization method is an important technique for data
management of IoT. Traditional document summarization methods are restricted to summarize suitable information
from the exploding IoT big data on Cloud.

The main task of the extraction based multi-document summarization is to extract the most important sen-
tences from multiple documents and format them into a summary. According to the number of documents to be
summarized, the summary can be a single document or a multi-document. Query-focused multi-document summa-
rization is a special case of multi-document summarization. Given a query, the task is to produce a summary which
can respond to the information required by the query. Two other specific document summarization tasks treated in

Journal Homepage: http://iaesjournal.com/online/index.php/IJECE

946 O ISSN: 2088-8708

Table 1. Observed execution time spent on calculations (in seconds). The time elapsed in computing the summaries
are measured on processor with following specifications: Intel(R) Core(TM) i5 CPU M 450 @ 2.45GHz with 4GB
RAM memory. The first two columns, document(s) length in KB, and the total number of sentences, represent the
input values. While the rest four columns, text modeling by means of LHS and conventional all-to-all comparing
methods, sentece selection with I/O access efficient node ranking and archetypal analysis based sentence selection,
are the measured times or the output values of the experiment.

Doc.(s) length # of sentences Text modeling Sentence selection
LSH all to all node ranking AA
1KB 13 0.008 0.09 0.021 1.73
20KB 160 0.054 1.40 0.056 1.11
45KB 366 0.138 2.28 0.139 4.82
100KB 744 0.303 5.89 0.308 9.21
644KB 5112 4.110 191.06 4.123 207.89

this work are timeline and comparative summarization. Timeline summarization aims at producing a sequence of
compact summaries for news sets broadcast at various periods. Comparative News Summarization aims to outline the
mutualities and contrasts between comparable news subjects.

In this paper, we propose a scalable solution to multi-document summarization based on the randomized
algorithms. Many sentence similarity graph generation algorithms make use of some distance similarity (e.g., cosine
similarity) to measure pairwise distance between sets of vectors representing corresponding sentences. Assume that
we are given n sentences with a maximum of m terms. Calculating the full similarity matrix would take time com-
plexity n?m. Many novel summarization tasks such as the comparative, update and time-line summarization require
processing the large number of sentences. Having an n?m algorithm in such setups would be very impractical. Fortu-
nately, we can borrow some ideas from the Math and Theoretical Computer Science to develop a scalable document
summarization algorithm proportional to nm. The essence of our methods lies in defining Locality Sensitive Hash
(LSH) functions. LSH functions involve the creation of short signatures (fingerprints) for each vector in space such
that those vectors that are closer to each other are more likely to have similar fingerprints. LSH functions are generally
based on randomized algorithms and are probabilistic.

The contribution of this paper is fourfold: 1) Paper presents a new fast sentence selection algorithm able
to scale effortlessly; 2) We describe the method for sub-linear time text modeling by means of sentence similarity
graph and very efficient node ranking in those graphs; 3) No individual part of our method is new or revolutionary.
Locality sensitive hashing has been done before, as have node ranking and its usage in summarization. The novelty is
in the combination of these individually useful parts into a single, coherent, real-time summarization system. We have
not seen LSH nor our node ranking implementation applied to summarization in this way before; 4) We extensively
evaluated our method on few different summarization tasks.

The remainder of the paper is organized as follows: Section 2 first briefly presents the related work. In
Section 3 we describe the centerpiece of this work namely the fast document summarization method. Section 4 gives
the description of the test environment and data sets we used for testing. The results are also presented in Section 5.
We conclude the paper and set guidelines for further work in Section 6.

2. RELATED WORK

Our work is related to various research fields including general and query focused summarization [1, 2, 3,
4,6, 5, 7], timeline summarization [8, 9], comparative summarization [10], sampling-based document summarization
algorithms [11], node ranking of the sentence similarity graph [12, 13, 14] and similarity search for high dimensional
data objects [15, 16]. Following paragraphs give a brief survey of these works.

In [11], authors use Random Indexing for text modeling. Random indexing presents a computationally
efficient way of implicit dimensionality reduction. It involves inexpensive vector computations such as addition and
thus provides an efficient way to compute similarities between words, sentences and documents.

The algorithm that we use in this paper, min-hash [17], was originally developed for returning only the
authoritative documents in search results. Another closely-related problem is one know as the text reuse [18]. In
contrast to near-duplicate detection, the focus is usually on smaller segments of text as opposed to entire documents.
Other similar formulations of the problem are what the data mining community calls pairwise similarity search or all
pairs search [19] and what the database community calls set similarity join [20].

IJECE Vol. 6, No. 3, June 2016: 945 — 954

IJECE ISSN: 2088-8708 m| 947

Our previous work [3, 4, 5] present an extractive summarization framework based on three alternative models
to integrate the archetypal analysis based sentence selection: (1) the plain archetypal analysis sentence clustering
and ranking for general; (2) the weighted archetypal analysis sentence selection for the query focused document
summarization and (3) the weighted hierarchical archetypal analysis sentence selection for 4 different summarization
tasks.

Timeline summarization (TS for short) has become a widely adopted, natural way to present long news stories
in a compact manner. Existing approaches for TS aim to generate a good daily summary for each of these dates (e.g,
[8, 9]). In this study, we set our focus on showing how the presented method can directly without extra effort be used
in TS problem.

Comparative multi document summarization (CDS) is first proposed in [10] to summarize differences be-
tween comparable document groups. [10] presents a sentence selection strategy modeled by means of conditional
entropy, which precisely discriminates the documents in different groups.

Graph-based methods like TextRank [12] and PageRank [13] model a document or a set of documents as
a text similarity graph, constructed by taking sentences as vertices and the similarity between sentences as edge
weights. They take into account the global information and recursively calculate the sentence significance from the
entire text graph rather than simply relying on unconnected individual sentences. From an NLP perspective, extractive
summarization embodies two criteria: sentence relevance and sentence redundancy. Graph-based sentence ranking
algorithms successfully merge both of these criteria into a single framework, by utilizing the so-called graph-based
lexical centrality principle. Graph-based ranking algorithms were also used in query-focused summarization when it
became a popular research topic. For instance, a topic-sensitive version of LexRank is proposed by [14]. It integrates
the relevance of a sentence to the query into LexRank to get a biased PageRank ranking.

Similar work to ours [21] presents a new principled and versatile summarization framework MDS using the
submodal function. This framework can deal with different summarization tasks, including generic, query-focused,
updated, comparative summarization. The empirical results show that this framework outperforms the other rivals in
the generic summarization and is competitive in other summarization tasks. In [22] authors have investigated the use
of maximum entropy, naive-Bayes, support vector machine models and a hybrid machine model for multi-document
automatic text summarization.

3. FAST DOCUMENT SUMMARIZATION
3.1. Motivation

The trend in automatic document summarization approaches found in state of the art systems proposes a
general summarization methods which consists of the following sub-tasks: 1. Text modeling: convert the text into, for
instance graph representation 2. Sentence ranking: identify the salient sentences from given text model 3. Summary
generation: extract selected sentences into final summary.

In order to obtain the sentences similarity graph one needs to compute the similarity values for all possible
pairs of sentences in order to connect them in the sentence similarity graph. Mainly the vector space model is used to
represent sentences from given documents. The vector space model is an algebraic model for representing sentences
as vectors of terms. The cosine similarity is a measure of similarity between two vectors of an inner product space
that measures the cosine of the angle between them. Assuming that multiplication and addition are constant-time
operations, the time complexity of computing the cosine similarity where m is the biggest number of terms is therefore
O(m) + O(m) = O(m). But since we need to compute the sentence similarity for every pair of sentences then the
time and space complexity of generating the sentence similarity graph becomes O(n(n — 1)/2), here n is the number
of sentences. In order to give a better gist of the time complexity we report the elapsed time in producing the summary
for different document(s) lengths in in Table 1. Not only the similarity graph calculation is time expensive, but usually
sentence selection methods are also very time consuming.

Hence, this paper presents the way for using the fast randomized approximation algorithm (i.e., LSH and
min-hash), to deal with the quadratic complexity of the conventional text modeling techniques. Our approximation
algorithm utilizes Locality-Sensitive Hashing, abbreviated as LSH hereafter, which is a probabilistic approximation
algorithm for the nearest neighbor search. We do not only try to increase the speed and the scalability of the summary
production system on the text modeling level but we also present our contribution on the sentence selection/extraction
level.

For text modeling we propose the following method (Essential Steps in similarity graph computation):1. N-
gram extraction: Convert sentences into sets 2. Min-Hashing: Convert wide sets to short signatures, while preserving
similarity 3. Locality-Sensitive Hashing: Concentrate on couples of signatures probable to originate from similar
sentences

Fast Document Summarization using Locality Sensitive Hashing and Memory ... (Ercan Canhasi)

948 O ISSN: 2088-8708

Documents

'

| n-gram extraction |

set of strings of

* - > length n

| minhashing | [
signatures: short integer
vectors representing
the sets

—

locality sensitive hashing

Finding similar senteces with LHS

l [candidate pairs for
similarity graph

LHS based sentence
similarity graph as
adjacency lists Off[] (offsets for node i)

l —_— Nbl[](pointers to
out-neighbors)

1/O access efficient
node ranking |
 ———— >

node-ranked
list of sentences

Sentence selection
and ordering

v

Summary

Figure 1. Method overview

Given the sets of similar sentences we can very efficiently compute the sentence ranking by mapping the prob-
lem of sentence selection to node ranking in the graph of similar sentence sets. For sentence modeling we propose the
following method: Essential steps in I/O efficient node ranking 1. Get the input sentence similarity graph represented
as a set of three arrays 2. Produce the sentence ranking by recursively computing the eigenvector decompositions
3. Return the sentence ranking

In the rest of the section we describe these steps in more details.

3.2. Fast similarity graph computing

In this subsection, the problem of sentence similarity is fist described as search for the sets with a approx-
imately big intersection. We then show how the problem of finding textually similar sentences can be turned into
such a set problem by representing given text entities as a set of n-grams. Then, we present how method known as
min-hashing can be used for shortening these huge n-gram sets while preserving the similarity information of the
underlying sets. And finally we utilize the locality-sensitive hashing for adjusting our search on couple of sentences
that are most probable to be similar.

Let us assume the similarity of the pair of sentences can be deduced by barely looking at the relative size of
their intersection. This is the similarity measure know as Jaccard similarity. If the Jaccard similarity of sets W and Z
is W N Z|/|W U Z|, than the Jaccard similarity of sentences S; and S5 can be denoted as STM (S7, S2). The form
of similarity we are utilizing here is character-level similarity.

A very simple but productive method for representing sentences as sets is to describe them as the sets of very
short strings that occur within sentences. In this way sentences that share pieces as short as words or even syllable
will have many common elements in their sets, even if those common entities appear in different orders in the two
sentences. Define a n-gram for a sentence to be any substring of length n found within the sentence. Then, correlate
each sentence with the set of n-grams that appear one or more times within that sentence. Instead of manipulating the
sub-strings as n-grams, we choose a hash function that maps them to some number of buckets and handle the final
bucket number as the n-gram. The set defining a sentence eventually becomes a set of integers that are bucket numbers
of one or more n-grams that appear in the sentence. In this way we drastically compress the original textual data.

IJECE Vol. 6, No. 3, June 2016: 945 — 954

IJECE ISSN: 2088-8708 m| 949

Algorithm 1 Fast min-hashing algorithm

1: procedure MINHASHING(S|], H[],n, k)

2: Input: S (Set of n-grams), H (/N random hash functions), n (number of n-grams), k& (number of hash func-
tions);

3 Output: ¢ set of min-hash signatures of the input set of n-grams S';

4 c[] + new int[n]

5 for i = 0tondo

6: cli] + o0

7 fori =1tondo

8 if S(i)==1 then

9: for: =0to k do

10: if hj (Z) ==Cj then

11: cli] + oo

12: end procedure

Algorithm 2 Approximate nearest neighbor search

1: procedure LSH(M],], s, b, 1)

2: Input: M (min-hash signature matrix), s (similarity threshold), b the number of bands, r the number of rows;
3 Output: F set of documents with jaccard similarity at least s;

4: Divide matrix M into b bands of r rows

5: for each b in band do hash b portion of each column to a hash table with k buckets; make k as large as possible
6

7

8

9

end for

Candidate column pairs are those that hash to the same bucket for > 1 band
: Tune b and r to catch similar sentences
: end procedure

Since the sets of n-grams are usually large, one can replace them by much smaller representations called
signatures. Signatures can be calculated using the method known as the min-hashing, briefly given in Algorithm 1.
This technique is developed to guarantee that two similar objects generate hashes that are themselves similar. In fact,
the similarity of the hashes has a direct relationship to the similarity of the sentences they were generated from. This
ratio temps to approximate the Jaccard Similarity.

Although we use min-hashing to compress large sets into small signatures while yet preserving the expected
similarity of any pair of sentences, there is still another very important issue. Finding the pairs of sentences with
greatest similarity efficiently can be very time consuming. The reason is that the number of pairs of sentences may
be too large. The brute-force approach would be to compare each sentence with each other sentence, using MinHash,
which obviously has the quadratic time complexity. A faster solution is to use Locality Sensitive Hashing (LSH). This
takes the MinHash values for sentences and hashes the MinHash values so they hash into the same bucket if they are
similar. The brief algorithm is described in 2. Note that the computation time for LSH with MinHash depends only on
the number of sentences and number of MinHash functions used and not on the length of the sentences.

We can now give an approach to finding the set of candidate pairs for similar sentences and then discovering
the truly similar sentences among them:

1. Pick a value of n and construct from each sentence the set of n-grams.
2. hash the n-grams to shorter bucket numbers.
3. Sort the sentence and n-grams pairs to order them by latter.

4. Pick a length n for the minhash signatures. Feed the sorted list to the algorithm 1 to compute the minhash
signatures for all the sentences.

5. Choose a threshold ¢ that defines how similar sentences have to be in order for them to be regarded as a desired
“similar pair.” Pick a number of bands b and a number of rows r such that b * r = n, and the threshold ¢ is
approximately (1/b)1/r.

6. Construct candidate pairs by applying the LSH technique described in algorithm 2.

Fast Document Summarization using Locality Sensitive Hashing and Memory ... (Ercan Canhasi)

950 O ISSN: 2088-8708

7. Connect the sentences in the similarity graph based on the candidate pairs calculated by LHS.

3.3. Sentence selection

In this subsection we describe an I/O efficient graph based ranking method for sentence selection from the
graph of sentences. The construction methodology of graph was presented in previous subsection. The idea has been
vastly used in document summarization since the pioneering works known as PageRank [pagerank], and textrank
[textrank]. To efficiently compute the PageRank scores for a big graphs, the input sentence similarity graph has to be
represented as a binary link structure, more specifically as a set of three arrays: SenL (list of the n sentences), O f f
(array of integers which denotes the offsets of list for node ¢) Nb (array of integers which denotes the pointers to out-
neighbors); Using the above structure, a simple I/O efficient PageRank algorithm can be written in Algorithm 3. Note
that except for newpr][] array, which represents the PageRank values, all arrays are scanned only once sequentially
from front to end.

Given the node ranking our summarization approach will extract the most important nodes, i.e sentences, to
include in the summary. Here an additional sentence penalization step is applied. Suppose z; is the highest ranked
sentence. Sentence x; is moved to set of sentences representing the final summary, and then the redundancy penalty
is imposed to the overall rank score of each sentence linked with x; as follows: for each sentence x;, its rank score
RScore(x;) is computed by:

RScore(x;) = RScore(x;) * (1 — Sim;;)',t >0

is the exponent decay factor. The larger ¢ is, the greater penalty is imposed to the overall rank score. If ¢ = 0, no
diversity penalty is imposed at all; In our experiments we set ¢ = 3; Presented penalization algorithm is based on the
idea that extracting the overall rank score of less informative sentences overlapping with the sentences in summary is
iteratively decreased. Here, redundancy removal is also the key step of content selection. Finally, the sentence with
the highest rank score is chosen to produce the summary until satisfying the summary length limit.

Algorithm 3 I/O efficient node ranking

1: procedure SENTENCERANKING(SenL, Off, Nb)
2: Input: SenL (list of the n sentences), O f f (array of integers which denotes the offsets of list for node i) Nb
(array of integers which denotes the pointers to out-neighbors);

3 Output: node-ranked list of sentences;

4 n < SenL.Count

5: B < 0.15

6: m < 10

7 pr]] + new float[n)

8 newpr|] < new float[n]

o: fori =0tondo

10: prii] < 1/n

11: newpr|i] < (1 — B)/n

12: for k. = 0tom do

13: fori =0to Of f.Count —1do

14: outd <+~ Of fli+ 1] — Of f[i]

15: for j =OffliJto (Offli+1]—1)do
16: newpr[N B[j]]+ = (beta * (pr[i]/outd))
17: newprli] < (1 —B)/n

18: end procedure

4. EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness and possible positive contributions of the
proposed method compared with other existing summarization systems on few different summarization tasks including
General/Query, Comparative, and Timeline summarization.

IJECE Vol. 6, No. 3, June 2016: 945 — 954

IJECE ISSN: 2088-8708 m| 951

4.1. Evaluation Metric

We used the metric based on the ROUGE scores that are widely used in traditional summarization tasks.
Recall Oriented Understudy for Gisting Evaluation (ROUGE) evaluation package [23], compares various summary
results from several summarization methods with summaries generated by humans. In timeline evaluation tasks, the
quality of different TSs are compared via F-measure of the ROUGE-1, ROUGE-2. In this paper, we adopted the same
metrics, plus the additional ROUGE-S*. Technically, ROGUE-S* is computed the same as bigram-based ROGUE-
2 scores, but it allows the words in the bigram to be aparted by a window. This makes ROGUE-S* capture better
the global distributional semantics, while traditional ROGUE-Ns capture better the local semantics, i.e. sentence to
sentence matching.

The set of input parameters for FastSum namely 1) the number of ngrams; 2) the number of bands; 3) the
number of rows; 4) and the number of elements are separately defined for each kind of treated summarization task as
reported in Tablel. The rational for picking up these values are purely empirical and are based on the experiments
presented in the rest of the paper.

Table 2. FastSum Input parameters

Task #ngrams #bands #rows #elements
General/Query 4 20 2 40
Timeline 4 20 3 60
Comparative 6 20 5 100

4.2. General summarization

We use the DUCO5 and DUCO06 data sets to evaluate our proposed method empirically on general and query
focused summarization tasks. Benchmark data sets are from DUC! for automatic summarization evaluation. DUC05
and DUCO06 data sets consist of 50 topics. The task is to create a summary of no more than 250 words. In those
document data sets, stop words were removed using the stop list? and the terms were stemmed using the Porter’s
scheme?, which is a commonly used algorithm for word stemming in English.

Table 3. Evaluation of the methods on the DUC2005 dataset.

Summarizers ROUGE-1 ROUGE-2 ROUGE-SU4
Avg-Human 0.4417 (1) 0.1023 (1) 0.1622 (1)
Avg-DUCO5 0.3434 (7) 0.0602 (6) 0.1148 (7)
System-15 0.3751 (4) 0.0725 (4) 0.1316 (4)
System-4 0.3748 (5) 0.0685 (5) 0.1277 (5)
Biased-Lex 0.3861 (3) 0.0753 (3) 0.1363 (3)
wAASum 0.3945 (2) 0.0797 (2) 0.1420 (2)
FastSum 0.3697 (6) 0.0506 (7) 0.1168 (6)

We work with the following methods for general/query-focused summarization as the baseline systems to
compare with our proposed method:

(1) Avg-Human: the average human summarizer on DUCO05(06); (2) Avg-DUCO05(06): the average system
summarizer; (3) System-15(24): The best system-summarizer from DUCO05(06); (4) System-4(12): The second best
system summarizer from DUC04(05); (5) Lex-PageRank: by calculating the eigenvector centrality given the sentence
to sentence similarity graph the method extracts the most significant sentences; (6) wAASum: weighted Archetypal
analysis summarization system of the sentence similarity graph; (7) FastSum: the method presented by this paper.

Although there are, for each year, more than 30 systems that have participated in DUC competition, here we
only compare with the DUC human best, the DUC human average, the DUC system best and the DUC system average
result.

Thttp://duc.nist.gov
2ftp://tp.cs.cornell.edu/pub/smart/english.stop
3http://www.tartarus.org/martin/PorterStemmer/

Fast Document Summarization using Locality Sensitive Hashing and Memory ... (Ercan Canhasi)

952 O ISSN: 2088-8708

Table 4. Evaluation of the methods on the DUC2006 dataset.

Summarizers ROUGE-1 ROUGE-2 ROUGE-SU4
Avg-Human 0.4576 (1) 0.1149 (1) 0.1706 (1)
Avg-DUC06 0.3795 (7) 0.0754 (6) 0.1321 (7)
System-24 0.4102 (3) 0.0951 (2) 0.1546 (4)
System-12 0.4049 (5) 0.0899 (4) 0.1476 (5)
Biased-Lex 0.3899 (6) 0.0856 (5) 0.1394 (6)
wAASum 0.4238 (2) 0.0917 (3) 0.1671 (2)
FastSum 0.4086 (4) 0.0710 (7) 0.1616 (3)

Table 5. Results in comparative summarization: Sentences selected by our proposed FastSum approach.

ID Selected sentence

1 At the Madrid summit last December, leaders of EU member nations agreed unanimously that the European
single currency will be formally launched on January 1, 1999.

2 The Wa National Organization, the Palaung State Liberation Front and the Lahu Democratic Front said the
arrest were an insulting act of shameless, barbaric arrogance against the people of Burma.

3 ETA, which stands for Basque Homeland and Freedom, has killed nearly 800 people in its 30-year campaign
for an independent Basque nation carved out of parts of northern Spain and southern France.

4 Unemployment in France fell to 11.6 percent in October from 11.7 percent, reflecting a slow but steady
improvement in France’s high jobless rate, long one of the nation’s knottiest problems.

5 Researchers evaluate overweight and obesity using a measure called body mass index BMI , which divides
weight in kilograms by the square of height in meters.

Tables 3 and 4 show the ROUGE scores of different methods using DUC05 and DUCO06 data sets, respec-
tively. The higher ROUGE score indicates the better summarization performance. The number in parentheses in each
table slot shows the ranking of each method on a specific data set. Even thought our results are not among the best we
show that by sacrificing a rather small percentage of recall and precision in the quality of the produced summary can
reduce the quadratic to sub-linear time complexity of other typical summarization systems.

4.3. Comparative summarization

In this section we investigate one of the recent summarization tasks, first proposed by [10].

We model the comparative summarization as follows: Extract the summaries 51, Ss, ..., Sy from the given
N groups of documents G1, G, ..., G . Extracted summaries should be as divergent as possible from one another on
the topic level while still expressing central themes of corresponding groups.

We propose a following function for the comparative summarization to generate the discriminant summary
for each group of documents:

Cs= (1)

—SMnorm (i, 55) 1f G(s:) # G(s5)

$1Mnorm(5i, Sj if G(s;) = G(s
(m.”{ (si,s5) if G(s;) = G(sy)

where G(s;) is the document group containing sentence s;, SiMporm(Si,S;) is the normalized sentence
similarity.

Evaluation: Since there is currently no dataset/methodology available to carry out a quantitative evaluation
of comparative summarization we used five clusters of documents from the DUCO7 corpora to generate comparative
summaries using the FastSum method. The data set contains five clusters as follows: 1. Steps toward introduction of
the Euro; 2. Burma government change 1988; 3. Basque separatist movement 1996-2000. 4. Unemployment in France
in the 1990s; 5. Obesity in the United States and possible causes for US obesity;

Looking at the results by FastSum sentence selection method in Table 5, each of the sentences represents one
cluster respectively and summarizes well specific topics of each cluster. In Table 5, we also highlight some keywords

IJECE Vol. 6, No. 3, June 2016: 945 — 954

IJECE ISSN: 2088-8708 m| 953

Table 6. Average results on 17 timelines, the reported results are computed 95% confidence interval

Summarizers ROUGE-1 ROUGE-2 ROUGE-SU4
Random 0.128 0.021 0.026
Chieu et al. 0.202 0.037 0.041
Tran et al. 0.230 0.053 0.050
FastSum 0.197 0.032 0.039

representing the unique features of each topic. Note that the sentence extracted by FastSum for each topic are not just
discriminative but they also present the essence of the topic.

4.4. Timeline summarization

In order to evaluate out method on timeline summarization task we used Timeline17 dataset [8]. Briefly, the
dataset consists of 17 manual-created timelines and their associated news articles. Data set are published online *.

We evaluate our system against traditional multi document summarization and timeline generation systems.
Following is the list of those systems: Random: The system generates day summary for each day by randomly selecting
sentences for particular day. [9] is multi-document summarizer which utilizes the popularity of a sentence as TFIDF
similarity with other sentences to estimate its importance. [8] They use SVM-rank to demonstrate the performance of
their system, which is one of the most common learn to rank implementa‘tions.

Result: The average results of TS generation on given dataset are represented in Table 6. Although when
compared to other two systems ours seems to perform more poorly this is mainly due to its simplicity which is payed
by its scalability.

5. CONCLUSION AND FUTURE WORK

A particular challenge for graph based multi-document summarization methods is a large time complexity
of at least O(n?) for text modeling and some additional complexity of sentence selection. Hence we need effective
summarization methods to reduce this high time complexity. In this paper we have formalized the problem of the fast
and scalable document summarization method as combination of (1) the text modeling sub-problem of calculating the
similarity graph based on locality sensitive hashing and (2) the sentence selection sub-problem of 1/O access efficient
node ranking.

The contribution of the work can be summarized as: 1. The paper presents a new fast sentence selection
algorithm able to scale effortlessly. 2. We describe the method for sub-linear time text modeling by means of sentence
similarity graph and very efficient node ranking in those graphs. 3. No individual part of our method is new or
revolutionary. Locality sensitive hashing has been done before, as have node ranking and its usage in summarization.
The novelty is in the combination of these individually useful parts into a single, coherent, real-time summarization
system. We have not seen LSH nor our node ranking implementation applied to summarization in this way before;
4. We extensively evaluated our method on few different summarization tasks.

In future the FastSum may be further improved. There are many potential directions for improvements, such
as: 1. improving the FastSum into a distributed real-time multi-document summarization system 2. adopting FastSum
to and testing it as the system capable of scaling to many servers and huge size of documents 3. in order to improve
the quality of produced summaries one can enhance the sentence similarity calculation by using the wordnet and by
adopting the LSH to fast semantic similarity calculation.

6. SOURCE CODE
All the source codes can be downloaded as SVN checkout at:
https://github.com/ErcanCanhasi/FastDocumentSummarization.git

REFERENCES
[1] Pankaj B, Agrawal AJ. (2014) Extractive Based Single Document Text Summarization Using Clustering Ap-
proach. In: IAES International Journal of Artificial Intelligence (I1J-Al) 2014, 3(2).

“http://www.13s.de/ gtran/timeline/

Fast Document Summarization using Locality Sensitive Hashing and Memory ... (Ercan Canhasi)

954 O ISSN: 2088-8708

[2] Pedram VA, Omid SSh. Scientific Documents clustering based on Text Summarization. In: International Journal
of Electrical and Computer Engineering (IJECE) 2015; 5(4): 782-787.

[3] Canhasi E, Kononenko I. Multi-document summarization via Archetypal Analysis of the content-graph joint
model. Knowledge and Information Systems (KAIS), 2014; 41(3): 821-842.

[4] Canhasi E, Kononenko I. Weighted archetypal analysis of the multi-element graph for query-focused multi-
document summarization. Expert Systems with Applications (ESWA), 2014; 41(2): 535-543.

[5] Canhasi, E., Kononenko, 1., Weighted hierarchical archetypal analysis for multi-document summarization. Com-
put. Speech Lang. (2015), http://dx.doi.org/10.1016/j.cs1.2015.11.004

[6] Canhasi E, Kononenko I. Automatic Extractive Multi-document Summarization Based on Archetypal Analysis.
Non-negative Matrix Factorization Techniques. Springer Berlin Heidelberg, 2016; 75-88.

[7] Dipti YS. Effect of feature selection on small and large document summarization. In: JAES International Journal
of Artificial Intelligence (1J-Al) 2014; 3(3).

[8] Tran GB, Tran AT, Tran NK, Alrifai M, Kanhabua N. Leveraging Learning To Rank in an Optimization Framework
for Timeline Summarization. 2013

[9] Chieu HL, Lee YK. Query based event extraction along a timeline. In: Proceedings of the 27th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval, ACM. 2004; 425-432.

[10] Wang D, ZhuS L, Gong TY. Comparative document summarization via discriminative sentence selection, TKDD
2012; 6(3): 1-12.

[11] Chatterjee N, Mohan S. Extraction-based single-document summarization using random indexing. In: Tools with
Artificial Intelligence, ICTAI 19th IEEE International Conference 2007; 448—455.

[12] Mihalcea R, Tarau P. TextRank: Bringing Order into Texts In: Proceedings of Conference on Empirical Methods
in Natural Language Processing, EMNLP, ACL 2004; 404-411.

[13] Erkan G, Radev DR. LexRank: Graph-based lexical centrality as salience in text summarization. Journal of
Artificial Intelligence Research, 2004; 457-479.

[14] Otterbacher J, Erkan G, Radev DR. Biased LexRank: Passage retrieval using random walks with question-based
priors. Information Processing and Management, 2009; 45(1): 42-54.

[15] Andoni A, Indyk P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In:
Foundations of Computer Science FOCS’06. 47th Annual IEEE Symposium on, (IEEE) 2006, 459—-468.

[16] Henzinger M. Finding near-duplicate web pages: a large-scale evaluation of algorithms. In: Proceedings of the
29th annual international ACM SIGIR conference on Research and development in information retrieval, (ACM
SIGIR) 2006, 284-291.

[17] Broder AZ, On the resemblance and containment of documents. In: Compression and Complexity of Sequences
1997. Proceedings, (IEEE) 1997; 21-29.

[18] Bendersky M, Croft WB. Finding text reuse on the web. In: Proceedings of the Second ACM International
Conference on Web Search and Data Mining, (ACM) 2009; 262-271.

[19] Bayardo RJ, Ma Y, Srikant R. Scaling up all pairs similarity search. In: Proceedings of the 16th international
conference on World Wide Web, (ACM) 2007, 131-140.

[20] Vernica R, Carey MJ, Li C. Efficient parallel set-similarity joins using MapReduce In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, ACM 2010; 495-506.

[21] LiJ, Li L, Li T, Multi-document summarization via submodularity. Applied Intelligence, 2014; 37(3); 420—430.

[22] Fattah MA. A hybrid machine learning model for multi-document summarization. Applied intelligence 2014;
40(4): 592-600.

[23] Lin CY. Rouge: a package for automatic evaluation of summaries. In: Text summarization branches out: pro-
ceedings of the ACL-04 workshop of ACL 2004, 74-81.

BIOGRAPHY OF AUTHOR

Ercan Canbhasi received his Ph.D. in 2014 from University of Ljubljana, Slovenia. He is a assistant
professor at the Faculty of Computer Science in Prizren. His research interests include text mining,
natural language processing and text summarization. He is the (co)author of few papers. Further
info on his homepage: https://sites.google.com/a/uni-prizren.com/ercancanhasi/

IJECE Vol. 6, No. 3, June 2016: 945 — 954

