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 High performance electron guns are fundamental components in linear 

accelerators (linacs), directly influencing beam quality and downstream 

system efficiency. However, designing electron guns for applications such as 

a 6 MeV linac presents complex trade-offs between current, perveance, and 

beam emittance. Traditional simulation-driven optimization methods are 

computationally expensive and limit rapid prototyping. In this study, we 

develop a neural network-based surrogate model trained on CST Studio 

Suite simulation data to predict the electron gun's performance metrics. Our 

approach significantly accelerates the optimization process by providing 

real-time predictions of beam current and perveance across a wide design 

parameter space. The surrogate model achieves high prediction accuracy, 

with training and validation losses on the order of 10⁻⁷. Results demonstrate 

that neural network models can serve as reliable and efficient tools for 

electron gun design, offering considerable computational savings while 

maintaining accuracy. Future extensions include expanding the surrogate 

model to multi-objective optimization and incorporating thermal and 

mechanical effects into the design process. 
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1. INTRODUCTION 

Linear accelerators (linacs) rely on high-quality electron sources to achieve their operational 

performance, with electron guns playing a pivotal role in determining the overall beam emittance, current, 

and stability. In particular, energy recovery linacs (ERLs) demand electron guns capable of producing high-

brightness, low emittance beams to sustain efficient operation at high repetition rates [1], [2]. Such 

requirements are critical for applications including synchrotron light sources, free electron lasers, and high-

energy physics experiments [3]. 

Designing an electron gun suitable for a 6 MeV linac poses several challenges. Achieving a balance 

between high beam current and low emittance demands careful optimization of geometrical parameters, 

electric field distributions, and material selections [4], [5]. Traditionally, such optimization relies on repeated 

full-physics simulations using software like CST Studio Suite or ASTRA [6], [7]. While these methods offer 

high accuracy, they are computationally intensive, with each design iteration potentially requiring hours to 

days of processing time.  
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Recent advances in machine learning, particularly in the development of neural network surrogate 

models, offer promising avenues to accelerate design processes in accelerator physics [8]–[12]. Surrogate 

models can approximate the behavior of complex systems, providing real-time predictions of system 

responses without the need for time-consuming simulations. Their application has been demonstrated in 

cavity optimization [13], beam transport systems [14], and accelerator control systems [15], [16]. Recent 

studies have also applied neural models to predict beam emittance and optimize injector configurations in 

real time [17], [18]. 

Despite these advances, there remains a gap in the application of neural networks to the design and 

optimization of electron guns themselves. Most prior works focus on beamlines or downstream transport 

systems rather than the injector stage. Motivated by this need, our study presents the development and 

validation of a neural network surrogate model specifically tailored for predicting the performance of a 

thermionic Pierce-type electron gun [19]. Our study addresses this gap by proposing a surrogate model 

dedicated to predicting key performance parameters beam current and perveance based on geometric design 

inputs. This specific focus is critical, as the initial beam parameters set by the gun fundamentally influence 

the entire accelerator chain.  

By training the model on a comprehensive dataset generated from CST simulations, we enable rapid 

evaluation of key performance metrics such as beam current and perveance. Our approach not only 

accelerates the design process but also opens pathways toward more sophisticated, real-time, multi-objective 

optimizations in future linac developments. 

This paper is structured as follows: Section 2 describes the methodology including electron gun 

modeling, dataset generation, and surrogate model development; Section 3 presents simulation results and 

model validation; and Section 4 discusses the conclusions and potential future research directions. 

 

 

2. METHOD 

This study employed a two-stage methodological framework combining physics-based simulations 

and machine learning. In the first stage, a Pierce-type electron gun was modelled and simulated using CST 

Studio Suite to generate a comprehensive dataset across a wide range of design parameters to be inserted in 

learning machine. In the second stage, a neural network-based surrogate model was developed and trained 

using simulation data to enable rapid performance prediction and design optimization. The detailed steps are 

presented in the following subsections. 
 

2.1.  Electron gun design and CST simulations 

The design phase commenced with the creation of a three-dimensional (3D) computer-aided 

design (CAD) model the design parameters of a Pierce-type electron gun as depicted in Figure 1. This 

design includes a thermionic cathode, a carefully shaped Pierce electrode, and an anode with a focusing 

nose. Each geometric component was engineered to meet operational goals such as minimizing emittance 

while sustaining sufficient beam current for the intended 6 MeV linac application. The proposed electron 

gun was designed according to the following design parameters, namely: 0.25 A of current beam, 4.5 mm 

of beam diameter, emittance is less than 10-5 mm.rad and perveance is less than 10-7 A/V3/2. The scheme  

of electron gun design process is depicted in Figure 2. This scheme shows step by step to design the 

electron gun. 

To accurately simulate the electric fields and charged particle dynamics within the gun, CST 

Studio Suite (version 2022) was employed [20]. CST combines the finite element method (FEM) for 

solving electrostatic field distributions with the particle-in-cell (PIC) method for self-consistent simulation 

of particle motion and space charge effects [21]. The Electrostatic Solver module calculated the static 

electric field distribution arising from applied cathode and anode potentials. Subsequently, the PIC module 

tracked thousands of electrons emitted from the cathode surface under the influence of these fields, 

incorporating collective effects such as beam expansion due to mutual repulsion. Boundary conditions 

were set as perfect conducting electrodes in a full-vacuum environment. The extraction voltage was varied 

in the range of 20–40 kV, and for each configuration thousands of electrons were tracked to obtain output 

parameters such as beam current, perveance, emittance, and beam diameter. A systematic parameter sweep 

was performed, varying critical design parameters including cathode diameter, cathode length, anode-

cathode gap, and anode nose length was depicted in Table 1. A total of 1280 unique configurations were 

simulated, each capturing output parameters such as beam current, perveance, and final beam diameter. 

The comprehensive dataset, occupying approximately 600 GB of storage, forms the foundation for 

surrogate model training. 
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Figure 1. Model of pierce-type electron gun 

 

 

 
 

Figure 2. Scheme of electron gun design process 

 

 

In order to simulation can be conducted well and fast, we used the workstation computer with 

technical specifications: System manufacturer: Dell, Inc.; System model: Precision 5820 Tower; OS 

Microsoft Windows 11 Pro for Workstations; Processor Intel (R) Xeon (R) W-2223 CPU@3.60 GHz,  

4 Core, 8 Logical Processors; and RAM: 64 GB. 

 

 

Table 1. Variation of input parameter 
Parameter Number of variations Minimum (mm) Maximum (mm) 

Cathode diameter (CD) 6 0.21 1.7 

Cathode length (CTL) 6 8 13 

Anode cathode gap (CAG) 6 6 11 
Anode nose length (ANL) 6 1.3 1.8 
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2.2.  Development of the neural network surrogate model 

Following data collection, a fully connected feedforward neural network (FNN) was constructed to 

serve as a computationally efficient surrogate model. The architecture consisted of an input layer 

corresponding to the four design parameters, three hidden layers with 80, 40, and 20 neurons respectively, 

and an output layer producing two target values: beam current and perveance. The scheme of surrogate 

model is shown in Figure 3. 

Each hidden layer utilized the rectified linear unit (ReLU) activation function, which promotes 

sparsity and mitigates the vanishing gradient problem commonly encountered in deep neural networks [22]. 

Mean squared error (MSE) was employed as the loss function to quantify the deviation between predicted 

and true output values, while network weights were updated using the Adam optimization algorithm [23]. 

Training was conducted over 20,000 epochs with a learning rate of 0.0002, a choice made based on 

preliminary convergence studies to balance speed and model stability. Input and output data were normalized 

to zero mean and unit variance prior to training to enhance learning dynamics and accelerate convergence 

[22]. The dataset was split with an 80/20 ratio between training and validation sets to assess generalization 

performance and detect potential over fitting. 

 

 

 
 

Figure 3. Scheme of surrogate model 

 

 

2.3.  Computational resources and challenges 

The high computational cost of generating the simulation database was addressed by leveraging a 

high-performance computing (HPC) cluster equipped with large memory nodes to handle the memory-

intensive FEM-PIC simulations. Neural network training was performed on a dedicated workstation equipped 

with GPU acceleration (NVIDIA RTX series), reducing training time by approximately an order of 

magnitude compared to CPU-only training. 

Despite the upfront investment in simulation time and data storage, the trained surrogate model 

dramatically reduces the computational cost for future design evaluations. Predictions for new configurations 

can be obtained in milliseconds, facilitating real-time exploration of the design parameter space and enabling 

rapid optimization cycles that were previously infeasible with traditional methods. 

 

2.4.  Computational resources and considerations 

Due to the high computational demands of both CST simulation and neural network training, 

simulations were conducted on a high-performance computing cluster. The large memory footprint required 

for CST parameter sweeps (approximately 600 GB) necessitated efficient data management practices. For 

neural network training, training time and convergence were optimized by tuning the learning rate and 

number of epochs, ultimately achieving an accurate and efficient surrogate model capable of replacing 

traditional full-scale CST simulations for subsequent design iterations. 
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3. RESULT AND DISCUSSION 

3.1.   Electric field and electron beam path simulation 

Electric field and electron beam path of electron gun were simulated using CST software as depicted in 

Figures 4 and 5 respectively. As shown in these figures, the results were in accordance with design parameters. 

The optimum results were obtained as follows in Table 2. In order to simulation can be conducted well and fast, 

we used the workstation computer with technical specifications: System manufacturer: Dell, Inc.; System 

model: Precision 5820 Tower; OS Microsoft Windows 11 Pro for Workstations; Processor Intel (R) Xeon (R) 

W-2223 CPU@3.60 GHz, 4 Core, 8 Logical Processors; and RAM 64 GB. 

 

 

 
 

Figure 4. Electric field simulation 

 

 

 
 

Figure 5. Electron beam path 

 

 

Table 2. Optimum design of electron gun 
Parameters Value Unit 

Beam current 0.51 A 

Perveance 9.80×10−8 𝐴/𝑉3/2 

emittance (x) 9.41×10−6 mm.rad 

emittance (y) 8.30×10−6 mm.rad 
beam size (Diameter) 0.3024 mm 

operating voltage 30 kV 

mailto:CPU@3.60
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3.2.  Neural network training performance 

The training process of the surrogate model was monitored using both training and validation loss 

curves. As shown in Figure 6, the model achieved convergence within the first few thousand epochs, and 

both loss values remained stable with no signs of divergence throughout the entire 20,000-epoch training 

schedule. The final training loss reached 2.2143×10⁻⁷, while the validation loss settled at 3.9560×10⁻⁷, 
indicating excellent generalization performance. The closeness of training and validation curves suggests that 

overfitting was successfully mitigated [24]. 

The low MSE values reflect the model’s ability to accurately learn the mapping between geometric 

design parameters and output beam metrics. These metrics include beam current and perveance, two 

parameters that are highly sensitive to electron gun geometry and electric field distribution. The performance 

of the model confirms that even relatively shallow neural networks, when properly configured and trained on 

high-fidelity simulation data, can provide highly reliable predictions for complex physical systems [25], [26]. 

 

 

 
 

Figure 6. Training performance of neural network surrogate model 

 

 

3.3.  Prediction accuracy of beam parameters 

Figure 7 presents a scatter plot comparing the predicted beam current against the ground truth values 

obtained from CST simulations. The strong linear alignment of points along the diagonal line (y = x) 

demonstrates a high degree of prediction accuracy across the full range of input conditions [25], [26]. This 

capability is particularly valuable in practical design workflows, where predicting how small changes in 

geometry influence the beam current can accelerate the refinement process. 

Similarly, Figure 8 shows the performance of the neural network in predicting beam perveance. The 

close agreement between predicted and actual values further supports the robustness of the trained surrogate 

model [27]. Accurate prediction of perveance is crucial in electron gun design because it captures the 

relationship between current and accelerating voltage, serving as a diagnostic indicator for space charge-

limited emission. 

The beam current, emittance, and perveance are crucial performance indicators that directly reflect 

the physical behavior of the electron gun. Beam current is primarily influenced by the cathode-anode voltage 

and the emission area, which are governed by electrode geometry. A higher extraction voltage and larger 

emission area lead to increased beam current. Emittance, which quantifies the spread of the beam in phase 

space, is affected by the focusing properties of the geometry; sharp curvature or abrupt changes in field lines 

tend to degrade emittance. Meanwhile, perveance is a function of both the beam current and extraction 

voltage, serving as a measure of space-charge effects. By analyzing how these parameters vary with 

geometry inputs such as electrode angle, gap distance, and voltage, we provide a deeper physical 

understanding of the design-performance relationship in thermionic electron guns. 
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Figure 7. Current prediction vs truth values 

 

 

 
 

Figure 8. Perveance prediction vs true values 

 

 

An additional important output, beam diameter at the gun exit, was also monitored across 

configurations. Although not used as a training target, its correlation with predicted current and perveance 

indirectly validates the physical consistency of the model. In almost all configurations, the beam diameter 

remained below the 5 mm threshold, indicating the focusing components in the Pierce geometry was 

functioning as expected. 
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3.4.  Sources of error and model limitations 

Despite the strong overall performance, minor deviations were observed in a few high-current 

configurations, where the predicted values slightly underestimated the ground truth. These errors are likely 

due to sparse representation of such configurations in the training dataset. Increasing the density of samples 

in high-current regimes could improve prediction accuracy in future studies [28]. 

Moreover, the surrogate model is limited to the parameter ranges seen during training. Extrapolation 

to unseen regions of the design space may yield unreliable results, which highlights the importance of 

thoughtful dataset construction. Integration of uncertainty quantification techniques or active learning 

strategies could further enhance model reliability, particularly for high-risk operating points. 

 

3.5.  Computational efficiency and practical implications 

From a computational perspective, the surrogate model significantly outperforms traditional FEM-

PIC simulations in terms of evaluation time. Once trained, the model predicts beam characteristics for new 

configurations in under 10 milliseconds on a standard GPU, compared to hours of processing required by 

CST simulations. This speed enables rapid iterative design, global sensitivity analysis, and real-time multi-

objective optimization that would otherwise be infeasible. 

These results underscore the value of combining high-fidelity simulation tools with data-driven 

surrogate models in accelerator design. While the simulation process remains essential for initial dataset 

generation, the trained surrogate allows for fast design exploration and deeper physical insight. Similar multi-

objective frameworks have been implemented successfully in recent surrogate-assisted injector designs [29], 

and their efficiency has been benchmarked in review studies of neural-based optimization in beamline 

components [30], [31]. 

These findings are built upon previous research in the field. For instance, Ahmadiannamin et al. [32] 

demonstrated the challenges of balancing beam emittance and current in thermionic sources using semi-

analytical methods such as the Vaughan approach, which our model addresses with automated, data-driven 

predictions. Liu et al. [33] focused on beam transport tuning using surrogate-augmented optimization (ASTRA 

combined with NSGA-II), but did not incorporate injector-level surrogate design for cathode geometry, a gap 

our work fills. Similarly, Kane et al. [11] applied neural networks to predict output beam properties from laser-

plasma interactions but did not address initial beam quality parameters such as perveance, which are central to 

our study. By focusing on geometry-to-beam output mapping at the gun stage, our method extends surrogate 

modeling to earlier and more critical design stages in the accelerator chain. 

 

 

4. CONCLUSION 

This study successfully applied a neural network surrogate model to predict the performance of a 

Pierce-type electron gun using data generated from CST Studio Suite simulations. The surrogate model 

accurately predicted key beam parameters namely beam current and perveance and demonstrated rapid 

convergence during training. These results indicate strong generalization performance and confirm that data-

driven models can capture the essential physics of electron gun behavior. The approach significantly reduced 

the simulation time required for each design evaluation, enabling real-time parametric exploration and 

accelerating the design iteration process. This capability is particularly valuable for complex accelerator 

systems, where computational cost often becomes a limiting factor. Future directions of this work include 

expanding the surrogate model toward multi-objective optimization, integrating uncertainty quantification, 

and incorporating thermal and mechanical effects to increase robustness. These enhancements would further 

solidify the role of machine learning-based surrogate modeling as a generalizable and efficient strategy for 

designing high-performance components in modern particle accelerators. Overall, this methodology provides 

a promising tool for improving the speed, flexibility, and intelligence of accelerator design workflows, and 

has strong potential for broader application in high-precision beamline component development. 
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