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High performance electron guns are fundamental components in linear
accelerators (linacs), directly influencing beam quality and downstream
system efficiency. However, designing electron guns for applications such as
a 6 MeV linac presents complex trade-offs between current, perveance, and
beam emittance. Traditional simulation-driven optimization methods are
computationally expensive and limit rapid prototyping. In this study, we
develop a neural network-based surrogate model trained on CST Studio
Suite simulation data to predict the electron gun's performance metrics. Our
approach significantly accelerates the optimization process by providing
real-time predictions of beam current and perveance across a wide design
parameter space. The surrogate model achieves high prediction accuracy,
with training and validation losses on the order of 1077. Results demonstrate
that neural network models can serve as reliable and efficient tools for
electron gun design, offering considerable computational savings while
maintaining accuracy. Future extensions include expanding the surrogate
model to multi-objective optimization and incorporating thermal and
mechanical effects into the design process.
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1. INTRODUCTION

Linear accelerators (linacs) rely on high-quality electron sources to achieve their operational
performance, with electron guns playing a pivotal role in determining the overall beam emittance, current,
and stability. In particular, energy recovery linacs (ERLs) demand electron guns capable of producing high-
brightness, low emittance beams to sustain efficient operation at high repetition rates [1], [2]. Such
requirements are critical for applications including synchrotron light sources, free electron lasers, and high-

energy physics experiments [3].

Designing an electron gun suitable for a 6 MeV linac poses several challenges. Achieving a balance
between high beam current and low emittance demands careful optimization of geometrical parameters,
electric field distributions, and material selections [4], [5]. Traditionally, such optimization relies on repeated
full-physics simulations using software like CST Studio Suite or ASTRA [6], [7]. While these methods offer
high accuracy, they are computationally intensive, with each design iteration potentially requiring hours to

days of processing time.
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Recent advances in machine learning, particularly in the development of neural network surrogate
models, offer promising avenues to accelerate design processes in accelerator physics [8]-[12]. Surrogate
models can approximate the behavior of complex systems, providing real-time predictions of system
responses without the need for time-consuming simulations. Their application has been demonstrated in
cavity optimization [13], beam transport systems [14], and accelerator control systems [15], [16]. Recent
studies have also applied neural models to predict beam emittance and optimize injector configurations in
real time [17], [18].

Despite these advances, there remains a gap in the application of neural networks to the design and
optimization of electron guns themselves. Most prior works focus on beamlines or downstream transport
systems rather than the injector stage. Motivated by this need, our study presents the development and
validation of a neural network surrogate model specifically tailored for predicting the performance of a
thermionic Pierce-type electron gun [19]. Our study addresses this gap by proposing a surrogate model
dedicated to predicting key performance parameters beam current and perveance based on geometric design
inputs. This specific focus is critical, as the initial beam parameters set by the gun fundamentally influence
the entire accelerator chain.

By training the model on a comprehensive dataset generated from CST simulations, we enable rapid
evaluation of key performance metrics such as beam current and perveance. Our approach not only
accelerates the design process but also opens pathways toward more sophisticated, real-time, multi-objective
optimizations in future linac developments.

This paper is structured as follows: Section 2 describes the methodology including electron gun
modeling, dataset generation, and surrogate model development; Section 3 presents simulation results and
model validation; and Section 4 discusses the conclusions and potential future research directions.

2. METHOD

This study employed a two-stage methodological framework combining physics-based simulations
and machine learning. In the first stage, a Pierce-type electron gun was modelled and simulated using CST
Studio Suite to generate a comprehensive dataset across a wide range of design parameters to be inserted in
learning machine. In the second stage, a neural network-based surrogate model was developed and trained
using simulation data to enable rapid performance prediction and design optimization. The detailed steps are
presented in the following subsections.

2.1. Electron gun design and CST simulations

The design phase commenced with the creation of a three-dimensional (3D) computer-aided
design (CAD) model the design parameters of a Pierce-type electron gun as depicted in Figure 1. This
design includes a thermionic cathode, a carefully shaped Pierce electrode, and an anode with a focusing
nose. Each geometric component was engineered to meet operational goals such as minimizing emittance
while sustaining sufficient beam current for the intended 6 MeV linac application. The proposed electron
gun was designed according to the following design parameters, namely: 0.25 A of current beam, 4.5 mm
of beam diameter, emittance is less than 10~ mm.rad and perveance is less than 1077 A/V¥2. The scheme
of electron gun design process is depicted in Figure 2. This scheme shows step by step to design the
electron gun.

To accurately simulate the electric fields and charged particle dynamics within the gun, CST
Studio Suite (version 2022) was employed [20]. CST combines the finite element method (FEM) for
solving electrostatic field distributions with the particle-in-cell (PIC) method for self-consistent simulation
of particle motion and space charge effects [21]. The Electrostatic Solver module calculated the static
electric field distribution arising from applied cathode and anode potentials. Subsequently, the PIC module
tracked thousands of electrons emitted from the cathode surface under the influence of these fields,
incorporating collective effects such as beam expansion due to mutual repulsion. Boundary conditions
were set as perfect conducting electrodes in a full-vacuum environment. The extraction voltage was varied
in the range of 20—40 kV, and for each configuration thousands of electrons were tracked to obtain output
parameters such as beam current, perveance, emittance, and beam diameter. A systematic parameter sweep
was performed, varying critical design parameters including cathode diameter, cathode length, anode-
cathode gap, and anode nose length was depicted in Table 1. A total of 1280 unique configurations were
simulated, each capturing output parameters such as beam current, perveance, and final beam diameter.
The comprehensive dataset, occupying approximately 600 GB of storage, forms the foundation for
surrogate model training.
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Figure 1. Model of pierce-type electron gun
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Figure 2. Scheme of electron gun design process

In order to simulation can be conducted well and fast, we used the workstation computer with
technical specifications: System manufacturer: Dell, Inc.; System model: Precision 5820 Tower; OS
Microsoft Windows 11 Pro for Workstations; Processor Intel (R) Xeon (R) W-2223 CPU@3.60 GHz,
4 Core, 8 Logical Processors; and RAM: 64 GB.

Table 1. Variation of input parameter

Parameter Number of variations  Minimum (mm) Maximum (mm)
Cathode diameter (CD) 6 0.21 1.7
Cathode length (CTL) 6 8 13
Anode cathode gap (CAG) 6 6 11
Anode nose length (ANL) 6 1.3 1.8
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2.2. Development of the neural network surrogate model

Following data collection, a fully connected feedforward neural network (FNN) was constructed to
serve as a computationally efficient surrogate model. The architecture consisted of an input layer
corresponding to the four design parameters, three hidden layers with 80, 40, and 20 neurons respectively,
and an output layer producing two target values: beam current and perveance. The scheme of surrogate
model is shown in Figure 3.

Each hidden layer utilized the rectified linear unit (ReLU) activation function, which promotes
sparsity and mitigates the vanishing gradient problem commonly encountered in deep neural networks [22].
Mean squared error (MSE) was employed as the loss function to quantify the deviation between predicted
and true output values, while network weights were updated using the Adam optimization algorithm [23].

Training was conducted over 20,000 epochs with a learning rate of 0.0002, a choice made based on
preliminary convergence studies to balance speed and model stability. Input and output data were normalized
to zero mean and unit variance prior to training to enhance learning dynamics and accelerate convergence
[22]. The dataset was split with an 80/20 ratio between training and validation sets to assess generalization
performance and detect potential over fitting.
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Figure 3. Scheme of surrogate model

2.3. Computational resources and challenges

The high computational cost of generating the simulation database was addressed by leveraging a
high-performance computing (HPC) cluster equipped with large memory nodes to handle the memory-
intensive FEM-PIC simulations. Neural network training was performed on a dedicated workstation equipped
with GPU acceleration (NVIDIA RTX series), reducing training time by approximately an order of
magnitude compared to CPU-only training.

Despite the upfront investment in simulation time and data storage, the trained surrogate model
dramatically reduces the computational cost for future design evaluations. Predictions for new configurations
can be obtained in milliseconds, facilitating real-time exploration of the design parameter space and enabling
rapid optimization cycles that were previously infeasible with traditional methods.

2.4. Computational resources and considerations

Due to the high computational demands of both CST simulation and neural network training,
simulations were conducted on a high-performance computing cluster. The large memory footprint required
for CST parameter sweeps (approximately 600 GB) necessitated efficient data management practices. For
neural network training, training time and convergence were optimized by tuning the learning rate and
number of epochs, ultimately achieving an accurate and efficient surrogate model capable of replacing
traditional full-scale CST simulations for subsequent design iterations.
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3.  RESULT AND DISCUSSION
3.1. Electric field and electron beam path simulation

Electric field and electron beam path of electron gun were simulated using CST software as depicted in
Figures 4 and 5 respectively. As shown in these figures, the results were in accordance with design parameters.
The optimum results were obtained as follows in Table 2. In order to simulation can be conducted well and fast,
we used the workstation computer with technical specifications: System manufacturer: Dell, Inc.; System
model: Precision 5820 Tower; OS Microsoft Windows 11 Pro for Workstations; Processor Intel (R) Xeon (R)
W-2223 CPU@3.60 GHz, 4 Core, 8 Logical Processors; and RAM 64 GB.
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Figure 4. Electric field simulation
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Figure 5. Electron beam path

Table 2. Optimum design of electron gun

Parameters Value Unit
Beam current 0.51 A
Perveance 9.80x10°%  A/V3/2
emittance (X) 9.41x10° mm.rad
emittance (y) 8.30x10°  mm.rad
beam size (Diameter) 0.3024 mm
operating voltage 30 kV
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3.2. Neural network training performance

The training process of the surrogate model was monitored using both training and validation loss
curves. As shown in Figure 6, the model achieved convergence within the first few thousand epochs, and
both loss values remained stable with no signs of divergence throughout the entire 20,000-epoch training
schedule. The final training loss reached 2.2143x1077, while the validation loss settled at 3.9560x1077,
indicating excellent generalization performance. The closeness of training and validation curves suggests that
overfitting was successfully mitigated [24].

The low MSE values reflect the model’s ability to accurately learn the mapping between geometric
design parameters and output beam metrics. These metrics include beam current and perveance, two
parameters that are highly sensitive to electron gun geometry and electric field distribution. The performance
of the model confirms that even relatively shallow neural networks, when properly configured and trained on
high-fidelity simulation data, can provide highly reliable predictions for complex physical systems [25], [26].
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Figure 6. Training performance of neural network surrogate model

3.3. Prediction accuracy of beam parameters

Figure 7 presents a scatter plot comparing the predicted beam current against the ground truth values
obtained from CST simulations. The strong linear alignment of points along the diagonal line (y = x)
demonstrates a high degree of prediction accuracy across the full range of input conditions [25], [26]. This
capability is particularly valuable in practical design workflows, where predicting how small changes in
geometry influence the beam current can accelerate the refinement process.

Similarly, Figure 8 shows the performance of the neural network in predicting beam perveance. The
close agreement between predicted and actual values further supports the robustness of the trained surrogate
model [27]. Accurate prediction of perveance is crucial in electron gun design because it captures the
relationship between current and accelerating voltage, serving as a diagnostic indicator for space charge-
limited emission.

The beam current, emittance, and perveance are crucial performance indicators that directly reflect
the physical behavior of the electron gun. Beam current is primarily influenced by the cathode-anode voltage
and the emission area, which are governed by electrode geometry. A higher extraction voltage and larger
emission area lead to increased beam current. Emittance, which quantifies the spread of the beam in phase
space, is affected by the focusing properties of the geometry; sharp curvature or abrupt changes in field lines
tend to degrade emittance. Meanwhile, perveance is a function of both the beam current and extraction
voltage, serving as a measure of space-charge effects. By analyzing how these parameters vary with
geometry inputs such as electrode angle, gap distance, and voltage, we provide a deeper physical
understanding of the design-performance relationship in thermionic electron guns.
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Figure 8. Perveance prediction vs true values

An additional important output, beam diameter at the gun exit, was also monitored across
configurations. Although not used as a training target, its correlation with predicted current and perveance
indirectly validates the physical consistency of the model. In almost all configurations, the beam diameter
remained below the 5 mm threshold, indicating the focusing components in the Pierce geometry was

functioning as expected.
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3.4. Sources of error and model limitations

Despite the strong overall performance, minor deviations were observed in a few high-current
configurations, where the predicted values slightly underestimated the ground truth. These errors are likely
due to sparse representation of such configurations in the training dataset. Increasing the density of samples
in high-current regimes could improve prediction accuracy in future studies [28].

Moreover, the surrogate model is limited to the parameter ranges seen during training. Extrapolation
to unseen regions of the design space may yield unreliable results, which highlights the importance of
thoughtful dataset construction. Integration of uncertainty quantification techniques or active learning
strategies could further enhance model reliability, particularly for high-risk operating points.

3.5. Computational efficiency and practical implications

From a computational perspective, the surrogate model significantly outperforms traditional FEM-
PIC simulations in terms of evaluation time. Once trained, the model predicts beam characteristics for new
configurations in under 10 milliseconds on a standard GPU, compared to hours of processing required by
CST simulations. This speed enables rapid iterative design, global sensitivity analysis, and real-time multi-
objective optimization that would otherwise be infeasible.

These results underscore the value of combining high-fidelity simulation tools with data-driven
surrogate models in accelerator design. While the simulation process remains essential for initial dataset
generation, the trained surrogate allows for fast design exploration and deeper physical insight. Similar multi-
objective frameworks have been implemented successfully in recent surrogate-assisted injector designs [29],
and their efficiency has been benchmarked in review studies of neural-based optimization in beamline
components [30], [31].

These findings are built upon previous research in the field. For instance, Ahmadiannamin et al. [32]
demonstrated the challenges of balancing beam emittance and current in thermionic sources using semi-
analytical methods such as the Vaughan approach, which our model addresses with automated, data-driven
predictions. Liu et al. [33] focused on beam transport tuning using surrogate-augmented optimization (ASTRA
combined with NSGA-II), but did not incorporate injector-level surrogate design for cathode geometry, a gap
our work fills. Similarly, Kane et al. [11] applied neural networks to predict output beam properties from laser-
plasma interactions but did not address initial beam quality parameters such as perveance, which are central to
our study. By focusing on geometry-to-beam output mapping at the gun stage, our method extends surrogate
modeling to earlier and more critical design stages in the accelerator chain.

4. CONCLUSION

This study successfully applied a neural network surrogate model to predict the performance of a
Pierce-type electron gun using data generated from CST Studio Suite simulations. The surrogate model
accurately predicted key beam parameters namely beam current and perveance and demonstrated rapid
convergence during training. These results indicate strong generalization performance and confirm that data-
driven models can capture the essential physics of electron gun behavior. The approach significantly reduced
the simulation time required for each design evaluation, enabling real-time parametric exploration and
accelerating the design iteration process. This capability is particularly valuable for complex accelerator
systems, where computational cost often becomes a limiting factor. Future directions of this work include
expanding the surrogate model toward multi-objective optimization, integrating uncertainty quantification,
and incorporating thermal and mechanical effects to increase robustness. These enhancements would further
solidify the role of machine learning-based surrogate modeling as a generalizable and efficient strategy for
designing high-performance components in modern particle accelerators. Overall, this methodology provides
a promising tool for improving the speed, flexibility, and intelligence of accelerator design workflows, and
has strong potential for broader application in high-precision beamline component development.
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