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 Peripheral arterial disease (PAD) is a cardiovascular condition caused by 

arterial blockages and poor blood circulation, increasing the risk of severe 

complications such as stroke, heart attack, and limb ischemia. Early and 

accurate detection is essential to prevent disease progression and improve 

patient outcomes. This study introduces a non-invasive diagnostic method 

using laser doppler flowmetry (LDF), electrocardiography (ECG), and 

photoplethysmography (PPG) to assess vascular health. LDF measures 

microvascular blood flow, ECG evaluates heart rate variability, and PPG 

captures pulse waveform characteristics. Key physiological features such as 

blood flow variability, pulse transit time, and hemodynamic responses are 

extracted and analyzed using machine learning. Random forest and 

XGBoost models are employed and combined using ensemble learning to 

classify individuals into non-PAD, moderate PAD, and severe PAD 

categories. A comparative evaluation shows that the ensemble model 

delivers superior classification accuracy. This integrated system offers a fast, 

reliable screening tool that supports early PAD detection and intervention. 

By combining multimodal signal analysis with machine learning, the 

approach enhances diagnostic precision and provides a scalable solution for 

preventive cardiovascular care. 
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1. INTRODUCTION 

Peripheral arterial disease (PAD), a widespread vascular condition primarily affecting the lower 

extremities, impacts over 200 million people worldwide [1]. Primarily caused by atherosclerosis, PAD has 

become a major public health concern due to its rising prevalence, driven by aging populations and risk 

factors such as diabetes, metabolic abnormalities, and tobacco use [2]. In advanced stages, PAD can lead to 

critical limb ischemia, resulting in non-healing ulcers or even limb amputation if left untreated, and 

significantly increases the risk of serious cardiovascular complications like myocardial infarction, stroke, and 

overall mortality [3]. Despite its severity, PAD remains widely underdiagnosed, particularly in the early 

stages, due to the limited sensitivity of the ankle brachial index (ABI), which is widely regarded as the 

standard screening tool especially in patients with diabetes-related arterial calcification [4]. Conventional 
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statistical approaches are generally inadequate in modeling the intricate nonlinear dependencies between risk 

factors, leading to reduced predictive performance. This study addresses the following question: Can a 

multimodal approach that integrates electrocardiography (ECG), photoplethysmography (PPG), and laser 

doppler flowmetry (LDF) signals with machine learning techniques enhance early detection and severity 

classification of PAD compared to conventional diagnostic methods? 

Recent advancements in non-invasive diagnostic technologies offer promising solutions to these 

challenges. ECG, a routine clinical tool, provides insights into heart rhythm and variability, aiding 

cardiovascular risk assessment [5]. PPG, widely used in pulse oximeters, is an affordable and portable 

method for evaluating vascular health, suitable for integration into wearable devices [6], [7]. LDF measures 

skin blood perfusion and has shown high sensitivity in detecting compromised lower-limb circulation, 

particularly in high-risk groups such as hemodialysis patients [8]. Machine learning (ML) enhances these 

tools by identifying intricate, nonlinear data patterns that conventional models miss [1]. Prior studies 

demonstrate that ML-driven analyses of electronic health records and PPG data outperform traditional 

methods in PAD prediction [9]. Techniques for dimensionality reduction, such as principal component 

analysis (PCA), help retain the most significant variance in the dataset while reducing the number of features. 

[10] Similarly, ensemble methods like random forest and XGBoost enhance model accuracy and reduce the 

risk of overfitting. [11]. 

This study addresses these gaps by proposing a novel, non-invasive diagnostic framework that 

synergistically combines LDF, ECG, and PPG signals to assess microvascular blood flow, cardiac dynamics, 

and vascular health. Physiological features, including blood flow variability, pulse transit time, and 

hemodynamic responses, are extracted and analyzed using an ensemble machine learning model comprising 

random forest and XGBoost algorithms, optimized via GridSearchCV to classify PAD severity into Non-

PAD, Moderate PAD, and Severe PAD categories with 93% accuracy. To maximize clinical utility, the 

model is deployed through a Flask-based web application, enabling rapid, user-friendly PAD screening in 

diverse healthcare settings. This approach facilitates early detection, supports preventive care, and paves the 

way for personalized management of PAD, ultimately aiming to reduce its clinical and economic burden. 

According to prior research, this work is one of the earliest attempts to combine ECG, PPG, and LDF signals 

with ensemble models to classify the severity of PAD. This integration offers a novel, non-invasive, and 

accurate diagnostic framework for early detection and stratification of PAD.  

The objective of this study is to propose a non-invasive diagnostic framework for the early detection 

and stratification of PAD severity. This is achieved through a multimodal methodology that incorporates 

signals from electrocardiogram, photoplethysmography, and LDF. Essential physiological indicators such as 

variations in blood flow, pulse transit times, and hemodynamic responses are extracted and processed. These 

features are subsequently evaluated using ensemble algorithms, namely random forest and XGBoost, with 

hyperparameters optimized through GridSearchCV. The resulting model stratifies PAD into three categories: 

Non-PAD, Moderate PAD, and Severe PAD. For real-world applicability, the trained model is integrated into 

a Flask-based web platform, offering an accessible and real-time screening tool. This approach is intended to 

enhance diagnostic precision, support early interventions, and enable individualized management strategies 

for PAD. 

The structure of this paper is organized as: section 2 discusses the state-of-the-art research and 

existing methodologies related to the diagnosis of PAD. Section 3 outlines the identified research gaps along 

with the main contributions of this work. Section 4 details the adopted methodology and the data utilized. 

Section 5 discusses the experimental findings. Finally, section 6 concludes the study and suggests directions 

for future research. 

 

 

2. LITERATURE REVIEW 

Allen et al. [12] proposed a deep learning approach utilizing photoplethysmography (DLPPG) was 

employed to identify PAD through the analysis of toe-based PPG signals. The objective was to evaluate the 

effectiveness of a convolutional neural network, specifically AlexNet with transfer learning, applied to 

continuous wavelet transform (CWT) spectrograms. The model achieved 86.6% sensitivity, 90.2% 

specificity, and 88.9% accuracy with a Cohen’s Kappa of 0.76 using 5-fold cross-validation. This approach 

requires minimal signal preprocessing and prioritizes toe PPG, which is more clinically relevant for PAD 

detection than finger-based signals. The study highlighted challenges such as managing movement artifacts 

and signal noise. It also noted that the dataset was not fully balanced and certain health factors like diabetes 

were not incorporated.  

Kim et al. [13] explored PAD detection and severity assessment using deep learning on arterial 

pulse waveforms. A synthetic dataset from a transmission line model simulated various PAD severities. 

Brachial and ankle waveforms were analyzed using a modified AlexNet CNN, achieving 97% sensitivity, 

99% specificity, and accuracy—surpassing the traditional ABI method. This approach better captured 
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waveform morphology and individual variability. Key challenges included use of virtual data and limited 

real-world generalization. The study highlights deep learning's potential for accurate, non-invasive PAD 

screening, with future efforts focused on clinical validation and localization. 

McBane et al. [14] introduced a model utilizing the inception time architecture to detect PAD from 

resting arterial Doppler waveforms. Trained on data from 3432 patients and validated on 151, the model 

predicted abnormal ABI values with high accuracy (rest ABI: 0.89, AUC 0.95; postexercise ABI: 0.85–0.89). 

While the method reduces the need for exercise testing, it depends on high-quality waveform acquisition. 

Limitations include exclusion of certain patient groups and limited generalizability. The approach 

demonstrates strong potential for scalable, non-invasive PAD screening. 

Stansby et al. [15] conducted a prospective diagnostic study to assess the accuracy of multi-site 

photoplethysmography (MPPG) in identifying PAD within primary care. Using duplex ultrasound as the 

reference standard, MPPG demonstrated a sensitivity of 79.8% and specificity of 71.9%, comparable to the 

traditional ankle-brachial pressure index (ABPI), which showed 80.2% sensitivity and 88.6% specificity. 

Unlike ABPI, MPPG was faster, automated, and required less operator training. However, the study faced 

challenges such as an 8.4% test failure rate due to signal quality and prototype device limitations. Despite 

these constraints, the research highlights MPPG’s potential as a scalable, non-invasive diagnostic tool for 

early PAD detection in primary care settings. 

Forghani et al. [16] proposed DeepPAD, a novel deep learning framework for identifying PAD 

using Oscillo metric pulse waveforms recorded at different cuff pressures. The system employed an 

attention-enhanced bidirectional LSTM model to analyze raw Oscillo metric pulses and extracted features. 

Evaluated on data from 33 individuals, the model achieved up to 94.8% accuracy, 90.0% sensitivity, and 

97.4% specificity, outperforming the conventional ABI and a genetic algorithm-based neural network  

(GA-NN). Despite its high performance, limitations included a small sample size and lack of PAD severity 

classification.  

Sonderman et al. [17] introduced a machine learning model aimed at identifying individuals at high 

risk for peripheral artery disease by analyzing electronic health record (EHR) data. Unlike traditional 

screening approaches, this method combined ABI measurements with a broad set of patient features to 

improve prediction accuracy. The researchers applied a random forest algorithm to select key variables, 

followed by a logistic regression model to classify PAD risk. The model showed consistent performance with 

an AUC around 0.68 across internal and external datasets, and slightly higher accuracy (AUC 0.72) on a 

national sample, outperforming simpler age-based predictions. Despite these strengths, challenges remain in 

handling the variability and completeness of EHR data. Limitations include moderate predictive power and 

lack of validation in real-world clinical workflows. Future research could enhance model robustness and 

assess its impact on patient care.  

 

 

3. RESEARCH GAPS AND PROPOSED CONTRIBUTIONS 

Recent studies [12]–[17] on non-invasive PAD detection rely on single modalities such as PPG [12], 

[15], [16], Doppler waveforms [14], or EHR data [17], limiting their ability to capture PAD’s complex 

microvascular, cardiac, and vascular dynamics. Key limitations include small sample sizes (e.g., 33 

individuals in [16]), synthetic datasets with poor real-world generalizability [13], absence of PAD severity 

classification [12], [14], [16], [17], and lack of scalable deployment mechanisms [14], [15]. The proposed 

study addresses these gaps by integrating LDF, ECG, and PPG signals within an ensemble machine learning 

framework (random forest and XGBoost), achieving 93% accuracy in classifying PAD severity (non-PAD, 

moderate PAD, severe PAD) on a robust 1,000 sample dataset [18], [19]. Deployed via a Flask-based web 

interface, this approach offers a scalable, accurate, and clinically accessible solution for early PAD detection 

and management, advancing preventive cardiovascular care. 

 

 

4. METHODOLOGY 

This study presents a robust classification framework aimed at detecting and assessing the severity 

of PAD using physiological signals and ensemble machine learning. The methodology prioritizes accuracy, 

interpretability, and effective preprocessing to ensure clinical applicability. The system leverages an 

ensemble classification model integrating random forest and XGBoost with soft voting, enabling multi-class 

classification of PAD into Non-PAD, Moderate PAD, and Severe PAD categories. The methodology is 

detailed in the following subsections. Data acquisition and preprocessing strategies are discussed in 

subsections 4.1 and 4.2. The architecture and training of the base classifiers are described in subsections 4.3 

and 4.4. The ensemble approach is outlined in the subsection 4.5, followed by evaluation protocols in 

subsection 4.6. Figure 1 illustrates the complete PAD classification pipeline. 
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Figure 1. Proposed methodology for PAD classification 

 

 

4.1.  Data collection and preprocessing 

The data collection and preprocessing phase, was conducted under carefully controlled conditions, 

ensured the integrity and relevance of the dataset, which includes essential physiological signals used for the 

classification of PAD. Two primary sources were considered, both publicly accessible. The first dataset, 

obtained from Kaggle [18], focuses on ECG and PPG signals and is organized into recordings that capture 

various cardiovascular conditions. The second dataset consists of LDF measurements sourced from a 

published medical study [19], which provides microvascular blood flow data for both healthy individuals and 

PAD patients. The dataset includes high-resolution LDF values indicative of tissue perfusion levels. To 

ensure the reliability of multimodal signal analysis, ECG, PPG, and LDF data were combined through time 

synchronization techniques, aligning them to a common temporal window. This enabled accurate cross-signal 

correlation and robust feature extraction. The final dataset is categorized into three classes: Non-PAD, 

Moderate PAD, and Severe PAD, supporting effective classification of PAD severity. 

 

4.2.  Data loading and processing 

The data preprocessing phase begins with importing the PAD dataset, which includes physiological 

signals such as (LDF; blood flow in mL/min), PPG, and ECG, using the Pandas library for efficient data 

manipulation and exploration. The target labels ("non-PAD", "moderate PAD", and "severe PAD") are 

encoded using LabelEncoder to enable supervised learning. To capture nonlinear relationships among 

features, a second-degree polynomial expansion is applied using polynomial. Features, balancing model 

complexity with enhanced feature expressiveness while avoiding the computational cost of higher-degree 

terms. Feature standardization is then applied through StandardScaler, which normalizes the data to zero 

mean and unit variance, ensuring uniform contribution of all features during model training and improves the 
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convergence speed and stability of the machine learning algorithms. To further optimize the feature set and 

reduce redundancy, PCA was applied, as discussed in the following subsection. 

 

4.2.1. Principal component analysis 

To address the high dimensionality and multicollinearity introduced by polynomial feature 

expansion, PCA was employed to compress the feature space. PCA transforms the standardized feature space 

into a set of uncorrelated principal components that capture the maximum variance in the dataset, thereby 

simplifying the dataset while maintaining its core structural characteristics. In this study, components were 

retained such that 98% of the total variance was preserved, implemented via PCA(𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠=0.98). 

This strategy effectively minimizes redundancy, accelerates model training, and maintains critical 

physiological signal patterns. PCA was selected over alternative methods like linear discriminant analysis 

(LDA) and t-distributed stochastic neighbor embedding (t-SNE) due to its unsupervised nature, emphasis on 

variance retention, and computational efficiency for continuous biomedical data. LDA was excluded to avoid 

potential overfitting to class labels, while t-SNE was considered unsuitable given its computational demands 

and focus on data visualization rather than predictive modeling. After optimizing the feature space, the next 

step focused on designing machine learning models for PAD classification using the processed input signals. 

 

4.3.  Model creation 
The model development phase was centered on establishing a classification framework to identify 

the severity of PAD, categorized into non-PAD, moderate PAD, and severe PAD, using preprocessed 

physiological signals. Two machine learning models such as random forest and XGBoost were selected due 

to their effectiveness in managing multi-class classification, particularly with medical datasets. Random 

forest, introduced by Breiman, is an ensemble method based on decision trees [20], builds numerous decision 

trees and predicts the class based on the majority vote across these trees. This method is particularly effective 

in capturing non-linear dependencies within diverse physiological data. For this study, random Forest was 

fine-tuned using GridSearchCV, set to build 400 trees, with a maximum depth of ten, minimum samples split 

of two, and balanced class weighting to address class imbalance and improve generalization. XG Boost, a 

gradient boosting-based model, sequentially constructs trees to correct errors made by prior ones and 

incorporates regularization to reduce overfitting [21]. For our task, XGBoost was configured with a learning 

rate of 0.1, maximum depth of 6, and 300 boosting rounds, using a multi-class log-loss objective. 

Hyperparameter tuning was also performed via GridSearchCV to enhance classification accuracy. All input 

features were derived from three physiological signal modalities: LDF, PPG, and ECG. Preprocessing steps 

included label encoding, polynomial feature expansion, standardization, and dimensionality reduction using 

PCA to improve learning performance. Once model architectures and hyperparameters were finalized, both 

classifiers were trained independently on the refined dataset 

 

4.4.  Model training 

In the training phase, two ensemble learning algorithms random forest and XGBoost were used to 

create predictive models. Each was trained independently on a preprocessed and dimensionally reduced 

dataset. The random forest algorithm builds an ensemble of decision trees whose combined output enhances 

prediction performance and mitigates overfitting, making it suitable for handling noisy and complex data. 

XGBoost constructs models iteratively, where each new tree is designed to address the mistakes made by the 

preceding trees, resulting in improved accuracy. To fine-tune the models, a 5-fold cross-validation method 

was utilized within GridSearchCV, ensuring optimal selection of hyperparameters. The training set included 

800 samples, split in an 80/20 ratio, allowing both models to learn relationships between input signals (LDF, 

PPG, ECG) and output labels while maintaining generalization to unseen data. To improve classification 

reliability and generalization, predictions from both trained models were integrated through an ensemble 

approach. 

 

4.5.  Ensemble strategy 

To enhance predictive accuracy and model stability, an ensemble strategy was employed by 

combining predictions generated from both random forest and XGBoost models, which were optimized using 

GridSearchCV. This strategy leverages the individual advantages offered by each algorithm, reducing 

overfitting and improving generalization to unseen data. A soft voting mechanism, implemented using scikit-

learn’s VotingClassifier, was utilized, where equal weights were assigned to both models predicted class 

probabilities, and the averaged probabilities determined the final classification. This method ensures balanced 

contributions based on each model’s confidence, leading to reliable outcomes. The ensemble model achieved 

superior performance in contrast to using either model independently. Following ensemble integration, the 

final model was evaluated using comprehensive performance metrics to validate its effectiveness. 
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4.6.  Model evaluation 

The effective performance of random forest, XGBoost, and their ensemble was evaluated on an 

independent test dataset based on commonly used metrics like accuracy, precision, recall, and F1-score. 

Accuracy measures the frequency of correct predictions, while precision and recall examine the capability of 

the model to correctly detect relevant cases while reducing the chance of missing them. F1-score, defined as 

the harmonic mean of precision and recall, provides a unified metric capturing both precision and sensitivity 

in classification. Additionally, confusion matrices were analyzed to examine classification errors in more 

detail. The ensemble model consistently surpassed the performance of the individual models across all 

metrics, highlighting improved reliability and robustness by capitalizing on the combined advantages from 

the strengths of both random forest and XGBoost algorithms. 

 

 

5. RESULTS AND DISCUSSION 

This research evaluates the classification performance of random forest, XGBoost, and their 

ensemble for assessing PAD severity using preprocessed physiological features, including LDF, PPG, and 

ECG signals. The dataset comprised 1,000 instances, with 80% allocated for training and 20% for testing. 

Model tuning was conducted using GridSearchCV. Classification accuracy was employed as the primary 

evaluation metric, complemented by precision, recall, and F1-score for a detailed performance analysis. As 

summarized in Table 1, the ensemble achieved the highest classification accuracy of 93%, surpassing random 

forest (90%) and XGBoost (91%) in distinguishing among non-PAD, moderate PAD, and severe PAD 

categories. Figure 2 illustrates these performance differences through comparative accuracy visualization. 

The confusion matrix in Figure 3 further highlights the ensemble’s effectiveness, particularly in identifying 

non-PAD and severe PAD cases. Slightly reduced accuracy in moderate PAD classification may be due to 

overlapping physiological patterns within this category. These findings demonstrate that the combined 

framework enhances predictive accuracy by leveraging random forest's capability to manage high-

dimensional features and reducing overfitting with XGBoost’s ability to refine predictions through gradient 

boosting. By combining these models, the ensemble mitigates individual model weaknesses, achieving a 

robust balance of sensitivity and specificity critical for clinical applications. 

 

 

  
 

Figure 2. Comparison of classification accuracy of 

different models for PAD prediction 

 

Figure 3. Confusion matrix for PAD prediction 

using the ensemble model 

 

 

Table 1. Accuracy of models for PAD prediction 
Model Accuracy 

XG Boost 91.0% 

Random forest 90.0% 
Ensemble 93.0% 

 

 

5.1.  PAD prediction system 

The practical utility of these findings is embodied in the PAD prediction system, depicted in 

Figure 4. Built using Flask, the system processes real-time physiological inputs (LDF, PPG, ECG) through a 

Python backend and employs the ensemble model to classify PAD severity into Non-PAD, moderate PAD, or 

severe PAD. The web interface, designed for minimal user interaction complexity, ensures efficient data 

entry and delivers clear text outputs (e.g., “severe PAD”). This architecture supports rapid deployment in 
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clinical and field settings, enabling timely decision support for healthcare providers. The system’s 

accessibility and ease of use address a critical gap in PAD diagnostics, where early detection is essential to 

prevent complications such as limb ischemia or amputation [22].  

 

 

 
 

Figure 4. Peripheral artery disease prediction webpage 

 

 

5.2.  Comparative analysis of PAD detection models 

Table 2 illustrates a comparative analysis of various approaches for PAD detection, highlighting 

differences in data sources, algorithms, and classification accuracies. Earlier models utilized convolutional 

neural networks (CNNs) on arterial pulse waveforms, structured clinical data with XGBoost, and biomarker-

based Cox proportional-hazards models, achieving accuracies ranging from 72.0% to 90.0%. In contrast,  

the proposed model integrates multimodal physiological signals-LDF, Electrocardiography, and 

Photoplethysmography with Ensemble strategies, including random forest and XGBoost. With an accuracy of 

93%, demonstrating its robustness and effectiveness in PAD severity classification. 

 

 

Table 2. Comparative performance of PAD detection models 
Author Dataset Methodology Accuracy 

Opitz and Maclin [11] Arterial pulse waveforms Deep learning (CNNs) 90.0% 
Li et al.[23] 

 

Vascular quality initiative 

(VQI) registry 

Machine learning (extreme gradient boosting 

– XGBoost) 

86.0% 

Amrock and 
Weitzman [24] 

CRP, NLR, homocysteine, 
UACR 

Cox proportional-hazards modeling and 
multimarker score analysis 

85.0% 

Moussa et al. [25] ABI Statistical analysis using logistic regression 72.0% 

Proposed model LDF, ECG, PPG Random forest, XG Boost, ensemble model 93.0% 

 

 

6. CONCLUSION 

This study developed a machine learning model for detecting PAD by leveraging physiological 

signals (LDF, PPG, and ECG) to classify patients into Non-PAD, Moderate PAD, and Severe PAD 

categories. Utilizing pre-processing techniques such as polynomial feature transformation, standardization, 

and PCA-based dimensionality reduction, the dataset was optimized for an ensemble model combining 

random forest and XGBoost, with hyperparameters fine-tuned through GridSearchCV. Deployed within a 

Flask web application, the model achieved a 93% classification accuracy, demonstrating its potential for real-

time clinical diagnostics and remote health monitoring. These results highlight the model’s capability to 

accurately distinguish PAD severity levels, enabling early diagnosis and facilitating personalized patient care. 

However, the model faced challenges in generalizing across diverse patient populations due to variations in 

physiological signal patterns. Its performance may be limited when applied to datasets with atypical signal 

characteristics or smaller sample sizes Future work will focus on addressing these limitations by 

incorporating larger, more diverse datasets and exploring advanced feature engineering techniques to enhance 

model robustness. Additionally, expanding the model to accommodate a broader range of physiological 

variations. These enhancements aim to strengthen the model’s applicability in diverse healthcare environments, 

support early intervention strategies, and inform data-driven health policy decisions. 
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