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Peripheral arterial disease (PAD) is a cardiovascular condition caused by
arterial blockages and poor blood circulation, increasing the risk of severe
complications such as stroke, heart attack, and limb ischemia. Early and
accurate detection is essential to prevent disease progression and improve
patient outcomes. This study introduces a non-invasive diagnostic method
using laser doppler flowmetry (LDF), electrocardiography (ECG), and
photoplethysmography (PPG) to assess vascular health. LDF measures
microvascular blood flow, ECG evaluates heart rate variability, and PPG
captures pulse waveform characteristics. Key physiological features such as
blood flow variability, pulse transit time, and hemodynamic responses are
extracted and analyzed using machine learning. Random forest and
XGBoost models are employed and combined using ensemble learning to
classify individuals into non-PAD, moderate PAD, and severe PAD
categories. A comparative evaluation shows that the ensemble model

delivers superior classification accuracy. This integrated system offers a fast,
reliable screening tool that supports early PAD detection and intervention.
By combining multimodal signal analysis with machine learning, the
approach enhances diagnostic precision and provides a scalable solution for
preventive cardiovascular care.
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1. INTRODUCTION

Peripheral arterial disease (PAD), a widespread vascular condition primarily affecting the lower
extremities, impacts over 200 million people worldwide [1]. Primarily caused by atherosclerosis, PAD has
become a major public health concern due to its rising prevalence, driven by aging populations and risk
factors such as diabetes, metabolic abnormalities, and tobacco use [2]. In advanced stages, PAD can lead to
critical limb ischemia, resulting in non-healing ulcers or even limb amputation if left untreated, and
significantly increases the risk of serious cardiovascular complications like myocardial infarction, stroke, and
overall mortality [3]. Despite its severity, PAD remains widely underdiagnosed, particularly in the early
stages, due to the limited sensitivity of the ankle brachial index (ABI), which is widely regarded as the
standard screening tool especially in patients with diabetes-related arterial calcification [4]. Conventional
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statistical approaches are generally inadequate in modeling the intricate nonlinear dependencies between risk
factors, leading to reduced predictive performance. This study addresses the following question: Can a
multimodal approach that integrates electrocardiography (ECG), photoplethysmography (PPG), and laser
doppler flowmetry (LDF) signals with machine learning techniques enhance early detection and severity
classification of PAD compared to conventional diagnostic methods?

Recent advancements in non-invasive diagnostic technologies offer promising solutions to these
challenges. ECG, a routine clinical tool, provides insights into heart rhythm and variability, aiding
cardiovascular risk assessment [5]. PPG, widely used in pulse oximeters, is an affordable and portable
method for evaluating vascular health, suitable for integration into wearable devices [6], [7]. LDF measures
skin blood perfusion and has shown high sensitivity in detecting compromised lower-limb circulation,
particularly in high-risk groups such as hemodialysis patients [8]. Machine learning (ML) enhances these
tools by identifying intricate, nonlinear data patterns that conventional models miss [1]. Prior studies
demonstrate that ML-driven analyses of electronic health records and PPG data outperform traditional
methods in PAD prediction [9]. Techniques for dimensionality reduction, such as principal component
analysis (PCA), help retain the most significant variance in the dataset while reducing the number of features.
[10] Similarly, ensemble methods like random forest and XGBoost enhance model accuracy and reduce the
risk of overfitting. [11].

This study addresses these gaps by proposing a novel, non-invasive diagnostic framework that
synergistically combines LDF, ECG, and PPG signals to assess microvascular blood flow, cardiac dynamics,
and vascular health. Physiological features, including blood flow variability, pulse transit time, and
hemodynamic responses, are extracted and analyzed using an ensemble machine learning model comprising
random forest and XGBoost algorithms, optimized via GridSearchCV to classify PAD severity into Non-
PAD, Moderate PAD, and Severe PAD categories with 93% accuracy. To maximize clinical utility, the
model is deployed through a Flask-based web application, enabling rapid, user-friendly PAD screening in
diverse healthcare settings. This approach facilitates early detection, supports preventive care, and paves the
way for personalized management of PAD, ultimately aiming to reduce its clinical and economic burden.
According to prior research, this work is one of the earliest attempts to combine ECG, PPG, and LDF signals
with ensemble models to classify the severity of PAD. This integration offers a novel, non-invasive, and
accurate diagnostic framework for early detection and stratification of PAD.

The objective of this study is to propose a non-invasive diagnostic framework for the early detection
and stratification of PAD severity. This is achieved through a multimodal methodology that incorporates
signals from electrocardiogram, photoplethysmography, and LDF. Essential physiological indicators such as
variations in blood flow, pulse transit times, and hemodynamic responses are extracted and processed. These
features are subsequently evaluated using ensemble algorithms, namely random forest and XGBoost, with
hyperparameters optimized through GridSearchCV. The resulting model stratifies PAD into three categories:
Non-PAD, Moderate PAD, and Severe PAD. For real-world applicability, the trained model is integrated into
a Flask-based web platform, offering an accessible and real-time screening tool. This approach is intended to
enhance diagnostic precision, support early interventions, and enable individualized management strategies
for PAD.

The structure of this paper is organized as: section 2 discusses the state-of-the-art research and
existing methodologies related to the diagnosis of PAD. Section 3 outlines the identified research gaps along
with the main contributions of this work. Section 4 details the adopted methodology and the data utilized.
Section 5 discusses the experimental findings. Finally, section 6 concludes the study and suggests directions
for future research.

2. LITERATURE REVIEW

Allen et al. [12] proposed a deep learning approach utilizing photoplethysmography (DLPPG) was
employed to identify PAD through the analysis of toe-based PPG signals. The objective was to evaluate the
effectiveness of a convolutional neural network, specifically AlexNet with transfer learning, applied to
continuous wavelet transform (CWT) spectrograms. The model achieved 86.6% sensitivity, 90.2%
specificity, and 88.9% accuracy with a Cohen’s Kappa of 0.76 using 5-fold cross-validation. This approach
requires minimal signal preprocessing and prioritizes toe PPG, which is more clinically relevant for PAD
detection than finger-based signals. The study highlighted challenges such as managing movement artifacts
and signal noise. It also noted that the dataset was not fully balanced and certain health factors like diabetes
were not incorporated.

Kim et al. [13] explored PAD detection and severity assessment using deep learning on arterial
pulse waveforms. A synthetic dataset from a transmission line model simulated various PAD severities.
Brachial and ankle waveforms were analyzed using a modified AlexNet CNN, achieving 97% sensitivity,
99% specificity, and accuracy—surpassing the traditional ABI method. This approach better captured

Prediction of peripheral arterial disease through non-invasive diagnostic approach (Sobhana Mummaneni)



5784 O ISSN: 2088-8708

waveform morphology and individual variability. Key challenges included use of virtual data and limited
real-world generalization. The study highlights deep learning's potential for accurate, non-invasive PAD
screening, with future efforts focused on clinical validation and localization.

McBane et al. [14] introduced a model utilizing the inception time architecture to detect PAD from
resting arterial Doppler waveforms. Trained on data from 3432 patients and validated on 151, the model
predicted abnormal ABI values with high accuracy (rest ABI: 0.89, AUC 0.95; postexercise ABI: 0.85-0.89).
While the method reduces the need for exercise testing, it depends on high-quality waveform acquisition.
Limitations include exclusion of certain patient groups and limited generalizability. The approach
demonstrates strong potential for scalable, non-invasive PAD screening.

Stansby et al. [15] conducted a prospective diagnostic study to assess the accuracy of multi-site
photoplethysmography (MPPG) in identifying PAD within primary care. Using duplex ultrasound as the
reference standard, MPPG demonstrated a sensitivity of 79.8% and specificity of 71.9%, comparable to the
traditional ankle-brachial pressure index (ABPI), which showed 80.2% sensitivity and 88.6% specificity.
Unlike ABPI, MPPG was faster, automated, and required less operator training. However, the study faced
challenges such as an 8.4% test failure rate due to signal quality and prototype device limitations. Despite
these constraints, the research highlights MPPG’s potential as a scalable, non-invasive diagnostic tool for
early PAD detection in primary care settings.

Forghani et al. [16] proposed DeepPAD, a novel deep learning framework for identifying PAD
using Oscillo metric pulse waveforms recorded at different cuff pressures. The system employed an
attention-enhanced bidirectional LSTM model to analyze raw Oscillo metric pulses and extracted features.
Evaluated on data from 33 individuals, the model achieved up to 94.8% accuracy, 90.0% sensitivity, and
97.4% specificity, outperforming the conventional ABI and a genetic algorithm-based neural network
(GA-NN). Despite its high performance, limitations included a small sample size and lack of PAD severity
classification.

Sonderman et al. [17] introduced a machine learning model aimed at identifying individuals at high
risk for peripheral artery disease by analyzing electronic health record (EHR) data. Unlike traditional
screening approaches, this method combined ABI measurements with a broad set of patient features to
improve prediction accuracy. The researchers applied a random forest algorithm to select key variables,
followed by a logistic regression model to classify PAD risk. The model showed consistent performance with
an AUC around 0.68 across internal and external datasets, and slightly higher accuracy (AUC 0.72) on a
national sample, outperforming simpler age-based predictions. Despite these strengths, challenges remain in
handling the variability and completeness of EHR data. Limitations include moderate predictive power and
lack of validation in real-world clinical workflows. Future research could enhance model robustness and
assess its impact on patient care.

3. RESEARCH GAPS AND PROPOSED CONTRIBUTIONS

Recent studies [12]-[17] on non-invasive PAD detection rely on single modalities such as PPG [12],
[15], [16], Doppler waveforms [14], or EHR data [17], limiting their ability to capture PAD’s complex
microvascular, cardiac, and vascular dynamics. Key limitations include small sample sizes (e.g., 33
individuals in [16]), synthetic datasets with poor real-world generalizability [13], absence of PAD severity
classification [12], [14], [16], [17], and lack of scalable deployment mechanisms [14], [15]. The proposed
study addresses these gaps by integrating LDF, ECG, and PPG signals within an ensemble machine learning
framework (random forest and XGBoost), achieving 93% accuracy in classifying PAD severity (non-PAD,
moderate PAD, severe PAD) on a robust 1,000 sample dataset [18], [19]. Deployed via a Flask-based web
interface, this approach offers a scalable, accurate, and clinically accessible solution for early PAD detection
and management, advancing preventive cardiovascular care.

4. METHODOLOGY

This study presents a robust classification framework aimed at detecting and assessing the severity
of PAD using physiological signals and ensemble machine learning. The methodology prioritizes accuracy,
interpretability, and effective preprocessing to ensure clinical applicability. The system leverages an
ensemble classification model integrating random forest and XGBoost with soft voting, enabling multi-class
classification of PAD into Non-PAD, Moderate PAD, and Severe PAD categories. The methodology is
detailed in the following subsections. Data acquisition and preprocessing strategies are discussed in
subsections 4.1 and 4.2. The architecture and training of the base classifiers are described in subsections 4.3
and 4.4. The ensemble approach is outlined in the subsection 4.5, followed by evaluation protocols in
subsection 4.6. Figure 1 illustrates the complete PAD classification pipeline.
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Figure 1. Proposed methodology for PAD classification

4.1. Data collection and preprocessing

The data collection and preprocessing phase, was conducted under carefully controlled conditions,
ensured the integrity and relevance of the dataset, which includes essential physiological signals used for the
classification of PAD. Two primary sources were considered, both publicly accessible. The first dataset,
obtained from Kaggle [18], focuses on ECG and PPG signals and is organized into recordings that capture
various cardiovascular conditions. The second dataset consists of LDF measurements sourced from a
published medical study [19], which provides microvascular blood flow data for both healthy individuals and
PAD patients. The dataset includes high-resolution LDF values indicative of tissue perfusion levels. To
ensure the reliability of multimodal signal analysis, ECG, PPG, and LDF data were combined through time
synchronization techniques, aligning them to a common temporal window. This enabled accurate cross-signal
correlation and robust feature extraction. The final dataset is categorized into three classes: Non-PAD,
Moderate PAD, and Severe PAD, supporting effective classification of PAD severity.

4.2. Data loading and processing

The data preprocessing phase begins with importing the PAD dataset, which includes physiological
signals such as (LDF; blood flow in mL/min), PPG, and ECG, using the Pandas library for efficient data
manipulation and exploration. The target labels ("non-PAD", "moderate PAD", and "severe PAD") are
encoded using LabelEncoder to enable supervised learning. To capture nonlinear relationships among
features, a second-degree polynomial expansion is applied using polynomial. Features, balancing model
complexity with enhanced feature expressiveness while avoiding the computational cost of higher-degree
terms. Feature standardization is then applied through StandardScaler, which normalizes the data to zero
mean and unit variance, ensuring uniform contribution of all features during model training and improves the
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convergence speed and stability of the machine learning algorithms. To further optimize the feature set and
reduce redundancy, PCA was applied, as discussed in the following subsection.

4.2.1. Principal component analysis

To address the high dimensionality and multicollinearity introduced by polynomial feature
expansion, PCA was employed to compress the feature space. PCA transforms the standardized feature space
into a set of uncorrelated principal components that capture the maximum variance in the dataset, thereby
simplifying the dataset while maintaining its core structural characteristics. In this study, components were
retained such that 98% of the total variance was preserved, implemented via PCA(n_components=0.98).
This strategy effectively minimizes redundancy, accelerates model training, and maintains critical
physiological signal patterns. PCA was selected over alternative methods like linear discriminant analysis
(LDA) and t-distributed stochastic neighbor embedding (t-SNE) due to its unsupervised nature, emphasis on
variance retention, and computational efficiency for continuous biomedical data. LDA was excluded to avoid
potential overfitting to class labels, while t-SNE was considered unsuitable given its computational demands
and focus on data visualization rather than predictive modeling. After optimizing the feature space, the next
step focused on designing machine learning models for PAD classification using the processed input signals.

4.3. Model creation

The model development phase was centered on establishing a classification framework to identify
the severity of PAD, categorized into non-PAD, moderate PAD, and severe PAD, using preprocessed
physiological signals. Two machine learning models such as random forest and XGBoost were selected due
to their effectiveness in managing multi-class classification, particularly with medical datasets. Random
forest, introduced by Breiman, is an ensemble method based on decision trees [20], builds numerous decision
trees and predicts the class based on the majority vote across these trees. This method is particularly effective
in capturing non-linear dependencies within diverse physiological data. For this study, random Forest was
fine-tuned using GridSearchCV, set to build 400 trees, with a maximum depth of ten, minimum samples split
of two, and balanced class weighting to address class imbalance and improve generalization. XG Boost, a
gradient boosting-based model, sequentially constructs trees to correct errors made by prior ones and
incorporates regularization to reduce overfitting [21]. For our task, XGBoost was configured with a learning
rate of 0.1, maximum depth of 6, and 300 boosting rounds, using a multi-class log-loss objective.
Hyperparameter tuning was also performed via GridSearchCV to enhance classification accuracy. All input
features were derived from three physiological signal modalities: LDF, PPG, and ECG. Preprocessing steps
included label encoding, polynomial feature expansion, standardization, and dimensionality reduction using
PCA to improve learning performance. Once model architectures and hyperparameters were finalized, both
classifiers were trained independently on the refined dataset

4.4. Model training

In the training phase, two ensemble learning algorithms random forest and XGBoost were used to
create predictive models. Each was trained independently on a preprocessed and dimensionally reduced
dataset. The random forest algorithm builds an ensemble of decision trees whose combined output enhances
prediction performance and mitigates overfitting, making it suitable for handling noisy and complex data.
XGBoost constructs models iteratively, where each new tree is designed to address the mistakes made by the
preceding trees, resulting in improved accuracy. To fine-tune the models, a 5-fold cross-validation method
was utilized within GridSearchCV, ensuring optimal selection of hyperparameters. The training set included
800 samples, split in an 80/20 ratio, allowing both models to learn relationships between input signals (LDF,
PPG, ECG) and output labels while maintaining generalization to unseen data. To improve classification
reliability and generalization, predictions from both trained models were integrated through an ensemble
approach.

4.5. Ensemble strategy

To enhance predictive accuracy and model stability, an ensemble strategy was employed by
combining predictions generated from both random forest and XGBoost models, which were optimized using
GridSearchCV. This strategy leverages the individual advantages offered by each algorithm, reducing
overfitting and improving generalization to unseen data. A soft voting mechanism, implemented using scikit-
learn’s VotingClassifier, was utilized, where equal weights were assigned to both models predicted class
probabilities, and the averaged probabilities determined the final classification. This method ensures balanced
contributions based on each model’s confidence, leading to reliable outcomes. The ensemble model achieved
superior performance in contrast to using either model independently. Following ensemble integration, the
final model was evaluated using comprehensive performance metrics to validate its effectiveness.
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4.6. Model evaluation

The effective performance of random forest, XGBoost, and their ensemble was evaluated on an
independent test dataset based on commonly used metrics like accuracy, precision, recall, and F1-score.
Accuracy measures the frequency of correct predictions, while precision and recall examine the capability of
the model to correctly detect relevant cases while reducing the chance of missing them. F1-score, defined as
the harmonic mean of precision and recall, provides a unified metric capturing both precision and sensitivity
in classification. Additionally, confusion matrices were analyzed to examine classification errors in more
detail. The ensemble model consistently surpassed the performance of the individual models across all
metrics, highlighting improved reliability and robustness by capitalizing on the combined advantages from
the strengths of both random forest and XGBoost algorithms.

5. RESULTS AND DISCUSSION

This research evaluates the classification performance of random forest, XGBoost, and their
ensemble for assessing PAD severity using preprocessed physiological features, including LDF, PPG, and
ECG signals. The dataset comprised 1,000 instances, with 80% allocated for training and 20% for testing.
Model tuning was conducted using GridSearchCV. Classification accuracy was employed as the primary
evaluation metric, complemented by precision, recall, and F1-score for a detailed performance analysis. As
summarized in Table 1, the ensemble achieved the highest classification accuracy of 93%, surpassing random
forest (90%) and XGBoost (91%) in distinguishing among non-PAD, moderate PAD, and severe PAD
categories. Figure 2 illustrates these performance differences through comparative accuracy visualization.
The confusion matrix in Figure 3 further highlights the ensemble’s effectiveness, particularly in identifying
non-PAD and severe PAD cases. Slightly reduced accuracy in moderate PAD classification may be due to
overlapping physiological patterns within this category. These findings demonstrate that the combined
framework enhances predictive accuracy by leveraging random forest's capability to manage high-
dimensional features and reducing overfitting with XGBoost’s ability to refine predictions through gradient
boosting. By combining these models, the ensemble mitigates individual model weaknesses, achieving a
robust balance of sensitivity and specificity critical for clinical applications.
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Figure 2. Comparison of classification accuracy of Figure 3. Confusion matrix for PAD prediction
different models for PAD prediction using the ensemble model

Table 1. Accuracy of models for PAD prediction

Model Accuracy
XG Boost 91.0%
Random forest 90.0%
Ensemble 93.0%

5.1. PAD prediction system

The practical utility of these findings is embodied in the PAD prediction system, depicted in
Figure 4. Built using Flask, the system processes real-time physiological inputs (LDF, PPG, ECG) through a
Python backend and employs the ensemble model to classify PAD severity into Non-PAD, moderate PAD, or
severe PAD. The web interface, designed for minimal user interaction complexity, ensures efficient data
entry and delivers clear text outputs (e.g., “severe PAD”). This architecture supports rapid deployment in
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clinical and field settings, enabling timely decision support for healthcare providers. The system’s
accessibility and ease of use address a critical gap in PAD diagnostics, where early detection is essential to
prevent complications such as limb ischemia or amputation [22].

PAD Prediction System PAD Prediction System PAD Prediction System

LDF Blood Flow (mLimin): LDF Blood Flow (mUimin): LDF Blood Flow (mLimin):
52.52350434 7.924350461 28.43335246

PPG: PPG. PPG:
2317340443 1645874565 2627673287

ECG: ECG: ECG:
0.092673922 0.042867511 0.028705591

Prediction: Non PAD Prediction: Moderate PAD Prediction: Severe PAD

———— —_— - e

Figure 4. Peripheral artery disease prediction webpage

5.2. Comparative analysis of PAD detection models

Table 2 illustrates a comparative analysis of various approaches for PAD detection, highlighting
differences in data sources, algorithms, and classification accuracies. Earlier models utilized convolutional
neural networks (CNNs) on arterial pulse waveforms, structured clinical data with XGBoost, and biomarker-
based Cox proportional-hazards models, achieving accuracies ranging from 72.0% to 90.0%. In contrast,
the proposed model integrates multimodal physiological signals-LDF, Electrocardiography, and
Photoplethysmography with Ensemble strategies, including random forest and XGBoost. With an accuracy of
93%, demonstrating its robustness and effectiveness in PAD severity classification.

Table 2. Comparative performance of PAD detection models

Author Dataset Methodology Accuracy
Opitz and Maclin [11] Arterial pulse waveforms Deep learning (CNNs) 90.0%
Li et al.[23] Vascular quality initiative Machine learning (extreme gradient boosting 86.0%
(VQI) registry — XGBoost)

Amrock and CRP, NLR, homocysteine, Cox proportional-hazards modeling and 85.0%
Weitzman [24] UACR multimarker score analysis

Moussa et al. [25] ABI Statistical analysis using logistic regression 72.0%

Proposed model LDF, ECG, PPG Random forest, XG Boost, ensemble model 93.0%

6. CONCLUSION

This study developed a machine learning model for detecting PAD by leveraging physiological
signals (LDF, PPG, and ECQG) to classify patients into Non-PAD, Moderate PAD, and Severe PAD
categories. Utilizing pre-processing techniques such as polynomial feature transformation, standardization,
and PCA-based dimensionality reduction, the dataset was optimized for an ensemble model combining
random forest and XGBoost, with hyperparameters fine-tuned through GridSearchCV. Deployed within a
Flask web application, the model achieved a 93% classification accuracy, demonstrating its potential for real-
time clinical diagnostics and remote health monitoring. These results highlight the model’s capability to
accurately distinguish PAD severity levels, enabling early diagnosis and facilitating personalized patient care.
However, the model faced challenges in generalizing across diverse patient populations due to variations in
physiological signal patterns. Its performance may be limited when applied to datasets with atypical signal
characteristics or smaller sample sizes Future work will focus on addressing these limitations by
incorporating larger, more diverse datasets and exploring advanced feature engineering techniques to enhance
model robustness. Additionally, expanding the model to accommodate a broader range of physiological
variations. These enhancements aim to strengthen the model’s applicability in diverse healthcare environments,
support early intervention strategies, and inform data-driven health policy decisions.
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