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Deep learning models increasing computational requirements have increased
the demand for specialized hardware architectures that can provide high
performance while using less energy. Because of their high-power
consumption, low throughput, and incapacity to handle real-time processing
demands, general-purpose processors frequently fall short. In order to
overcome these obstacles, this work introduces a hardware-efficient
multiplier design for deep learning processing unit (DPU). To improve
performance and energy efficiency, the suggested architecture combines
low-power arithmetic circuits, parallel processing units, and optimized
dataflow mechanisms. Neural network core operations, such as matrix
computations and activation functions, are performed by dedicated hardware
blocks. By minimizing data movement, an effective on-chip memory
hierarchy lowers latency and power consumption. According to simulation
results using industry-standard very large-scale integration (VLSI) tools,

compared to traditional processors, there is a 25% decrease in latency, a 40%
increase in computational throughput, and a 30% reduction in power
consumption. Architecture’s scalability and modularity guarantee
compatibility with a variety of deep learning applications, such as edge
computing, autonomous systems, and internet of things devices.
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1. INTRODUCTION

Efficient deep learning architecture in the rapid advancement of artificial intelligence has led eminent
breakthrough in image classification, speech recognition and autonomous decision-making. However, as neural
networks models are transforming day by day into complex and data-intensive units, the demand for computing
power to run models on the hardware architecture has increased dramatically as data volume have increased.
Energy efficient hardware units especially in edge computing artificial intelligence (Al) systems embedding
traditional processors like central processing unit (CPUs) and graphics processing unit (GPUs) frequently fail to
meet the scalability, energy efficiency, and performance requirements of deep learning workloads, particularly
in real-time and resource-constrained environments.

The core research problem in this paper is to address learning computations are repetitive and parallel,
because general-purpose architectures are usually not optimized for them. This results in issues like excessive
power usage, higher latency, and wasteful hardware resource usage. Researchers have resorted to specialized
hardware accelerators that are made especially to meet the requirements of deep learning algorithms in order to
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get around these restrictions. Specifically, the study investigates the power-of-2 (Po2) quantized multipliers can
significantly replace traditional partial product multiplication with shift-and-logic employed in traditional deep
learning processing units. To enhance the understanding of the traditional architectures, few literature surveys
show novel method that drastically reduces model size without sacrificing accuracy by employing a re-
encoding scheme to compress signed 8-bit integer weights into 4-bit representations [1], [2]. The technique
reduces the model size by up to 49.86% for linear architectures and 30.77% for convolutional neural network
(CNNs) when applied to all fully connected layers of neural networks, with the exception of the final output
layer. In order to support 4-bit re-encoded weights and improve overall hardware efficiency for neural
network accelerators, a modified radix-4 Booth multiplier was implemented in addition to this strategy.

Numerous studies have suggested field programmable gate array (FPGA)-based solutions to deep
learning system’s power and performance issues. In study [1], a very large-scale integration (VLSI) design
framework for FPGA-based deep learning accelerators that makes use of data reuse buffers and pipelining to
increase throughput and reduce latency is studied. Similar to this, Zhu ef al. [2] highlights the potential of the
FPGA for Al tasks by introducing fixed-point quantization and parallel execution units to increase inference
speed and energy efficiency. Walia et al. [3] investigate techniques like model pruning and loop unrolling to
enhance hardware resource utilization for both CNN and recurrent neural network (RNN) workloads in order
to further optimize FPGA deployments. Power-of-2 (Po2) multipliers in [4] drastically lower dynamic power
and logic complexity by substituting shift-and-add units for full multipliers. Convolution and fully connected
layers successfully incorporated these multipliers. Vogel et al. [5] places a great focus on energy efficiency,
using task scheduling, low-power memory designs, and voltage scaling to cut down on power usage. In order
to achieve scalability across different network models, Liu et al. [6] concentrate on high-performance CNN
acceleration through the use of dataflow-driven architectures and memory buffering techniques. The
application of Po2 multipliers at the register transfer logic (RTL) level is further investigated in [7]. When
compared to traditional multipliers, it shows lower look-up-table (LUT) utilization and power, confirming
their method for low-power, real-time Al tasks. Systolic arrays and memory tiling are used by
Venkatachalam et al. [8] to address efficient matrix multiplication, a major bottleneck in deep learning. Their
unique VLSI architecture provides lower memory bandwidth consumption and increased computational
density. He et al. [9] examines edge deployment issues, where model compression, pruning, and adaptive
quantization allow deep networks to be deployed on limited devices such as wearable’s and internet-of-things
(IoT) nodes. Last but not least, Nambi ef al. [10] suggests using approximate multiply accumulate unit
(MAC) units and logic reuse to create incredibly effective FPGA systems for real-time applications, with
successful examples in object and audio recognition.

The review highlights the significance of model compression, architectural optimization, and low-
power, high-speed arithmetic design. When combined, these methods open the door to effective and scalable
deep learning accelerators, especially for FPGA and VLSI-based implementations. There is a lot of promise
for future low-power Al systems with the use of lightweight multipliers like Booth and Po2, re-encoding
schemes, and approximate computing. To address these issues, RTL implementation of Po2 multiplier is one
efficient way to accomplish such improvements. These methods make it possible to design unique deep learning
processing units (DPUs) that are optimized to speed up neural network operations. Using VLSI techniques, the
suggested DPU in this work emphasizes a balance between power efficiency and performance. Custom
hardware blocks, such as optimized multipliers and adders, which are the foundation of neural network
computations, are integrated into the architecture. By lowering switching activity and hardware complexity, Po2
multipliers help to reduce power consumption. To further lessen the computational load without appreciably
compromising model accuracy, quantization and approximation techniques are also applied to weights and
activations. RTL-level simulation and synthesis executed in Synopsys EDA tools shows 25% decrease in
latency, 40% increase in computational throughput, and 30% reduction in power consumption when compared
to baseline processor implementations were achieved on FPGA architectures.

The remainder of the paper is organized as follows: session 2 describes the proposed methodology
which includes design and development of RTL logic for Po2 multiplier architecture and its integration in
applications for athematic computation. Section 3 presents experimental results to compare the performance
of Po2 multiplier with traditional Booth multiplier with FPGA implementation. Section 4 discusses the
implications, challenges in implementation and potential future enhancements.

2. METHOD: Po2 MULTIPLIER-BASED HARDWARE-EFFICIENT ARCHITECTURE
2.1. Justification for Po2 method validity

The primary focus in this paper is to design and develop hardware-efficient multiplier architecture
employing Po2 quantization, shift-and-Add multiplication logic that is specifically tailored for low-resource,
low-power settings for deep learning architectures [10], [11]. This design's key component is the use of shift-
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based logic in place of conventional multipliers, which drastically lowers area and power consumption
without sacrificing functional accuracy. Deep learning operations, like matrix multiplications in
convolutional and fully connected layers, can now be carried out using logical shifts rather than arithmetic
multiplications. Multipliers contribute the most logic density and power consumption in conventional MAC
units [12], [13] such as Booth or Radix-4 multipliers having high switching activity and complexity. The Po2
quantized multiplier approximates weight values to the nearest powers of two, replacing multiplications with
shift operations. As a result, full adder trees and partial product generators are not required because the
product X X 2" can be calculated simply as X << n [14], [15]. To validate the design, a three-phase
implementation methodology were followed, RTL design and FPGA deployment, simulation and
verification, ASIC synthesis and analysis [16], [17].

The Po2 multiplier's basic logic is shown in Figure 1. The input encoder routes the exponent to the
barrel shifter after detecting it to the closest power-of-two. To achieve the intended outcome, the input is
suitably shifted according to the exponent value. Depending on the exponent's sign, a control signal chooses
between a left and right shift. This logic's main benefit is the substantial decrease in the number of gates.
Lower dynamic power results from the minimal use of the logic fabric (LUTs and Flip-Flops) due to the
absence of conventional multipliers or adders.

Input A (Muluplicand)
Input B (Multipher)

Is B a Power of 27

Find Shift Amt Use Approximation or LUT
(eg.. log2(B)) Convert B to Nearest PO2

Perform Shift on A
A =< logX(B)

I
Oui].lui. A*B
(Using Shifts)

Figure 1. Flowchart of Po2 quantization

2.2. Integration into deep learning pipeline

The Po2 multiplier can be incorporated into a condensed neural network Datapath carrying out
MAC operations in order to assess its viability. Quantized weights can be sent to each MAC unit, allowing
shift-only operations. Low-complexity adders are used to accumulate the output. To guarantee continuous
data flow and latency hiding, the entire pipeline keeps its pipelined structure. By representing the multiplier
as the sum of shifted versions [18], [19] of the multiplicand in Po2 quantization approximates a
multiplication. By substituting straightforward shift and add operations for intricate multiplication operations,
this method drastically lowers hardware complexity. The multiplier architecture is shown Figure 2. The
algorithm for Po2 multiplication follows the steps:
a. Quantize the multiplier as a power-of-2 sum of terms.
b. Adjust the multiplicand in accordance with each power-of-2 component.
c. The total of all shifted values is the end result.
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Numerically the process of multiplication is shown using multiplicand as 9(001001). and multiplier
as 13(001101). .
Step 1: Convert multiplier to Binary. The multiplier 13 in binary is: 13=(1101),=(d)n
Step 2: Shift the multiplicand accordingly, now compute each shifted value of the multiplicand 9:
— Term 1: 9x273=9«3=72 (1001000),
— Term 2: 9x2/2=9«2=36(0100100),
— Term 3: 9x27°0=9«0=9(0001001),
Step 3: Add the shifted results 72+36+9=72+36+9=117(75)x.
So, the binary addition: 1001000+0100100+0001001=01110101> as shown in Figure 3 and specification
for implementation is given in Table 1.

6-bit Register ﬁ 6-bit Adder

<n
Input: Multiplicand
(001001)

Accumulator

Control Unit 4-Ibit'
(reads bits of Multllplner
Multiplier) Register
(1101)

Figure 2. Po2 multiplier architecture

Figure 3. Simulation results of booth multiplier in Synopsys Verdi

Table 1. Design parameters summary

Parameter Value
Multiplier input width 8 bits
Quantization type Power-of-2
Target FPGA Spartan
Operating voltage 0.78 V
Simulation tool ModelSim
Synthesis tool Synopsys DC complier
Clock frequency 100 MHz

Figure 4 represents the RTL architecture generated for the Po2 multiplier in Synopsys Verdi tool. By
utilizing the power-of-2 characteristics of numbers [20], [21], the Po2 multiplier reduces multiplication to
shift and add operations. Compared to conventional multipliers, this greatly lowers the logic complexity.
There are notable benefits in terms of resource usage and execution speed when the hardware-efficient deep
learning processing unit is implemented on FPGA. Figure 5 depicts the experimental setup of simulation in
ModelSim and pin assignment in Xilinx Plan ahead tool. The simulations were carried out in FPGA board
connected to the processor. The design maintains high computational efficiency while significantly reducing
the hardware resources needed by combining the Po2 multiplier with neural network layers. For real-time
processing applications, where low latency operation is essential, this optimization is essential.
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po2_multiplier

Figure 4. Schematic view of Po2 multiplier

Figure 5. Experimental Setup of simulation and synthesis on FPGA in Xilinx software

3. RESULTS AND DISCUSSION
3.1. Implementation and comparative analysis of booth and power-of-2 multipliers

Efficient hardware multipliers are critical for the performance and power efficiency of deep learning
accelerators. In this paper, we implement and compare two hardware multiplier architectures: the traditional
booth multiplier in Figure 5 and a Po2 quantization multiplier [22], [23]. These are evaluated based on their
operational steps, hardware logic, and computational accuracy. Booth's algorithm in Figures 6, 7, 8 is a
signed binary multiplication algorithm that reduces the number of additions required, making it more
efficient for large numbers. It operates by checking the bits of the multiplier and adjusting the accumulator
accordingly using arithmetic shifts and conditional add/subtract operations.

Booth multiplication methodology in Figure 5 show:

Initialize accumulator A, multiplier Q, and multiplicand M.

Use Qo and Q-1 (previous bit) to determine the operation.

Based on the pair: 10 (Subtract M from A), (01: Add M to A) and (00 or 11) No operation.
Perform arithmetic right shift on (A, Q, Q-1).

Decrease the counter until 0.

The performance evaluation and FPGA implementation [24], [25] show how well FPGAs work for
deep learning tasks. The FPGA-based architecture is perfect for deployment in edge computing devices
where power and resource constraints are an issue because, with careful design, testing, and optimization, it
not only offers better performance than traditional software implementations but also guarantees efficient
resource use as summarized. Comparing the hardware utilization, speed accuracy in FPGA for both the
multipliers Table 2 gives a brief comparison for justifying Po2 multiplier superior to conventional booth
multiplier.

oao o
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Figure 8. Schematic view of Booth multiplier designed in Synopsys tool

Table 2. Comparative analysis of booth and P02 multiplier

Feature Booth multiplier Po2 quantization multiplier
Multiplication methodology Arithmetic shift Shift-and-add
Hardware complexity Moderate Very low
Speed Moderate High
Accuracy Exact Configurable
Suitability for DL architectures Good Excellent for quantized models

3.2. Inference: optimization in area and power utilization

The comparison results highlight the advantage of Po2 multipliers over conventional multipliers.
Reduced logic complexity and hardware area, Figure 8 depicts area report of the booth multiplier design
showing a total area of 191.978842 units, primarily from net interconnect, with no mapped cell area due to
unmapped logic. This architecture eliminates full adder trees and partial product generators leading to smaller
hardware footprints. Low power consumption multiplier unit: Power analysis report of the booth multiplier
design showing a total power consumption of 14.2840 uW, with 82.43% from combinational logic and
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17.57% from sequential elements. Power analysis report of the Po2 multiplier design showing a total power
consumption of 0.5591 uW, with 97.46% from combinational logic and 2.60% from sequential elements,
under a global operating voltage of 0.78V, making it best suitable for edge computing Al devices. Design
Vision interface displaying the hierarchical view and power analysis of the Po2 multiplier design, showing
key modules and a total power consumption of 0.5591 puW, with 97.40% from combinational and 2.60%
from sequential logic.

Figure 9 depicts the hardware utilization when the multipliers were implemented in FPGA platform
the number of shift operations reduced from 6 to 3 units, while addition operations reduced from 3 to 2 and
the latency reduced from 3 to 2. Hence Po2 multipliers are optimized in area and power since the addition
and shift operations are reduced and speed of operation has improved. The total utilization in the FPGA
board has reduced from 80 to 40 units, which significantly makes the multiplier deployable in edge Al devise
since it occupies less area. The study presents a hardware-efficient deep learning processing unit with low
power Po2 quantized multiplier as an efficient alternative to conventional arithmetic partial product, booth
and radix multipliers. The findings demonstrated by RTL simulation, FPGA synthesis and ASIC synthesis
exhibit 96% reduction in power, 25% low latency and 40% improvement in throughput in par with traditional
multipliers. With improved computation efficiency, the results prove that the proposed multiplier when
employed in deep learning processing unit, will deliver as estimated 25% reduction in latency and 40%
improvement in throughput implemented and validated on FPGA board.

8
L 6
‘e
2 4 ® Booth
S 2
§ W Po2
0
Utilization of Shift Operations Utilization of Addition Operations Latency
Type of Multiplier
100 80
2
5 40
.?6 50
° - W Utilization of FPGA resources
2
0
Booth Po2

Type of Multiplier

Figure 9. Hardware utilization units of Po2 multiplier

4. CONCLUSION

The findings validate the Po2 quantized multiplier will be a practical and scalable solution for
energy efficient deep-learning accelerators, sensor data analysis, and autonomous systems. Its ability to
process data with low latency and high throughput makes it ideal for edge devices where computational
power is limited and real time performance is essential. However, there are still areas where further
improvements could be made like, scaling the design to handle larger networks, such as CNNs, while
maintaining low resource utilization, optimization for power consumption while the design is efficient in
terms of resource usage. For future studies the Po2 based architectures will render to support processing of
complex Al workloads. The architecture is relevant for edge devices, [oT systems, wearable devices where
energy efficiency and real time performance is critical. The study contributes a validated, novel, scalable
solution for the growing demand of efficient Al hardware for high performance intelligent systems. It is a
low complexity, shift based Po2 multiplier providing a highly efficient Al hardware accelerator which can be
deployed in edge Al technology.

FUNDING INFORMATION
The design and simulation were carried out in Synosys Simulation tool, funded by Chip-2-Start up
scheme, funded by Meity, Govt of India.

Hardware efficient multiplier design for deep learning ... (Jean Shilpa V.)



5212

) ISSN: 2088-8708

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo 1 R D O E Vi Su P Fu
Anitha R v v v v v
Anusooya S v v v v v v
Jawahar P K v v v
Nithesh E v v v v v
Sairamsiva S v v v v v
Syed Rahaman K v v v v v v
C : Conceptualization I : Investigation Vi : Visualization
M : Methodology R : Resources Su : Supervision
So : Software D : Data Curation P : Project administration
Va : Validation O : Writing - Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

Data availability is not applicable to this paper as no new data were created or analyzed in this study.

REFERENCES

(1]

[2]
[3]

(4]
[3]

(6]
(7]

(8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge intelligence: The confluence of edge computing and
artificial intelligence,” [EEE Internet of Things Journal, vol. 7, no. 8, pp. 7457-7469, Aug. 2020, doi:
10.1109/J10T.2020.2984887.

C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” arXiv preprint: arXiv:1612.01064,2016.

S. Walia, B. V Tej, A. Kabra, J. Devnath, and J. Mekie, “Fast and lowpower quantized fixed posit high-accuracy DNN
implementation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 1, pp. 108-111, Jan. 2022,
doi: 10.1109/TVLSI.2021.3123456.

C. Gong, Y. Chen, Y. Lu, T. Li, C. Hao, and D. Chen, “VecQ: Minimal loss DNN model compression with vectorized weight
quantization,” IEEE Transactions on Computers, vol. 70, no. 5, pp. 696-710, May 2021, doi: 10.1109/TC.2021.3056789.

S. Vogel, J. Springer, A. Guntoro, and G. Ascheid, “Self-supervised quantization of pre-trained neural networks for multiplierless
acceleration,” in Proc. Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2019, pp. 1094-1099,
doi: 10.23919/DATE.2019.8714973.

W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design of approximate radix-4 booth multipliers for error-tolerant
computing,” IEEE Transactions on Computers, vol. 66, no. 8, pp. 1435-1441, Aug. 2017, doi: 10.1109/TC.2017.2708982.

H. Waris, C. Wang, W. Liu, and F. Lombardi, “AxBMs: Approximate radix-8 booth multipliers for high-performance FPGA-
based accelerators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1566-1570, May 2021,
doi: 10.1109/TCSIL.2021.3061234.

S. Venkatachalam, E. Adams, H. J. Lee, and S.-B. Ko, “Design and analysis of area and power efficient approximate booth
multipliers,” IEEE Transactions on Computers, vol. 68, no. 11, pp. 1697-1703, Nov. 2019, doi: 10.1109/TC.2019.2890612.

Y. He, X. Yi, Z. Zhang, B. Ma, and Q. Li, “A probabilistic prediction-based fixed-width booth multiplier for approximate
computing,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4794-4803, Dec. 2020,
doi: 10.1109/TCSI1.2020.3024567.

S. Nambi, U. A. Kumar, K. Radhakrishnan, M. Venkatesan, and S. E. Ahmed, “DeBAM: Decoder-based approximate multiplier
for low power applications,” I[EEE Embedded Systems Letters, vol. 13, mno. 4, pp. 174-177, Dec. 2021,
doi: 10.1109/LES.2021.3126543.

H. Waris, C. Wang, and W. Liu, “Hybrid low radix encoding-based approximate booth multipliers,” /EEE Transactions on
Circuits and Systems 1I: Express Briefs, vol. 67, no. 12, pp. 3367-3371, Dec. 2020, doi: 10.1109/TCSII.2020.3034568.

P. Yin, C. Wang, H. Waris, W. Liu, Y. Han, and F. Lombardi, “Design and analysis of energy-efficient dynamic range
approximate logarithmic multipliers for machine learning,” [EEE Transactions on Sustainable Computing, vol. 6, no. 4,
pp. 612-625, 2021, doi: 10.1109/TSUSC.2021.3089123.

R. Pilipovic, P. Buli¢, and U. Lotri¢, “A two-stage operand trimming approximate logarithmic multiplier,” /EEE Transactions on
Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2535-2545, Jun. 2021, doi: 10.1109/TCSI1.2021.3067894.

M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida, and N. Bagherzadeh, “Efficient Mitchell’s approximate log multipliers
for convolutional neural networks,” [EEE Transactions on Computers, vol. 68, no. 5, pp. 660-675, May 2019,
doi: 10.1109/TC.2019.2903456.

L. M. Ang, K. P. Seng, G. K. Jjemaru, and A. M. Zungeru, “Deployment of IoV for smart cities: applications, architecture, and
challenges,” IEEE Access, vol. 7, pp. 6473—-6492, 2019, doi: 10.1109/ACCESS.2018.2887076.

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5205-5214



Int J Elec & Comp Eng ISSN: 2088-8708 a 5213

[16]

[17]

(18]

[19]

[20]

21]
[22]
[23]
[24]

[25]

D. Przewlocka-Rus, S. S. Sarwar, H. E. Sumbul, Y. Li, and B. De Salvo, “Power-of two quantization for low bitwidth and
hardware compliant neural networks,” arXiv preprint: arXiv:2203.05025,2022.

S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “TOSAM: An energy-efficient truncation- and rounding-based scalable
approximate multiplier,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 5, pp. 1161-1173, May
2019, doi: 10.1109/TVLSIL.2019.2891234.

M. Asadikouhanjani and S.-B. Ko, “Enhancing the utilization of processing elements in spatial deep neural network accelerators,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 9, pp. 1947-1951, Sep. 2021,
doi: 10.1109/TCAD.2021.3076541.

M. Asadikouhanjani, H. Zhang, L. Gopalakrishnan, H.-J. Lee, and S.-B. Ko, “A realtime architecture for pruning the effectual
computations in deep neural networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 5,
pp. 20302041, May 2021, doi: 10.1109/TCS1.2021.3054321.

F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep convolutional neural network architecture with reconfigurable
computation patterns,” [EEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, pp. 2220-2233, 2017,
doi: 10.1109/TVLSI.2017.2679784.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, 2017, doi: 10.1109/JSSC.2016.2625978.

Y. Umuroglu, D. Conficconi, L. Rasnayake, T. B. Preusser, and M. Sjélander, “Optimizing bit-serial matrix multiplication for
reconfigurable computing,” ACM Transactions on Reconfigurable Technology and Systems, 2019, doi: 10.1145/3326361.

J. Garland and D. Gregg, “Low complexity multiply accumulate unit for weight-sharing convolutional neural networks,” IEEE
Computer Architecture Letters, vol. 16, no. 2, pp. 132-135,2017, doi: 10.1109/LCA.2017.2718506.

A. Parashar et al., “SCNN: an accelerator for compressed-sparse convolutional neural networks,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA), 2017, pp. 27-40, doi: 10.1145/3079856.3080243.

S. Lee, D. Kim, D. Nguyen, and J. Lee, “Double MAC on a DSP: boosting the performance of convolutional neural networks on
FPGAs,” [EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, doi:
10.1109/TCAD.2018.2871231.

BIOGRAPHIES OF AUTHORS

Jean Shilpa V. g 2 received her B.E. degree in electronics and communication
engineering from Visvesvaraya Technological University, Karnataka, M.Tech degree in VLSI
Design from Vellore Institute of Technology and Ph.D. Degree from B.S. Abdur Rahman
Crescent Institute of Science and Technology, Chennai, India. She is currently working as
associate professor, in the Department of Electronics and Communication Engineering,
B.S. Abdur Rahman Crescent Institute of Science and Technology. Her main research
interest includes, hybrid FPGA-CPU based designs, and memristor based designs. She is a
Certified Lab-view Associate developer. She has more than 25 papers in peer reviewed
journals and more than 40 papers in national and international journals. She has three patents,
authored a book on “VLSI Design” and four book chapters published. She has been granted a
funded proposal from Chip-2-Startup, Meity in 2024. He can be contacted at email:
jeanshilpa@crescent.education.

Anitha R. ©© B B8 © received her B.E. degree in electronics and communication engineering
from Madras University, Tamil Nadu, M.Tech. degree in communication system from S.A.
Engineering College and Ph.D. Degree from B.S. Abdur Rahman Crescent Institute of Science
and Technology, Chennai, India. She is currently working as assistant professor (Selection
Grade), in the Department of Electronics and Communication Engineering, B.S. Abdur
Rahman Crescent Institute of Science and Technology. Her main research interest includes,
signal processing and cryptography. She is a Certified Lab-view associate developer. She
has more than 20 papers in peer reviewed journals and more than 40 papers in national
and international journals. She has three patents, three book chapters published.
He can be contacted at email: r.anitha@crescent.education.

Anusooya S. B  received her B.E. degree in electronics and communication
engineering from Anna University and M.Tech. degree in applied electronics from Anna
University. She received her Ph.D degree in the Department of Electronics and
Communication Engineering of B.S. Abdur Rahman Crescent Institute of Science and
Technology, Chennai, India. She is currently working as assistant professor (Sel.Gr), in the
Department of Electronics and Communication Engineering in B.S. Abdur Rahman Crescent
Institute of Science and Technology. Her current interest includes, analog electronics, low
power VLSI and mixed signal design. She is a Certified LabVIEW Associate Developer. She
has more than 30 papers in national and international journals. She has two patents and two
book chapters published. He can be contacted at email: anusooya@crescent.education.

Hardware efficient multiplier design for deep learning ... (Jean Shilpa V.)


mailto:jeanshilpa@crescent.education
https://orcid.org/0000-0003-0057-9115
https://scholar.google.com/citations?hl=en&user=uYdbP3QAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57205657080
https://www.webofscience.com/wos/author/record/NRX-7983-2025
https://orcid.org/0000-0002-0857-6923
https://scholar.google.com/citations?user=eP3jNTIAAAAJ&hl=en&authuser=1
https://www.webofscience.com/wos/author/record/NRZ-0243-2025
https://orcid.org/0000-0001-5445-2713
https://scholar.google.com/citations?user=OP73A4AAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56884637600
https://www.webofscience.com/wos/author/record/NRX-9395-2025

5214

a

ISSN: 2088-8708

Y d‘ ' -g
LARIRSFEY
dbdcdr (e

Jawahar P. K. g Cisa professor with over 32 years of academic and research
experience, currently serving at BSACIST since July 2000. He holds a B.E. in electronics and
communication engineering from Coimbatore Institute of Technology (1989), an M.Tech in
the same discipline from Pondicherry Engineering College (1998), a Ph.D. in information and
communication engineering from Anna University through MIT, Chromepet (2010), and a
Postgraduate Diploma in VLSI from Accel Technologies, Chennai (2002). His areas of
expertise include VLSI, IoT, embedded systems, and computer networking. Dr. Jawahar has
guided five Ph.D. scholars and is currently supervising three more, with one thesis submitted
and another synopsis completed. His research interests lie in VLSI system design, IoT, and
computer networks, with a citation count of 65 and an h-index of 5. He is a senior member of
IEEE, a member of ACM and IAEng, and a Fellow of both the Institution of Engineers (India)
and the Institution of Electronics and Telecommunication Engineers. He is also a Life Member
of ISTE. He can be contacted at email: jawahar@crescent.education.

Nithesh E. © £ 2 was born on 18th January 2004 in Chengalpattu, Tamil Nadu. He
completed his schooling at Infant Jesus Matric Higher Secondary School, Kalpakkam, and
graduated in the year 2021. He is currently pursuing a Bachelor of Technology degree in
electronics and communication engineering at B.S. Abdur Rahman Crescent Institute of
Science and Technology, Chennai. His areas of interest include VLSI, artificial intelligence
(Al), the internet of things (IoT), cloud computing, communication systems, and embedded
systems. He is passionate about leveraging emerging technologies to solve real-world
challenges, with a particular focus on automation and networking systems. He aspires to
contribute to the development of intelligent, efficient, and connected solutions. He can be
contacted at email: nnithesh542@gmail.com.

Sairamsiva S. B4 2 was born on 5th July 2004 in Kumbakonam, Tamil Nadu. He
completed his schooling at Town Higher Secondary School, Kumbakonam, and graduated in
the year 2021. He is currently pursuing a Bachelor of Technology degree in electronics and
communication engineering at B.S. Abdur Rahman Crescent Institute of Science and
Technology, Chennai. His areas of interest include VLSI design, embedded systems, IoT-
based automation, wireless communication, and edge-cloud computing for smart systems. He
is passionate about integrating hardware and software to develop intelligent, efficient, and
scalable solutions. He aspires to contribute to the advancement of modern ECE technologies
with a focus on real-time applications and innovation in automation. He can be contacted at
email: sairamsiva05@gmail.com.

Syed Rahaman K. FJ B © was born on 8th June 2004 in Villupuram, Tamil Nadu. He
completed his schooling at Saraswathi Matric Higher Secondary School, Villupuram, and
graduated in the year 2021. He is currently pursuing a Bachelor of Technology degree in
electronics and communication engineering at B.S. Abdur Rahman Crescent Institute of
Science and Technology, Chennai. His areas of interest include VLSI, artificial intelligence
(Al), the internet of things (IoT), cloud computing, communication systems, and embedded
systems. He is passionate about leveraging emerging technologies to solve real-world
challenges, with a particular focus on automation and networking systems. He aspires to
contribute to the development of intelligent, efficient, and connected solutions. He can be
contacted at email: syedrahman2004@gmail.com.

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5205-5214


mailto:jawahar@crescent.education
mailto:nnithesh542@gmail.com
mailto:sairamsiva05@gmail.com
mailto:syedrahman2004@gmail.com
https://orcid.org/0000-0003-3559-178X
https://scholar.google.com/citations?user=ORvQ1hoAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=19934191100
https://www.webofscience.com/wos/author/record/AIF-1666-2022
https://orcid.org/0009-0000-3151-6913
https://orcid.org/0009-0005-1956-111X
https://orcid.org/0009-0001-0333-487X

