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 Software fault prediction (SFP) plays a critical role in improving software 

reliability by enabling early detection and correction of defects. This paper 

presents a comprehensive review of 25 recent and significant studies on SFP 

techniques, focusing on data preprocessing strategies, classification 

algorithms, and their effectiveness across various datasets. The review 

categorizes the approaches into traditional statistical models, machine 

learning methods, deep learning architectures, and hybrid techniques. 

Notably, wrapper-based feature selection, neural network classifiers, and 

support vector machines (SVM) are identified as the most effective in 

achieving high accuracy, particularly when dealing with imbalanced or noisy 

datasets. The paper also highlights advanced approaches such as variational 

autoencoders (VAE), Bayesian classifiers, and fuzzy clustering for fault 

prediction. Comparative analysis is provided to assess performance metrics 

such as accuracy, F-measure, and area under the curve (AUC). The findings 

suggest that no single method fits all scenarios, but a combination of 

appropriate preprocessing and robust classification yields optimal results. 

This review provides valuable insights for researchers and practitioners 

aiming to enhance software quality through predictive analytics. Future work 

should explore ensemble learning and real-time SFP systems for broader 

applicability. 
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1. INTRODUCTION 

Dealing with software faults and failures is an important task in the software quality and reliability 

topic. Raju et al. [1] defined software fault as a defect in software code resulting in software failure during 

execution. Whereas, Gupta et al. [2] mentioned that system failure is when the system is not behaving the 

way it should be. Failures in cloud systems could cause serious problems such as data damage, according to 

Lou et al. [3]. Software failures in software systems can lead to performance degradation and poor service, 

which need to be reduced to avoid customer dissatisfaction and increasing costs by Pitakrat et al. [4]. It is 

difficult for experienced programmers to avoid software faults in software projects. Commonly, Chatterjee 

and Maji [5] stated that the data failure is available during the testing or deployment phase. When a problem 

occurred, the system log would be the first place people would go to detect the cause of failure in Jauk et al. 

[6]. However, Sun et al. [7] stated that the amount of failure data is practically much less than non-failure 

data in software and resulting in an imbalanced data distribution, which may cause poor performance of 

software prediction.  

https://creativecommons.org/licenses/by-sa/4.0/
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2. LITERATURE REVIEW 

2.1.  Attribute selection, sampling technologies, and ensemble algorithm (ASRA) model 

Ding et al. [8] propose an ASRA model that has a combination of attribute selection, sampling 

technologies and ensemble algorithms to solve the imbalanced data sets problems. The ASRA model borrowed 

the chi-square test of attribute selection. The selection algorithm works like this: first, the candidate’s feature 

subset is generated, then the subsets are evaluated and filtered using a filter model. Then, the synthetic minority 

over-sampling technique (SMOTE) algorithm over-sampling technique and the resample algorithm  

under-sampling technique are performed. Lastly, the adaptive boosting (AdaBoost) algorithm is used. The 

ensemble algorithm function is to turn a weak classifier into a strong one. From the experiment, the ASRA 

algorithm has a high value of F-measures and area under the curve (AUC), which are more than 0.7 and 0.8, 

respectively, on all the datasets compared to the original and SRA design. 

 

2.2.  Spiral life cycle model-based Bayesian classification (SLMBC) 

Dhanajayan and Pillai [9] propose a spiral life cycle model-based Bayesian classification technique 

where the spiral life cycle is integrated with the Bayesian classification with the help of the robust similarity 

clustering technique (RSC). This method has 4 phases. The first phase is to pinpoint the objective, 

functionality, alternatives and constraints of the software product. Then, the alternatives will be evaluated. 

The third phase is the development and testing phase and lastly is the planning phase for the next iteration. 

Then, the software reliability model is performed, followed by the Bayesian classification model. To predict 

the failure, we will look at the biggest posterior probability. After classifying the module, robust similar 

clustering (RSC) is carried out. Using the minimum distance measure of the similar features, a few clusters 

are generated. From the experiment, the SLMBC achieved 0.52 percent in the detection of faulty modules 

which are not faulty, 0.005 in false positive rate (FPR) and 0.02 in the overall error rate. The false negative 

rate (FNR), FPR and overall error rate are low using SLMBC compared to others. 

 

2.3.  Metric based on neural network classifier 

Jayanthi and Florence [10] propose an integration of principal component analysis (PCA), a scheme 

of feature reduction with the application of a neural network-based classification technique. PCA works in 

such a way by adding second-order moment computation to any random vector’s characteristics. The PCA 

data reconstruction might have errors; therefore, the PCA is improved by integrating maximum-likelihood 

estimation. Then, neural networks are implemented. The neural network has three layers and the software 

data will be processed by referring to its weights. At each layer, an input of neurons will be given after the 

weights have been adjusted following the requirement. To get the final result, all the inputs will be multiplied 

by their respective weights. The experiment used four datasets, which are KCI, JMI, PC3 and PC4. The 

accuracy of the proposed approach is as follows: KCI with 86.91%, JM1 with 83.03%, PC3 with 89% and 

lastly PC4 with 93.64%. 

 

2.4.  Grey system theory-based method 

Mao [11] proposed a prediction framework based on a grey model. The grey model is combined 

together with interval prediction of software faults and prediction of fault number based on related factors. 

The grey theory is used to get the potential law of a dataset through mining. The process is called grey 

sequence generation. Then, through some operation, the randomness of the grey sequence can be reduced. A 

new data sequence can be obtained by applying a transformation operation (grey sequence generation) to the 

grey sequence. The new data is called a transform data sequence. A prediction can be employed when a 

relative level is reached through the smoothness of the sequence. In grey theory, grey modelling is used to 

express sequences using approximate differential equations. GM (1,1) is used in this method. Then, by using 

GM, the fault number can be predicted. To predict the interval of a fault number, proportional band-based 

and development-band methods are used. The approach is based on the minimum and maximum from the 

sequence, in addition to a few steps that need to be done. The method is proven to reduce the cost of 

maintenance and allow the organization to get better ideas on how to handle failures. 

 

2.5.  Fuzzy rules and data analysis-based method 

Ding et al. [12] proposed new online prediction techniques using fuzzy rules and data analysis. This 

method has three phases: the first one is the online training, the requirement documentation and the running 

of the system. This is to get the log file corresponding to the sampling time. The second phase is the 

prediction model building, where a fuzzy rule is applied to get the variables' relationship and the evolutionary 

trend using the autoregressive integrated moving average (ARIMA) model. The last phase is the failure 

prediction, where both the values from the ARIMA model are compared with the fuzzy rule. If the difference 

between the values exceeds, then there would be an error. From the experiment that was conducted on 
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multiple monitored variables, it shows that the proposed method was able to get 26 TP from 28 numbers of 

failures injected, which is only 2 FP predicted wrongly. 

 

2.6.  Energy-based anomaly detection 

Monni and Pezze [13] presented a new approach of energy-based models to predict failures based 

on the observation of analogies among complex software systems, physical systems, and networks. The 

feasibility of the approach is evaluated to reveal some preliminary results by measuring the precision of the 

restricted Boltzmann machine (RBM) used in using models to reveal failure-prone anomalies. The results 

suggested that revealing collective anomalies of key performance indicators (KPIs) values may predict 

failures in complex software systems. KPIs are the anomaly detectors found in many different parts of the 

software systems that are used to collect various metrics. The energy-based approach surmounts limitations 

of several different approaches, which are signature-based approaches as well as seeded and non-seeded  

data-driven approaches. 

 

2.7.  Deep learning technique-based model called VAE 

Sun et al. [7] proposed a deep learning technique of a generative model called the variational 

autoencoder (VAE) method for predicting software faults. The proposed model is used to generate new samples 

of failure data to overcome the imbalanced data of software faults, in which there is more failure data to indicate 

the failure module (minority) than non-failure data (majority) to indicate the non-failure module. Thus, the VAE 

is designed to balance the datasets and to improve the accuracy of the classifier. In short, data processing, as 

well as VAE and Pass methods, have been used in the experiment, and several metrics have been chosen for the 

results evaluation. In conclusion, the results reported that the utilization of the VAE method improves the ability 

to predict failure data while the prediction of non-failure data is being performed. 

 

2.8.  Bayesian belief network-based model 

A study by Chatterjee and Maji [5] explained a Bayesian-based model, developed to predict the net 

number of faults during the early development phase of software. First of all, the proposed Bayesian belief 

network is a directed acyclic graph consisting of nodes, each is associated with a node probability table or 

node probability table (NPT), which has the values of conditional probability and the expected fault index. 

Second, a type of fuzzy control system, called an interval type-2 fuzzy logic system, is used to calculate the 

probability values of the model. Besides, an artificial neural network (ANN) is applied to identify the output 

from the input of the data from similar or earlier projects. Third, six metrics are used to implement the 

proposed methodology. Software metrics have qualitative information about the software during its early 

phase. In sum, the proposed model can predict total faults in software. 

 

2.9.  Support vector machine classifier 

A study by Raju et al. [1] proposed a work that uses a support vector machine (SVM) classifier to 

classify fault and non-faulty modules. Along with SVM, the authors also implemented feature extraction, or 

known as attribute selection, to find appropriate features for the classification model. Integrating a feature 

extraction method with a classifier (SVM) is also called the wrapper approach. Overall, the proposed 

methodology followed simple steps to predict the software faults: defected dataset ‘s’ as input; 1: Feature 

extraction method is used in pre-process of the data set; 2: 10-fold cross validation is applied by dividing the 

data set into training model and testing model; 3: SVM classifier is used for classification. The datasets used as 

the input to the proposed model are CM1, JM1, KC1, KC2, PC1, and DATATRIEVE. Each data set has a good 

number of instances indicating software modules and also has several software metrics, which can help to 

identify faults in the existing software modules. For the experimentation process, the CK-metrics are applied to 

the datasets KC1 and KC2 since both are related to the object-oriented approach. Then, an experiment is 

performed on all the data sets to evaluate the parameters, which are accuracy, sensitivity, completeness or 

specificity, cut-off or precision, and F-measure. In conclusion, the experimental results proved that the proposed 

SVM-based model as a binary classifier performed best in terms of classification accuracy. 

 

2.10.  Machine learning algorithms and techniques 

Campos et al. [14] presented an analysis of several machine learning techniques and algorithms for 

supporting online failure prediction (OFP). In the experiments, multiple algorithms and different data 

processing methods are considered. A comparison is made with SVM, an algorithm used in OFP. In 

conclusion, the results show that SVMs can predict a single failure mode, but not when considering  

multi-class failures. For single and multiple failure modes, decision tree (DT), neural network (NN), and 

Bagging can predict them well. 
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2.11.  Hierarchical online failure prediction approach (HORA) 

Pitakrat et al. [4] proposed an approach called HORA, used for OFP, which consists of two kinds 

of architectural models and hierarchical online failure predictors. The objective is to predict the 

propagation of the failures if the failure of each component can be predicted and the dependencies among 

them are acknowledged. First of all, based on Bayesian networks, the failure propagation model (FPM) is 

architected, which comprises the prediction outputs and dependencies among the components obtained 

from the architectural models. Second, the architectural dependency model (ADM) is a middle model 

representing the dependencies among components of the architecture. Third, an automatic extraction of the 

ADM requires monitoring data that comprises system-level resource usage. The result is called the 

SLAstic model, which includes the relationships and components in the software, information about 

deployment, and the number of calls of each component. ADM is created by combining the information 

from the SLAstic model to obtain knowledge about the dependencies of the components. In conclusion, 

the proposed approach can predict component failures in the system and the probabilities of the 

propagation of those failures to other components. 

 

2.12.  Improving software fault prediction with threshold value 

According to Shatnawi [15], threshold recognition and defect prediction are two methods that are 

used for analyzing statistical software. Those methods are combined in their research to include a new form 

of static analysis. Shatnawi [15] proposed a new dependent variable by using threshold values. The values of 

the threshold are used to identify the software systems that need focus in development, testing and 

maintenance. If they have no faults, these modules are labelled as a medium group. The faulty modules have 

been defined as strong, whereas non-faulty systems are defined as nothing at all. Afterwards, the latest 

identity has been used in pentuple algorithms. Five classifiers also evaluate the original variable, as well as 

the outcomes of the latter are evaluated through testing of statistics. Wilcoxon signed a rank test able to find 

three types of classifiers as of variables of two. When compared to the three classifiers, they noted that 

although JRip output diminishes, naive Bayes (NB), and logistic regression (LR) are notably greater in the 

recommended parameter. Conclusively, their findings indicate that in certain classifiers, the suggested 

parameter either enhances the performance or just zero impact on the performance of others. 

 

2.13.  Deep learning system software fault prediction 

According to Qiao et al. [16], they developed the concept of a deep learning concept for predicting 

vulnerabilities in application systems. Their preferred method develops a comprehensive learning approach 

to estimate the serious flaw. The improvement of the suggested technique on the support vector regression 

(SVR), fuzzy support vector regression (FSVR), and decision tree regression (DTR) is essential for the 

collected data. Paled in comparison to such state-of-the-art methods on two well-known models, the method 

achieved a substantial reduction in the standard error and increased the compounded correlation coefficient. 

 

2.14.  Comprehensive model for software fault prediction 

According to Singh [17], he has used the five developments from organic fields for testing and 

training. It is seen that in the case of a project, C4.5 executed well around a mean value of receiver-operator 

characteristic (ROC) than the proposed eight rule-based classification with the majority of ROC. The ability 

to deal with the program defect prediction problem-based learner rule also contributed to improved efficiency 

due to inadequate training data for a given class. Decision table-Naive Bayes hybrid classifier (DTNB) has 

surpassed several rule-based learners in cross-projects as well and the findings also become close to  

ROC 69 percent inside the programmed. Therefore, data from various activities relating to the very  

same area can be used to estimate inter-project failure, just in case of task data set is absent and can work 

similarly across tasks. 

 

2.15.  The software defect prediction concept relies on the AltaRica language 

According to Song et al. [18], a method using the AltaRica algorithm is proposed in their research 

for software fault prediction. The proposed method comprises three components: one is AltaRica-based 

software requirement modeling, the two is line temporal logic (LTL)-based safety limitations, and the three is 

a model-based fault prediction algorithm. Eventually, they applied this model to the traditional study program 

for the aviation aid software system. The test results show that this latest design will boost the efficacy and 

validity of the defect prediction that can reliably characterize the operating characteristics of the aviation aid 

software system, and effectively recognize dynamic defects such as the state transition dispute, and the 

irregular feature series. 
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2.16.  Research on software metric selection for software defect prediction 

According to Wang and Khoshgoftaar [19], they have made a comparison with three classes of 

selection which is filter-based subset evaluators, wrapper-based subset selectors and filter-based feature 

ranking. They then built the model accordingly to resolve software failure predictions. Then, the reliability of 

its identification is evaluated according to the area under the receiver operating characteristic AUC efficiency 

metric. They have used data obtained from the four releases of the massive network system, specifically 

telecommunications. The predictive models are developed using five different classifiers, which are K-nearest 

neighbors, Bayes, multilayer perceptron, logistic regression and support vector machines. The test results 

reveal that, according to the AUC efficiency measure, the wrapper-based approach to selection of a subset 

performed better than the rest. The apps' ranking did worse. Furthermore, when compared to the five learners 

in our sample, logistic regression (LR) represents the highest output, then, multilayer perceptron (MLP). 

 

2.17.  Load-capacity model 

The traditional load capacity model has two states, which are the normal state and the faulty state. 

Ji et al. [20] proposed a third state that is called state-congestion to meet the characteristics of communication 

networks. They improved the traditional model and made it able to be more reliable in terms of accuracy and 

precision of fault prediction and prediction effect. After comparison with the models, they found that the 

average accuracy of the proposed fault prediction model is around 66.61% and improved by 9.35% compared 

with non-linear load capacity model in Wang et al. [21]. The proposed model has a high accuracy rate but it 

is sensitive to the propagation prediction in the network’s key node faults. 

 

2.18.  Artificial neural network and queuing theory 

Using artificial neural networks (ANN) and queuing theory, Tripathi and Saraswat [22] were able to 

increase the reliability of software products to estimate failure rate, detection, correction, and allocation. The 

queuing theory model is mainly about simulating the customer arrival pattern in a queue that has been 

correlated with the error detection pattern in the process of software development. The paper reveals that less 

number of testers are required in the early phases of software development life cycle (SDLC), but the number 

increases as the software development phases increase. Team leaders of software companies can use this 

paper’s results to predict the number of testers they should hire from the initial stage to the middle stage and 

at the end stage of software development. In the middle stage, the maximum number of software testers is 

needed, but it decreases in the initial phase and the last phase of the software development life cycle (SDLC). 

 

2.19.  Inheritance metrics and artificial neural network 

Aziz et al. [23] selected Chidamber and Kemerer metrics (CK) to evaluate inheritance effects on 

Software fault prediction (SFP). They split the datasets into two sets, the first one is CK with inheritance and 

the other dataset is CK without inheritance for comparison. To build this model, they used an ANN. The 

results have shown that inheritance shows an acceptable contribution in SFP and it is safe, but high 

inheritance is not because it can lead to software faults. They suggested keeping the inheritance metrics 

minimum; the testing community can safely use inheritance metrics to predict faults, but high inheritance is 

not recommended because it can cause faults. 

 

2.20.  Residual errors: J-M and G-M 

The hybrid model Jabeen et al. [24] proposes a combination of J-M and G-M based on residual errors; 

the model selects the most suitable predicted value from both models. G-M gives high prediction accuracy with 

small samples of data, but with low predicting accuracy with random fluctuating data. J-M is more suitable for 

forecasting vibrating and changing stochastic data sequences but it needs a large amount of data. The hybrid 

model combines the best-predicted values of the models and gives better forecasting results for failure data 

sequences. The model has good performance accuracy and applicability in Software fault prediction. 

 

2.21.  Wrapper-based selection method by particle swarm optimization-multi-Gaussian approach  

Using datasets that consist of noisy and irrelevant records may result in unnecessary waste of 

resources and could lead to failures if using classification without selection methods. There are mainly three 

types for classification: filter-based feature selection, embedded feature selection and wrapper feature 

selection. Banga and Bansal [25] chose the wrapper-based selection method because it has the best accuracy 

among these approaches. The method is a hybrid of algorithms used to improve the accuracy the reliability of 

the software estimation using feature selection by particle swarm optimization (PSO)-multi-Gaussian 

approach (MGA) to reduce noise and select relevant attributes. Mean weighted least squares twin SVM 

(MW-LSTSVM) results show that the classification algorithm has reached the highest accuracy among all 

other classifiers with 91.3%, efficiency increased by 9.8% than the other existing methods in classifying 

defective and non-defective approaches. 
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2.22.  Machine learning implementation 

From the research, Wójcicki and Dąbrowski [26] found that they can automatically predict the 

possibly faulty fragment in the source code they coded and which allows developers to focus more on 

development, but not consume lots of time in failure finding. The techniques that they use improve the failure 

prediction by structural programming to restrict the control flow to a hierarchical structure. The next 

improvement is that the object-oriented paradigm will be the main programming concept. As a result, the 

research proves that fault-prediction methods can be applied successfully to Python, Java, and C/C++ 

programs, and get the result of 0.64 recall rate and 0.23 false positive rate. This research also supports 

applying the special logarithmic filter, since the fault predictor implemented without using this filter achieved 

a 0.328 of recall rate with a 0.108 of false positive rate. In conclusion, machine learning can be used for 

creating a fault predictor for Python, Java and C/C++ projects. 

 

2.23.  BR technique 

In this research, Mahajan et al. [27] found Bayesian regularization (BR) technique helps with 

software faults predicted. The main function of the BR technique is to eliminate the math errors and also 

determine the suitable combination to produce an efficient network. The accuracy of the BR algorithm is 

compared with the Levenberg-Marquardt (LM) algorithm and the back propagation algorithm (BPA) for 

searching software faults. They also find accuracy with NN classifiers. For the result, the BR algorithm 

provides 92.44% accuracy, which is the highest accuracy compared to another algorithm that was  

tested in this experiment. In conclusion, the BR algorithm is the most reliable algorithm with the comparison 

to other algorithms. 

 

2.24.  Iterated feature selection algorithm and layer-recurrent neural network  

From the research, Turabieh et al. [28] used binary genetic algorithm (BGA), binary particle swarm 

optimization (BPSO), and binary ant colony optimization (BACO) as wrapper FS algorithms. The result is 

compared with naïve Bayes (NB), ANN, logistic regression (LR), k-nearest neighbors (k-NN) and C4.5 

decision trees. The proposed algorithm generates the testing dataset. They test the performance of the 

algorithms in amplifying the software fault and failure prediction system. They applied the proposed 

algorithms that they proposed with the layer-recurrent neural network (L-RNN) classifier. For the result, they 

found that the performance of L-RNN depends on the input data characteristics. Finding the important metric 

will enhance the training process. In conclusion, the proposed algorithm can choose the essential software 

metric by using distinct feature selection (FS) algorithms. 

 

2.25.  Semi-supervised deep fuzzy c-mean clustering method 

From this review paper, Arshad et al. [29] deal with the supervised and unsupervised data to utilize 

the fuzzy information from labeled to unlabeled data to sustain the building of the current model pattern. 

They utilize deep fuzzy c-mean clustering (DFCM) clustering to replace human logic. To prove the method, 

they present a model for software fault prediction. They show the capability of their method with other 

methods and all results are performed by averaging 100 runs. They observe that the performance of class 

mass normalization (CMN) is worse than non-negative sparse graph based labeled propagation, NTC (NB), 

and DFCM. They also found that the performance of FTF is poor because FTF applies supervised data. It 

concludes that semi-supervised data for training models improves capability. In summary, the method can 

build a fine prediction system by generating good features and removing excessive features to decrease the 

unused data for classification. 

 

 

3. ANALYSIS 

This section will analyze all the available software prediction methods that have been researched. 

This includes the analysis of data processing techniques, classification techniques, metrics used, as well as 

how this will improve the accuracy of a software prediction. Table 1 shows a comparison table between 

different prediction methods with the corresponding advantages and disadvantages of each method. 

 

3.1.  Datasets 

Datasets play a crucial role in the accuracy of the classifier. If the dataset is not chosen carefully, the 

classifier can become biased toward the non-fault-prone module, which leads to a decrease in the software 

prediction’s classification accuracy. There are a lot of issues regarding the dataset, such as the imbalance of 

datasets or the selection of features. Below is the analysis for this particular problem. 
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Table 1. Comparison of software prediction methods 
No Prediction Technique Advantage Disadvantage 

1. Load-capacity model ˗ Enhancing the load capacity model.  

˗ Representative model.  

˗ Improvement in the traditional model.  

˗ High accuracy rate.  

˗ Focused on large-scale apps.  

˗ Communication networks based.  

2. Inheritance metrics and ANN ˗ Uses CK metrics.  
˗ Uses ANN.  

N/A 

3. Residual errors: JM and GM ˗ Combination of GM and JM models.  

˗ Selects the suitable predicted value from both models.  

N/A 

4. ANN and queuing theory ˗ Estimate failure rate, detection, correction and allocation.  

˗ Simulate a queue.  

N/A 

5. Imbalanced data processing 

model 

˗ Lower limit of learning accuracy is not needed  

˗ Remove redundant attribute  
˗ Create a balanced dataset.  

˗ Oversampling will increase training 

time.  
˗ Under-sampling can cause the loss 

of important information.  

6. Spiral life cycle model-based 

Bayesian Classification 

˗ Can handle an uncertain dataset.  

˗ High accuracy, stability and consistency.  

˗ Computation time reduced.  

˗ The failure ratio is low.  

˗ Can only detect 81% of faulty 

modules using the classification and 

clustering-based algorithm.  

7. Metric based on a 

neural network classifier 

˗ Time and storage space can be reduced.  

˗ Removal of multicollinearity  

N/A 

8. Grey system theory-based 

prediction 

˗ Helps to reveal the fluctuating range of the fault.  ˗ Handle small and uncertain datasets.  

˗ Limited to its intrinsic limitations.  

9. Online failure prediction 

based on fuzzy rule and data 

analysis 

˗ No failure pattern or expected value is needed.  

˗ Can deal with a variable that is discrete, continuous and 

linguistic.  

˗ Avoid fake regression  

˗ A fuzzy rule is not always accurate.  

10 Energy-based anomaly 

detection 

˗ Overcome limitations of signature-based as well as 

seeded and non-seeded data-driven approaches.  

˗ The experimental results are far 

from being conclusive.  
11 Deep learning technique-based 

model called VAE 

˗ Improves the ability to predict failure data while the 

prediction of non-failure data is being performed.  

N/A 

12 Bayesian belief network-

based model 

˗ Assists developers in achieving a state of total software 

faults that has been targeted.  

N/A 

13 SVM classifier ˗ Improves classification accuracy.  N/A 

14 Machine learning algorithms 

and techniques 

˗ DT, NN, and Bagging can predict single and multiple 

failure classes.  

˗ SVMs cannot predict multiple 

failures and their performance drops 
when predicting individual failures.  

15  HORA ˗ Has higher modularity by reusing different techniques to 

predict failure among the components of the system.  

˗ Can be used if monitoring of data is 

constantly collected.  

16. Improving software fault 

prediction with threshold 

values 

˗ The result will help know the effect of the threshold for 

the technique of pre-processing to enhance the software 

defect prediction  

˗ Focus only on CK metrics  

˗ There are several methods for testing 

software and certain metrics may have 

different meanings of variants. For 

example, the WMC metric has two 
main concepts, and there are several 

variants to the LCOM metric. But in 

this study, the metrics data are based 

on original concepts for possible 

comparisons.  

17 Deep learning-based 

software defect prediction 

˗ The count of fault prediction is very effective  ˗ Various datasets that used different 

metrics could affect the 
performance of fault prediction  

˗ The approach was only evaluated 

based on two open datasets, so the 

outcome may not be the same for 

other commercially available 

software. 

18 The software fault prediction 

model based on the AltaRica 
language 

˗ Apt for state transition, data interaction, able to process 

complex systems precisely and use traversal search 
method to determine the software violation  

NA 

19 A study on software metric 

selection for software fault 

prediction 

˗ LR performed the best  NA 

20 Comprehensive model for 

software fault prediction 

˗ Many rule-based learners have been used for comparison 

to get an appropriate result  

N/A 

21 Wrapper-based selection 

method by PSO-MGA 

˗ Highest accuracy rate among other types of 

classification methods.  

˗ Should reduce noise and remove 

irrelevant data first.  
˗ Could be improved by using AI.  

22 ML method for software 

fault prediction 

˗ Provide a satisfactory result in predicting faults  ˗ The method is still in the 

experimental stage and future 

research is needed.  

23 Bayesian regularization (BR) 

technique 

˗ Fault prediction during the design phase  

˗ Best algorithm to apply compared to others  

N/A 

24 Iterated feature selection 
algorithm and L-RNN 

˗ Able to select the most important software metrics  
˗ Able to receive a good classification rate  

N/A 

25 Semi-supervised DFCM 

method 

˗ Multiple clusters can be amalgamated  

˗ Incorporate labeled data and unlabeled data  

˗ Removing excessive features  

N/A 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 545-554 

552 

In the ASRA model, the chi-square method is used to discard or ignore irrelevant and redundant 

features. After filtering the subset, both over-sampling and under-sampling are used, but the disadvantage of 

this technique is that over-sampling could increase the training time and under-sampling could lead to loss of 

critical information by Zhou et al. [8]. Even though under-sampling can produce faster training processes, it 

can cause lower performance in Campos et al. [14].  

Another method is the wrapper-based selection method, where the optimal parameter can be 

obtained by learning from the training of the datasets. The advantages are that it is more accurate compared 

to other feature selection methods, such as embedded feature selection and filter-based selection by Banga 

and Bansal [25]. In the paper by Turabieh et al. [28], wrapper-based selection is further improved by 

performing iteration. The advantages of this method are that it stops iterating if the optimal value is reached 

and allows you to find the most valuable metrics.  

Other than that, in the metric-based neural network classifier proposed by Jayanthi and Florence 

[10], principal component analysis (PCA) is used, where they lower the proportion of the dataset as well as 

the dimensionality while reducing the information loss. The PCA is then further improved by adding 

maximum-likelihood estimation to reduce the reconstruction error. The advantages of this method are that it 

allows the dataset to be distributed equally without affecting other undistributed data. Based on the 

experiment, all the different datasets have an accuracy of more than 80%, which shows that PCA has an 

important role in the prediction accuracy. Lastly, in the paper from Mao [11], grey sequence generation is 

used to handle datasets, but the drawback is that it can only handle small data sizes compared to other 

methods that handle big datasets. 

 

3.2.  Classification 

The second aspect is the classification process in predicting software faults. There are several 

classifiers used for faulty and non-faulty software components classification. One of the classifiers is SVM. 

In the study by Raju et al. [1], this classifier is used as a binary classifier for classifying several datasets input 

and experimental results showed that it has the accuracy above 97% for CM1 data set, 99.54% for JM1 data 

set, 96.58% for KC1 data set, 99.95% for KC2 data set, 99.57 for PC1 data set, and 93.89 for the DataTrieve 

data set. Besides, according to Banga and Bansal [25], a variation of the SVM classification algorithm known 

as least squares twin SVM (MW-LSTSVM) also has the highest accuracy, with 91.3%, than other classifiers 

like k-NN and LSTSVM, and the efficiency of the proposed approach (PSO-MGA) is 9.8% higher than other 

techniques in fault and non-faulty modules classification. 

Although SVMs can predict one failure class, however, it cannot be used when considering multiple 

failure modes by Campos et al. [14]. The authors stated that when considering both one and multiple failures, 

DT, NN, and Bagging algorithms can predict them well. Next, other typical classifiers by Sun et al. [7], 

where five typical classifiers are used to predict software failure, including SVM, which are RF, DT, NB, and 

LR. In Dhanajayan and Pillai [9], Bayesian classification is used in the proposed technique called SLMBC to 

group or classify faulty and non-faulty modules using a probability distribution. As a result, FNR, FPR, and 

overall error rate can be greatly reduced using SLMBC than other techniques. After that, in Jayanthi and 

Florence [10] and Mahajan et al. [27], NN classifier is used while Turabieh et al. [28] proposed a 

classification technique called L-RNN used in the proposed algorithm called iterated feature selection 

algorithm and as a consequence, it can gain well rate of classification based on AUC results, outperforming 

NB, ANN, k-NN, and C4.5. 

 

 

4. RECOMMENDATION 

Dealing with software faults is a very important task when dealing with software reliability and 

quality assurance. In our review paper, we reviewed research papers and models that focus on Fault and 

Failure Prediction Techniques. our analysis is based on data processing techniques, classification techniques 

and metrics to come up with a recommendation on which SFP techniques are more convenient for some 

scenarios. Some of the traditional models in SFP can be improved and applied to software systems to ensure 

a better quality in predicting faults and failures. 

All of the reviewed SFP techniques have their own advantages and limitations under different 

scenarios. Thus, the team has a few recommendations on how to improve the reliability of software products 

using software fault and failure prediction techniques. In terms of the used dataset, some methods cannot 

discard or ignore irrelevant and redundant data, and from our analysis, we suggest using the wrapper-based 

selection method because it is the most accurate selection method among the other major selection methods. 

Also, it can be improved by using iterations.  

In terms of the classification aspect, we suggest using the neural network classifier proposed by 

Jayanthi and Florence [10]. The advantage of this method is that it allows the dataset to be distributed equally 
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without affecting other undistributed data. Based on the experiment, all the different datasets have an 

accuracy of more than 80%. In Banga and Bansal [25], a variation of the SVM classification algorithm 

known as MW-LSTSVM also has the highest accuracy with 91.3%, than other classifiers like k-NN and 

LSTSVM, and the efficiency of the proposed approach (PSO-MGA) is increased by 9.8% than other 

techniques. SVMs can predict one failure mode, while for single and multiple failure modes, DT and 

Bagging can predict them well. 

 

 

5. CONCLUSION 

In conclusion, we found that it has plenty of ways and techniques to perform software fault and 

failure prediction. Based on the total of 25 reviews in this research paper, we centralized our analysis and 

categorized our analysis into data processing techniques and classification techniques. Data processing 

techniques mainly control the accuracy of the classifier, and the classification technique is the way of 

categorizing input datasets. Through the analysis, we have shown several comparisons on data processing 

techniques as well as classification techniques. For the analysis result, we finalized our analysis and 

recommended several techniques, which are methods and NN classifier for data processing technique, and 

SVM for classification technique wrapper-based selection. These techniques have the best accuracy and also 

efficiency for fault and failure prediction based on our research. For future work, we may look at the research 

and discover more techniques as well as write a research paper that is more in-depth into the process of fault 

and failure prediction. 
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