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 The paper deals with informative aspects of images, their scope and 

extraction methods. The research addresses numerous different types of 

features such as texture, color, geometric and structural features that play an 

important role in the field of image analysis and recognition. Contemporary 

extraction methods based on machine learning algorithms and fractal 

dimension are explained. The possibility of usage of these methods in real-

life problems such as medical imaging, biometrics, remote sensing images 

processing and agriculture is considered. Successful implementation 

examples of information functions in real-life problems are presented and 

opportunities for further research on the topic are considered. 
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1. INTRODUCTION  

It needs effective feature extraction techniques that may be employed to recognize, classify, and 

segment objects within an image [1]. Features play a crucial role in the reduction and acceleration of data 

processing as well as the improvement of the accuracy of recognition. The importance of this step in the 

sequence of the process of images cannot be overemphasized since the success of the subsequent steps of 

analysis largely depends on the quality of the features selected [2]. This paper shall present a class of 

techniques that may be used to determine the most informative features of an image. Computer vision and 

image processing continue gaining popularity among many disciplines in the field of science and technology. 

This paper will discuss the family of methods allowing the determination of the most informative and 

important characteristics of an image. Computer vision and the processing of images have become popular on 

a global level in the areas of science and technology [3]. One of the most important steps of the process of the 

analysis of an image is the definition of informative characteristics, which are compressed and generalized 

data characterizing the image [4]. Computer vision and the processing of images continue to become popular 

https://creativecommons.org/licenses/by-sa/4.0/
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on a global level in the areas of science and technology. One of the most important steps of the process of the 

analysis of an image is the extraction of informative characteristics, which are compressed and generalized 

data characterizing the image [5]. 

The literature review examines modern image processing techniques, including automated nuclear 

receptor localization analysis [1], elevation map reconstruction using radar images [2], deep learning for 

surface debris detection [3], and fire segmentation in drone images [4]. The approaches to improving feature 

matching [5], classification of diseases in computed tomography (CT) images [6], fractal methods in remote 

sensing [7], [8], watermark embedding [9], integration of convolutional neural network (CNN) and random 

sample consensus (RANSAC) for object recognition [10], and other relevant areas in the field of computer 

vision and image analysis [11]–[20] have been studied. 

 

 

2. MATERIALS AND METHOD 

2.1.  Algorithm oriented FAST and rotated BRIEF (ORB) [6] 

The methodology proposed in this study involves converting input images into vector 

representations by extracting key informative features using the ORB algorithm [10]. ORB combines two 

foundational algorithms: features from accelerated segment test (FAST) for identifying key points, and 

binary robust independent elementary features (BRIEF) for computing descriptors [21]. The process begins 

with the detection of informative points across the image using the FAST algorithm. For each candidate 

pixel, the surrounding 16-pixel circular neighborhood is evaluated to determine whether it constitutes a key 

point [22]. A pixel is classified as informative if the following condition is met for any subset of contiguous 

pixels on the circle [11]: 

let, 𝐼(𝑝) − 𝑝 be the intensity in pixels. If circle 𝐶 contains 𝑛 adjacent sets of pixels, then pixel 𝑝 is 

considered the base point. 

 

𝐼(𝑝) − 𝐼(𝑝𝑖) > 𝑑𝑜𝑜𝑟𝑠𝑡𝑒𝑝, or 𝐼(𝑝𝑖) − 𝐼(𝑝) > 𝑑𝑜𝑜𝑟𝑠𝑡𝑒𝑝 (1) 

 

here, 𝑝𝑖  is each pixel inside the circle.  

The ORB algorithm is designed to transform images into feature vectors, enabling tasks such as 

object recognition and image matching. This conversion process is structured into four key stages, each 

building upon the previous one to generate reliable binary descriptors. The overall workflow of the ORB 

algorithm is depicted in Figure 1. It starts with an input image and moves through the feature detection phase, 

which leverages the FAST corner detector to efficiently identify potential keypoints. From this initial set, the 

Harris corner measure is applied to refine the selection, isolating the most stable and distinctive points. After 

pinpointing these optimal keypoints, the BRIEF descriptor is computed at each location, resulting in a 

compact and robust binary representation. The end product is a feature vector representation of the image, 

ready for use in tasks like matching or recognition. 

This step-by-step approach enhances ORB's efficiency in real-time applications, leveraging the 

computational simplicity of both FAST and BRIEF algorithms. Their integration produces a feature 

descriptor that is not only resistant to noise but also rotation-invariant, making it ideal for diverse computer 

vision tasks such as object tracking, image stitching, and visual odometry. 

 

 

 
 

Figure 1. Converting an image to a vector using ORB algorithm 

 

Input image 

Find key point by FAST 

Select best point by Harris 

Extract binary descriptor by BRIEF 

Output image 
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Harris corner measure is used to assess the stability of data points. Harris angular measure is 

calculated as (2) [12]: 

 

𝑅 = 𝑑𝑒𝑡( 𝑀) − 𝑘(𝑡𝑟𝑎𝑐𝑒(𝑀))2 (2) 

 

where, 𝑀 − gradients are the covariance matrix and а 𝑘 is a constant (usually between 0.04-0.06). The 

orientation of the ORB informative gradient points is used to determine the formula (3) [23]: 

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
∑ 𝑤𝑖𝐼(𝑝𝑖)𝑦𝑖𝑖

∑ 𝑤𝑖𝐼(𝑝𝑖)𝑥𝑖𝑖
) (3) 

 

where, 𝑤𝑖  is the weight function, and 𝐼(𝑝𝑖) is the pixel intensity. 

For descriptor computation, BRIEF performs binary comparisons between pairs of pixels in a 

smoothed image patch. To ensure rotation invariance, the descriptor coordinates are rotated according to the 

keypoint orientation [24]: 

 

𝜏(𝑝, 𝜃) = (𝑢𝑐𝑜𝑠𝜃 − 𝑣𝑠𝑖𝑛𝜃, 𝑢𝑠𝑖𝑛𝜃 + 𝑣𝑐𝑜𝑠𝜃),   (4) 

 

where, τ is the rotating coordinates of the descriptor patch, 𝜃 is the orientation of the key point, 𝑢 and 𝑣 are 

the coordinates of pairs of pixels [13]. 

When generating descriptors, the vector is expressed as a bit string: 

 

𝐵𝑅𝐼𝐸𝐹(𝑝) = ∑ 2𝑖−1(𝐼(𝑝) + 𝜏(𝑢𝑖 , 𝜃) < 𝐼(𝑝) + 𝜏(𝑣𝑖 , 𝜃)

𝑁

𝑖=1

 

 

where, 𝑁 s the length of the descriptor (for example, 256 bits), 𝐼 is the pixel intensity, and 𝑢𝑖 and 𝑣𝑖 are the 

coordinates of the pixel pairs. ORB descriptors are 32 bits (256 bits) long, each bit is part of a descriptor and 

represents a texture and other properties around an informative point [25]. 

 

2.2.  Fractal dimension [7] 

Informative features refer to fundamental attributes within an image that carry essential information 

about its content. These features are critical in tasks such as image recognition, classification, and analysis 

[14]. In contextual image recognition systems, such features are particularly vital, as their identification 

enables more effective and accurate image processing [26]. Informative features are widely employed across 

domains such as agriculture, environmental monitoring, and Earth remote sensing [27]. 

Some typical informative image features include [15]: 

− Edges and borders: The lines, borders, and contours of objects in an image can be important signs of their 

recognition [16]. 

− Corners and facet points: Certain points in an image, such as corners, line intersections, or texture nodes, 

serve as primary markers for highlighting and recognizing objects [17]. 

− Color properties: Information about the color and color distribution in an image is useful for classifying 

objects or defining special attributes [18]. 

− Texture properties: Describing texture properties, such as texture gradients or structural elements, will 

help in selecting and classifying objects [28]. 

− Shape and size of objects: Information about the shape, size, and ratio of objects will be important for 

their identification and classification [19]. 

− Features of objects: For instance, faces, key points of anatomy, or unique attributes of objects that can be 

identified in an image [20]. 

These examples represent a subset of the numerous features that can be extracted for analysis. When 

various types of features are combined and processed using digital image processing techniques or machine 

learning models, the accuracy and efficiency of recognition systems can be significantly improved. One such 

analytical method for structural feature identification is the fractal dimension, which adds an additional layer 

of spatial complexity to the analysis of image structures [29]. 

Fractal dimension is a metric used to quantify the complexity or irregularity of a structure, especially 

in spatially distributed data. In metric spaces, it is used to characterize sets that may not conform to 

traditional Euclidean dimensions. There are several types of fractal dimensions, including Hausdorff and 

box-counting dimensions [30]. They are calculated as follows. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Methods for identifying informative features in agricultural images (Mirzaakbar Hudayberdiev) 

259 

Fractal (Hausdorff, box-counting) dimensions are calculated using the formula: 

 

𝑑 = lim
𝜉→0

ln 𝑁(𝜉)

ln(
1

𝜉
)

 (6) 

 

where, 𝑁(𝜉) is the minimum number of cubes with a side of 𝜉, required to cover the entire complex [31]. The 

measurement is defined as an exponent of the 𝑑 degree in 𝑁(𝜉)∞
1

𝜉𝑑 as shown in Figure 2. 

− Border block allocation: 𝑁(𝜉)∞
𝐿

𝜉
 , 

− Division of total volume blocks: 𝑁(𝜉)∞
𝐿

𝜉2 , 

Another fractal dimension method is the shoreline method: The length of the coastline is measured in 𝑙, then 

the measured length is calculated using the (7) [32]. 

 

𝐿 = ∆𝑙𝛼, ∆= 𝑐𝑜𝑛𝑠𝑡 (7) 

 

The box-counting method is implemented through a systematic grid-based measurement technique 

applied to the target structure. The process is illustrated in Figure 2, which demonstrates the use of the 

Hausdorff box-counting dimension on a tree structure. In Figure 2(a), the boundary line extraction process is 

depicted, where the object's contour is transformed into a continuous linear path that represents its geometric 

complexity for measurement. Figure 2(b) highlights the grid overlay methodology, where boxes of size ε are 

applied over the structure, and shaded boxes indicate interactions with the boundary, contributing to the 

count 𝑁(𝜉). This spatial segmentation enables quantification of how the boundary occupies space at specific 

resolutions. Figure 2(c) illustrates the iterative refinement through seven stages, progressively increasing grid 

resolution (decreasing 𝜀) from left to right. The transition in color from red to grayscale portrays the shift 

toward finer measurement scales, revealing intricate details of the fractal boundary. By plotting 𝑙𝑜𝑔𝑁(𝜉) 

against 𝑙𝑜𝑔 (
1

𝜉
) based on these measurements, the fractal dimension is determined from the slope of the 

resulting linear graph. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 2. Hausdorff box-counting dimension, (a) separation of blocks by boundary line, (b) separation of 

blocks by total volume, and (c) box-counting 

 

 

Figure 3 shows traditional ideas about geometry, forms a scale in accordance with predictable, 

understandable and familiar ideas about the space in which they are located. For example, take a line, divide 

it into three equal parts, and then each part will be three times less than the length of the original line [33]. It 

also happens on the plane. If you measure the area of a square and then measure the area of the square by 
1

𝜉
 

the length of the side of the original square, it will be 9 times smaller than the area of the original square. 

This measurement can be determined mathematically by using the measurement rule according to (8) [34]: 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 256-277 

260 

𝑁∞𝜉−𝐷  (8) 

 

where, 𝑁 is the number of parts, ɛ is the dimensional coefficient, 𝐷 is the dimensional coefficient, ∞ is the 

fractal dimension, which means the proportion in this sign. This scaling rule confirms the traditional rules of 

geometry scaling, since for a line 𝑁 = 3, when 𝜉 =
1

3
, then 𝐷 = 1, and for squares, because 𝑁 = 9, when  

𝜉 =
1

3
, 𝐷 = 2. The same rule applies to fractal geometry, but it is less intuitive. To calculate the unit length of 

a fractal line, at first glance, reduce the scale three times, in this case 𝑁 = 4, when 𝜉 =
1

3
 and we obtain the 

value of (8) by changing (9) [35]: 

 

log𝜉 𝑁 = −𝐷
log 𝑁

log 𝜉
  (9) 

 

 

 
 

Figure 3. The total length of the coastline 

 

 

2.3. Normalization signs [8] 

Following the extraction of key image features, it is necessary to represent these features in a 

standardized format suitable for subsequent analysis and classification tasks. This section outlines the process 

by which object areas and their corresponding informative features are quantified and normalized for 

consistent use in machine learning pipelines [36]. The following metrics are computed for each image and 

serve as descriptors of its geometric and structural content: 

a. Contrast: A measure of intensity variation across the image. 

b. Number of contours (𝑛𝑢𝑚_𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠): Total number of distinct object boundaries detected. 

c. Mean contour area (𝑚𝑒𝑎𝑛_𝑐𝑜𝑛𝑡𝑜𝑢𝑟_𝑎𝑟𝑒𝑎): The average area enclosed by identified contours. 

d. Standard deviation of contour area (𝑠𝑡𝑑_𝑐𝑜𝑛𝑡𝑜𝑢𝑟_𝑎𝑟𝑒𝑎): Variability in the size of detected regions.  

e. Mean contour perimeter (𝑚𝑒𝑎𝑛_𝑐𝑜𝑛𝑡𝑜𝑢𝑟_𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟): Average length of the perimeters of all contours. 

f. Standard deviation of contour perimeter (𝑠𝑡𝑑_𝑐𝑜𝑛𝑡𝑜𝑢𝑟_𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟): Dispersion in the perimeter lengths. 

g. Mean area-to-perimeter ratio (𝑚𝑒𝑎𝑛_𝑎𝑟𝑒𝑎_𝑡𝑜_𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟_𝑟𝑎𝑡𝑖𝑜): A shape descriptor capturing object 

compactness. 

h. Fractal dimension: A complexity measure that quantifies the self-similarity or irregularity of the object's 

shape. 

Figure 4 displays the progression of box-counting across three dimensions (𝐷 = 1, 𝐷 = 2, and  

𝐷 = 3) over three iteration levels (𝑙 = 1, 𝑙 = 2, and 𝑙 = 3). In the first column (𝐷 = 1), one-dimensional 

objects are represented as line segments. At iteration level 𝑙 = 1, there is a single unit line segment with  

𝑁 = 1. When subdivided at 𝑙 = 2, the line comprises 𝑁 = 2 segments, and at 𝑙 = 3, 𝑁 increases to 3 

segments, demonstrating a linear relationship where 𝑁 = 𝑙. The second column (𝐷 = 2) depicts square grids 

in two dimensions. At 𝑙 = 1, the square consists of 𝑁 = 1 unit. This grows to 𝑁 = 4 units at 𝑙 = 2, forming a 

2 × 2 grid, and to 𝑁 = 9 units at 𝑙 = 3, resulting in a 3 × 3 grid. This scaling follows the relationship  

𝑁 = 𝑙². In the third column (𝐷 = 3), three-dimensional cubic structures are illustrated. At 𝑙 = 1, there is a 

single cube (𝑁 = 1). This count increases to 𝑁 = 8 cubes at 𝑙 = 2, forming a 2 × 2 × 2 configuration, and 

reaches 𝑁 = 27 cubes at 𝑙 = 3 with a 3 × 3 × 3 configuration. The scaling here follows the formula 𝑁 = 𝑙³. 

This visualization effectively demonstrates the general scaling law 𝑁 = 𝑙𝐷, which serves as the mathematical 

basis for calculating fractal dimensions using the box-counting method. 
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Figure 4. The traditional representation of geometry in measurements and scale determination 

 

 

The power-law relationship between the number of units and the measurement scale is what sets 

apart objects of varying dimensionalities and forms the foundation for assessing non-integer fractal 

dimensions in intricate natural structures. Each of these characteristics corresponds to a feature column in the 

dataset, representing numerical values that describe an individual image in vector form. These features are 

critical inputs for classification models, enabling the system to distinguish between image categories based 

on structural, geometric, and textural patterns. 

After identifying informative features, each feature is normalized in the range from 0 to 1 according 

to formula (10) [37]: 

 

𝐼𝑖,𝑗
𝑛𝑜𝑟𝑚𝑎𝑙 =

𝐼𝑖,𝑗−𝐼𝑖,𝑗
𝑚𝑖𝑛

𝐼𝑖,𝑗
𝑚𝑎𝑥−𝐼𝑖,𝑗

𝑚𝑖𝑛 (10) 

 

were, 𝐼𝑖,𝑗
𝑛𝑜𝑟𝑚𝑎𝑙 is normalized values, 𝐼𝑖,𝑗 is input values in the column, 𝐼𝑖,𝑗

𝑚𝑎𝑥, 𝐼𝑖,
𝑚𝑖𝑛 minimum and maximum 

values of the column. By applying this transformation, all feature vectors are scaled uniformly, ensuring that 

no single feature disproportionately influences the learning process. This step is essential for maintaining 

model robustness and optimizing classification performance in high-dimensional image datasets. 

 

2.4.  Support vector machine [9] 

In this study, the support vector machine (SVM) algorithm was employed for the classification of 

features extracted from images. This machine learning technique was selected due to its high effectiveness in 

scenarios involving limited training data and its strong generalization capability across diverse datasets. At 

the initial stage of the classification pipeline, key informative features were extracted from the input images 

using a combination of ORB feature detection and fractal dimension analysis. These features encapsulated 

both geometric and textural properties of the target objects. The resulting feature vectors were subsequently 

normalized, as outlined in section 2.3, and served as input to the SVM classifier. 

SVM is a well-established supervised learning algorithm particularly suited for binary classification 

tasks. The core idea behind SVM is the identification of an optimal separating hyperplane within the feature 

space that maximizes the margin between data points belonging to different classes. This margin 

maximization strategy contributes significantly to the model's generalization performance. The SVM 

operates through the following sequence of steps, enabling effective classification of images based on the 

extracted features: 

 

2.4.1. Linear support vector machine 

Given a labeled training dataset: 

 

{(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,2, … , 𝑛, 𝑥𝑖𝜖ℝ𝑑 , 𝑦𝑖𝜖{−1, +1} (10) 
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where 𝑥𝑖 is a feature vector extracted from an image and 𝑦𝑖  is the corresponding class label, SVM seeks to 

find the optimal separating hyperplane, 𝑛 is number of training examples [38]. 

The goal of SVM is to find a hyperplane: 

 

𝑤𝑇𝑥 + 𝑏 = 0 (11) 
 

that maximizes the margin between the two classes. The optimization problem is formulated as: 
 

min
𝑤,𝑏

1

2
‖𝑤‖2 (12) 

 

subject to the constraint: 
 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1,⩝ 𝑖 (13) 
 

This ensures that all data points are correctly classified with a margin of at least 1. Figure 5 illustration of a 

linear SVM. The decision boundary separates two data classes and is placed midway between the nearest 

data points (support vectors). Dashed lines indicate the maximum margin. 

 

 

 
 

Figure 5. Two-dimensional scatter plot with a linear separating hyperplane of the SVM 

 

 

2.4.2. Soft margin SVM 

In real-world scenarios, perfect separation may not be possible. Therefore, slack variables ɛ𝒊 ≥ 0 are 

introduced to allow some misclassification. The modified optimization problem becomes [39]: 
 

min
𝑤,𝑏

1

2
‖𝑤‖2 + 𝐶 ∑ ɛ𝒊

𝑛
𝑖=1  (14) 

 

subject to: 
 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − ɛ𝒊, ɛ𝒊 ≥ 0 (15) 
 

where 𝐶 > 0 is a regularization parameter that controls the trade-off between maximizing the margin and 

minimizing classification errors. Figure 6 two-dimensional plot illustrating the soft margin SVM, where 

some data points are allowed within or beyond the margin boundaries. 

 

 

 
 

Figure 6. Two-dimensional plot of the support vector machine with a soft margin (soft margin SVM) 
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2.4.3. Non-linear SVM and kernel trick  

When the data is not linearly separable in the original space, a non-linear mapping ɸ(𝑥) is applied 

to project the data into a higher-dimensional feature space where linear separation may be possible. This is 

efficiently implemented using a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) defined as [40]: 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = ɸ(𝑥𝑖)
𝑇ɸ(𝑥𝑗) (16) 

 

Common kernel functions include: 

− Linear kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

− Polynomial kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 𝑐)

𝑑
 

− Radial basis function (RBF) kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) 

In this study, the RBF kernel was used due to its ability to handle non-linear feature distributions typical in 

agricultural image data. Figure 7 visualization of a non-linear SVM using the kernel trick to project data into 

a higher-dimensional space for linear separation. 

 

 

 
 

Figure 7. Visualization of a non-linear SVM and the application of the Kernel trick 

 

 

2.4.4. Decision function 

The final decision function used for classification is defined as: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑛
𝑖=1 ) (17) 

 

where 𝛼𝑖 are Lagrange multipliers determined during the training phase, and 𝐾(𝑥𝑖 , 𝑥) computes the similarity 

between the support vectors and the test input. 

The extracted features from the agricultural images—capturing texture, geometric structure, and 

keypoint-based descriptors—were used to train an SVM model with an RBF kernel. The model parameters 𝐶 

and 𝛾 were optimized using k-fold cross-validation to prevent overfitting and ensure generalization. The 

SVM classifier demonstrated high accuracy and robustness in distinguishing between different image 

categories based on the informative features. Figure 8 visualization of the SVM decision function and the 

margin boundaries defined by 𝑓(𝑥) = ±1. 

 

 

 
 

Figure 8. SVM decision function and margin boundaries 
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2.5.  Evaluation metrics 

To quantitatively assess the performance of the proposed image classification approach, several 

standard evaluation metrics were employed. These metrics provide insight into both the overall accuracy and 

the reliability of the classifier across different categories. 

a. Accuracy 

Accuracy is the proportion of correctly classified instances among the total number of samples. It is 

defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (18) 

 

where 𝑇𝑃 (True Positives): Number of correctly classified positive samples, 𝑇𝑁 (True Negatives): Number 

of correctly classified negative samples, 𝐹𝑃 (False Positives): Number of negative samples incorrectly 

classified as positive, 𝐹𝑁 (False Negatives): Number of positive samples incorrectly classified as negative. In 

this study, the SVM classifier achieved high accuracy in the test dataset, demonstrating high performance in 

distinguishing image classes based on the extracted informative features. 

b. Precision, Recall, and F1-Score 

In addition to accuracy, the following metrics were calculated: 

− Precision: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19) 

 

Measures the proportion of positive identifications that were actually correct. 

− Recall (Sensitivity) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (20) 

 

Measures the proportion of actual positives that were correctly identified. 

− F1-Score 

 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (21) 

 

Provides a harmonic mean of precision and recall, especially useful in imbalanced datasets. 

c. Cross-validation 

To ensure generalizability and avoid overfitting, k-fold cross-validation was performed with 𝑘 = 5. 

The model maintained stable performance across all folds, indicating its robustness on unseen data. 

 

 

3. RESULTS 

Using the above methods, the results of the study will be as follows. It can be used in several fields, 

such as remote sensing of the Earth, early detection of diseases by tomato leaves - this, in turn, is a fast and 

effective result achieved using machine learning. To derive meaningful fractal characteristics from leaf 

images, a detailed preprocessing and feature extraction pipeline is essential. This multi-step approach 

processes raw leaf images into precise geometric metrics, which can be utilized for species identification and 

classification.  

Figure 9 outlines the entire workflow for extracting informative features and conducting fractal 

analysis on a leaf sample. The process starts with Figure 9(a), where a contrast-enhanced binary image 

isolates the leaf structure from the background, providing a distinct silhouette for further examination. In 

Figure 9(b), the turn contours representation is displayed, highlighting the traced leaf boundary with key 

directional changes marked by blue, yellow, and red points connected by lines to emphasize significant 

geometric properties along the edge. Figure 9(c) demonstrates the calculation of the mean contour area 

through a vector-based overlay that accounts for the average spatial distribution of boundary features. 

Similarly, Figure 9(d) quantifies the standard deviation of the contour area, capturing variability in boundary 

complexity across different parts of the leaf and using a comparable vector notation. The process continues 

with Figure 9(e), which features the mean contour perimeter measurement, where vectors map characteristic 

distances along the leaf’s edge. In Figure 9(f), the standard deviation of the contour perimeter highlights 

variations in boundary length across different regions, with denser vector clusters pinpointing areas of high 

geometric complexity, such as serrated edges. Figure 9(g) showcases the mean area-to-perimeter ratio—a 
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dimensionless metric indicating compactness and irregularity of boundary segments—through spatially 

distributed measurement vectors. Lastly, Figure 9(h) demonstrates fractal dimension analysis using the box-

counting method. Seven iterations with progressively finer grid resolutions (box sizes from 2 to 128 pixels) 

are presented, illustrating a shift from coarse red grids to fine grayscale grids. Each iteration captures 

increasingly detailed boundary features, with count values displayed above each grid (ranging from 7 to 311). 

These values represent a power-law scaling relationship, enabling the computation of the fractal dimension. 

 

 

   
(a) 

 

   
(b) (c) (d) 

 

   
(e) (f) (g) 

 

 
(h) 

 

Figure 9. Informative signs, (a) contrast, (b) num_contours, (c) mean_contour_area, (d) std_contour_area, 

(e) mean_contour_perimeter, (f) std_contour_perimeter, (g) mean_area_to_perimeter_ratio,  

(g) mean_area_to_perimeter_ratio, and (h) fractal_dimension (box-counting) 

 

 

This detailed feature extraction method delivers a variety of complementary geometric descriptors 

that, when integrated, form a reliable signature for identifying leaves. Notably, the fractal dimension 

measurement provides a scale-invariant representation of boundary complexity, maintaining consistency 

regardless of changes in viewing distances or image resolutions. 
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Figure 10 outlines the visualization pipeline used to emphasize key informative features of a leaf 

specimen. In the left panel, the original image captures a green leaf set against a neutral gray backdrop, 

showcasing its venation patterns and serrated edges with clarity. Moving to the middle panel, the application 

of Canny edge detection transforms the leaf into a binary edge map. This step effectively highlights the 

complete boundary outline and internal vein structures as white lines on a black background, isolating the 

geometric framework of the leaf. Lastly, the right panel displays the results of ORB keypoints detection, 

where prominent features are marked on the original image using bright green circles and markers. These 

keypoints are predominantly located around the serrated edges of the leaf and at intersection points within the 

venation network, identifying areas of notable geometric intricacy and structural uniqueness. Their spatial 

arrangement emphasizes that the most significant features arise at points of pronounced curvature changes 

and texture variation, rather than in the more uniform central regions of the leaf. 

 

 

 

 
 

Figure 10. Visualization that highlights informative features 

 

 

These capabilities allow images to be assessed in terms of their texture, structure, geometric 

characteristics, and fractal complexity. The resulting data can be used to analyze, classify, or identify patterns 

in images. Let's consider the results of image research, which are used in several fields when highlighting 

informative features of an object in an image. A quick and effective result can be obtained with early 

detection of the disease through tomato leaves. Let's add the above image to the vector representation in the 

table to facilitate calculations. It can be seen that Table 1 highlights the feature without normalization, and 

Table 2 highlights it after normalization. 

Remote sensing is a method of obtaining information about the Earth's surface and its changes using 

instruments mounted on satellites, airplanes, or unmanned aerial vehicles. This process involves taking 
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images and measuring various characteristics of the Earth's surface-such as terrain, vegetation, temperature, 

humidity, and other parameters-without direct physical contact with the object being observed. Remote 

sensing data is widely used in fields such as agriculture, environmental monitoring, cartography, geology, 

natural resource management, and emergency response. 

The feature extraction methodology, while predominantly demonstrated using botanical specimens, 

exhibits a versatile application across various domains, including geospatial and remote sensing analysis. The 

computational techniques, particularly edge detection and keypoint extraction algorithms, prove efficacious 

for examining intricate natural patterns at diverse spatial scales, spanning from microscopic leaf structures to 

extensive terrain configurations. 

 

 

Table 1. Table in the form of vectors before normalization 
Classes contrast num_conto

urs 

mean_contour

_area 

std_contour_ 

area 

mean_contour

_perimeter 

std_contour_pe

rimeter 

mean_area_to_ 

perimeter_ratio 

fractal_dimen

sion 

Healthy 37.365882475

04914 

745 41.673154362

416106 

1096.158809

5661043 

8.330579827

295853 

83.116454927

42072 

0.069898376262

9732 

1.9015853296

688576 

Healthy 49.927715119

28245 

75 799.96 6858.562852

25994 

45.57271534

12501 

309.37147289

112323 

0.387901362635

4471 

1.9007252278

148954 
Healthy 44.800203163

762916 

1070 31.042523364

48598 

921.8226545

107976 

11.55998361

277803 

133.91557719

418205 

0.052316928614

51514 

1.9556830542

139174 

Healthy 35.329407806

03492 

1242 26.270128824

47665 

897.8260553

703684 

6.992370426

366871 

103.71063206

434167 

0.032662478234

222254 

1.9420276684

554578 

Healthy 36.331917022

94344 

1291 25.538729666

924866 

884.1931264

970506 

6.707476758

938442 

91.272370811

40451 

0.031870865753

74872 

1.9437245964

225456 

Healthy 51.038177014

839626 

830 37.859638554

216865 

1050.186030

793863 

10.27192246

1239688 

145.63491861

360953 

0.047664516223

8748 

1.9190272444

42953 
Healthy 51.806849264

93237 

507 61.188362919

13215 

1344.055329

3395762 

11.74123455

2460545 

125.64160858

519503 

0.058907243655

364615 

1.8830814944

139642 

Healthy 38.437593501

32606 

1107 28.365853658

536587 

907.8612297

55167 

6.858337591

118714 

73.441080533

26875 

0.040485004800

98933 

1.9260870754

634025 

Healthy 39.368361543

602774 

1240 25.129838709

67742 

848.3892383

064318 

6.508126003

223081 

76.177331564

44132 

0.038053655871

191874 

1.9306454133

277848 

Healthy 38.427830200

702935 

1107 28.365853658

536587 

907.8612297

55167 

6.858337591

118714 

73.441080533

26875 

0.040485004800

98933 

1.9260870754

634025 
First stage 39.273999725

351175 

1151 27.804083405

734143 

901.1011957

386394 

6.915189238

344452 

71.410153756

71913 

0.039857619859

78902 

1.9322419918

797769 

First stage 52.574191866

971965 

746 40.354557640

75067 

1048.168157

5750595 

12.17192235

8846537 

159.29330957

984564 

0.055207835424

36158 

1.9124510072

460874 

First stage 57.724040606

86768 

134 199.17910447

761193 

2290.542996

3049346 

26.64659788

8042677 

252.77808826

862093 

0.096436608361

05468 

1.8154330077

924903 

First stage 44.605436260
083 

1061 30.922714420
35815 

913.9804572
898736 

11.99331322
8263819 

151.25996205
132623 

0.052012221871
901104 

1.9560939503
145802 

First stage 36.850640038

076165 

925 35.019459459

45946 

875.3959500

426417 

13.16857907

900939 

73.773105269

1163 

0.097102098866

63952 

1.9482650268

0254 

First stage 38.087304850

55974 

919 34.727965179

542984 

860.3282270

824276 

14.26350399

4075206 

88.300246560

40648 

0.089033445673

67813 

1.9497392751

0281 

First stage 36.850228013

990964 

925 35.019459459

45946 

875.3959500

426417 

13.16857907

900939 

73.773105269

1163 

0.097102098866

63952 

1.9482650268

0254 

First stage 37.981698385
328215 

881 36.147559591
37344 

887.8118660
809864 

14.58813381
1409438 

93.496715143
38834 

0.093238970979
92496 

1.9499467056
614945 

First stage 48.927130475

00953 

124 206.52822580

645162 

2274.736007

6380814 

16.74269818

8750975 

127.89865018

772072 

0.199076223730

69814 

1.7870345881

590417 

First stage 37.341197460

46685 

1443 24.197158697

1587 

867.3857943

19548 

8.667020413

417909 

101.71834110

152199 

0.042667114635

731494 

1.9709397658

466221 

Second stage 39.105916852

80323 

1377 25.344952795

93319 

887.9329218

727079 

9.792837373

571459 

127.36523494

747124 

0.041119528492

179015 

1.9731529065

387348 
Second stage 38.883401942

783486 

1438 23.944367176

634213 

855.7981179

409844 

9.049501862

1645 

100.33991615

395894 

0.043926147823

58721 

1.9714532246

356589 

Second stage 57.751775260

08782 

678 51.416666666

666664 

1247.227874

8259562 

15.82244071

3556116 

180.83996105

724125 

0.059434476041

207156 

1.9388854743

964816 

Second stage 38.723336976

75324 

214 165.38317757

009347 

2375.864990

617573 

26.32458263

802751 

247.41023763

390655 

0.101063525668

38821 

1.8891355810

648385 

Second stage 61.990945474

076625 

405 94.475308641

9753 

1872.799461

4606037 

18.66859204

5630938 

261.19016418

05129 

0.058761544720

15027 

1.9252923799

446915 
Second stage 48.828609021

30554 

480 76.351041666

66666 

1633.104460

3246444 

16.81595203

4294604 

208.06915011

468107 

0.072378797423

22235 

1.9268975575

27838 

Second stage 49.659731961

609914 

464 78.337284482

75862 

1630.156895

9190565 

18.12171400

1071865 

196.44569501

262737 

0.079360119212

40371 

1.9275725718

87288 

Second stage 64.782108384

93861 

200 178.595 2496.776985

1300295 

21.18620608

7470055 

245.21243202

87682 

0.098907925595

67718 

1.8911743632

205258 

Second stage 65.308792970

94319 

132 246.93560606

060606 

2803.693101

8053665 

25.01716114

354856 

211.53595109

977022 

0.173533073466

32676 

1.8533187558

839517 
Second stage 38.336558774

60931 

1092 32.548534798

534796 

1038.256717

694864 

8.528816192

46888 

116.44484812

521401 

0.046228123066

102245 

1.9526010944

058116 
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Table 2. Table in the form of vectors after normalization 
Classes contrast num_cont

ours 

mean_contour_

area 

std_contour

_area 

mean_contour

_perimeter 

std_contour

_perimeter 

mean_area_to_

perimeter_ratio 

fractal_dime

nsion 

Healthy 0.52 0.002 0.019 0.022 0.214 0.002 0.794 0.52 

Healthy 0.319 0.005 0.042 0.046 0.326 0.004 0.754 0.319 

Healthy 0.267 0.006 0.049 0.032 0.161 0.015 0.701 0.267 
Healthy 0.246 0.007 0.052 0.036 0.164 0.016 0.703 0.246 

Healthy 0.576 0.002 0.019 0.022 0.218 0.001 0.861 0.576 

Healthy 0.349 0.005 0.037 0.038 0.203 0.006 0.777 0.349 
Healthy 0.075 0.046 0.231 0.091 0.441 0.021 0.91 0.075 

Healthy 0.75 0.001 0.012 0.018 0.126 0.002 0.943 0.75 

Healthy 0.118 0.016 0.084 0.104 0.537 0.009 0.5 0.118 
Healthy 0.809 0.001 0.009 0.019 0.157 0.002 0.977 0.809 

First stage 0.322 0.005 0.046 0.036 0.3 0.006 0.781 0.322 

First stage 0.516 0.002 0.012 0.02 0.043 0.006 0.687 0.516 
First stage 0.317 0.005 0.041 0.051 0.358 0.005 0.762 0.317 

First stage 0.484 0.002 0.013 0.027 0.108 0.005 0.698 0.484 

First stage 0.228 0.007 0.042 0.053 0.277 0.009 0.56 0.228 
First stage 0.532 0.002 0.023 0.016 0.157 0.003 0.782 0.532 

First stage 0.553 0.002 0.016 0.016 0.211 0.001 0.72 0.553 

First stage 0.929 0.0 0.0 0.018 0.115 0.002 0.941 0.929 
First stage 0.062 0.028 0.116 0.091 0.353 0.023 0.257 0.062 

First stage 1.0 0.0 0.0 0.008 0.047 0.0 0.891 1.0 

Second stage 0.981 0.0 0.001 0.009 0.058 0.001 0.902 0.981 
Second stage 0.71 0.001 0.013 0.029 0.146 0.003 1.0 0.71 

Second stage 0.762 0.001 0.008 0.027 0.167 0.002 0.984 0.762 

Second stage 0.319 0.005 0.042 0.046 0.326 0.004 0.754 0.319 
Second stage 0.406 0.004 0.037 0.047 0.343 0.005 0.92 0.406 

Second stage 0.252 0.006 0.034 0.065 0.326 0.011 0.655 0.252 

Second stage 0.105 0.031 0.18 0.122 0.552 0.015 0.936 0.105 
Second stage 0.075 0.045 0.227 0.124 0.557 0.02 0.951 0.075 

Second stage 0.283 0.005 0.016 0.053 0.211 0.009 0.669 0.283 

Second stage 0.828 0.001 0.006 0.01 0.017 0.002 0.84 0.828 

 

 

Figure 11 exemplifies the utilization of the feature extraction pipeline on an earth remote sensing 

image obtained via satellite. In the leftmost panel, the original image showcases a meandering river system 

characterized by sinuous curves traversing heterogeneous terrain such as forested areas (denoted by green-

brown regions) and water bodies (depicted in blue). This imagery, sourced via Google Earth, serves as a 

practical case study to assess the robustness of geometric feature extraction algorithms in identifying natural 

fractal patterns. The middle panel illustrates the application of the Canny edge detection technique, 

effectively delineating the complex boundaries of the river and surrounding terrain features with white edge 

outlines against a black background. This outcome highlights the algorithm's capability in tracing the river's 

intricate meanders and branching patterns, embodying the self-similar characteristics typical of natural 

waterways.  

In the rightmost panel, ORB keypoints detection is represented through bright green markers 

superimposed on the original satellite image. These markers are predominantly concentrated along the river's 

course and at branching intersections, pinpointing areas of elevated geometric complexity where structural 

curvature and directional variations are most prominent. Such findings underscore the efficacy of feature 

extraction methodologies in providing nuanced insights into the spatial organization of natural systems. 

 

 

 
 

Figure 11. Earth remote sensing image 
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In Table 3, the selection of features is carried out without normalization, whereas Table 4 shows the 

results after normalization of the data. The results obtained during the study represent an important stage, 

given the importance of the informative features of the image. They contribute to achieving high 

classification accuracy while reducing the time spent on its implementation. 

 

 

Table 3. Table in the form of vectors before normalization 
Classes contrast num_co

ntours 
mean_contour

_area 
std_contour_

area 
mean_conto
ur_perimeter 

std_contour_
perimeter 

mean_area_to_ 
perimeter_ratio 

fractal_dime
nsion 

River 41.579241

258787164 

356 92.676966292

13484 

1725.514929

536606 

13.39729790

774624 

178.9384372

1429133 

0.06561092475

978911 

1.88423111

0988124 

River 56.344880
469028105 

424 76.067216981
13208 

1391.398560
7287061 

10.50240280
3526735 

109.8762436
9138233 

0.06799473008
265143 

1.88283169
1810061 

River 34.451080

17051144 

807 44.351920693

92813 

1231.001382

376676 

6.159621827

368991 

88.92491196

611734 

0.04467432071

4744475 

1.92204599

38532337 
River 23.756907

041875834 

106 365.11792452

83019 

3690.835168

149927 

28.61598781

369767 

217.1344290

5071608 

0.30046454816

201057 

1.87626306

51870513 

River 48.836862
005475844 

1129 27.232506643
046943 

856.3461536
745542 

6.107549364
319726 

71.96252663
718285 

0.03404462077
599574 

1.92102219
67360916 

River 29.892062

869046782 

191 167.53403141

361255 

2271.712281

2170646 

17.43102739

8059506 

165.1211445

7696077 

0.14271972660

807225 

1.86435394

48644586 
River 63.549698

62628099 

814 36.417076167

07617 

948.3267863

328883 

8.709786703

7506 

72.60089266

187208 

0.06080565082

6632286 

1.90654759

45763684 

River 44.897363
58550866 

930 36.429569892
47312 

1068.867869
6301859 

9.070762598
770921 

122.8510200
688499 

0.04773615862
623374 

1.93100376
7361902 

River 49.143693

35632184 

964 30.929979253

112034 

868.0745702

807158 

9.514807352

139247 

94.42718911

101834 

0.05300327151

522794 

1.92375683

89445021 
River 27.901166

235867635 

275 119.41636363

636364 

1915.860158

6625298 

12.28654299

4325812 

89.94536370

12741 

0.16882338988

968654 

1.87200694

81494108 

Hiгhway 24.297871
127189143 

382 97.098167539
26701 

1881.065521
1725839 

12.62681988
1469167 

171.7896730
3188227 

0.08045482259
770706 

1.90285743
53750936 

Hiгhway 30.175713

281400608 

514 62.595330739

29961 

1400.208319

220948 

10.48518162

2700004 

157.0159388

289095 

0.05910165107

639241 

1.89472556

65501204 
Hiгhway 20.757009

600171084 

113 301.48230088

495575 

3140.885321

2838976 

26.21504213

0082054 

182.8915980

2793318 

0.32160021440

524045 

1.86375935

05343975 

Hiгhway 54.922013
71141501 

604 52.011589403
97351 

1223.344301
3587835 

9.621697483
473266 

142.0082352
7656254 

0.04014155482
530131 

1.89897184
56210611 

Hiгhway 59.447483

75742923 

553 55.531645569

62025 

1080.829686

994994 

12.60104258

0647666 

102.9990607

9962143 

0.07953180842

282428 

1.89902126

78125535 
Hiгhway 43.010927

24014021 

458 70.151746724

89083 

1362.974156

671575 

17.10592951

5507544 

183.2987638

2125718 

0.09104375200

685441 

1.90759656

24867124 

Hiгhway 63.939397
578341016 

384 85.2109375 1312.688667
4061832 

17.43903036
9122822 

135.7155945
2354566 

0.10704124585
914597 

1.89701328
33897535 

Hiгhway 45.740507

14140135 

76 277.89473684

210526 

2377.237781

372075 

28.24101323

0461824 

186.3268409

792821 

0.24690430716

452835 

1.75633957

81215114 
Hiгhway 57.477367

984442445 

651 48.653609831

029186 

1058.520620

5867694 

9.034160144

134967 

91.66209372

75507 

0.06539159168

850626 

1.90109159

64546966 
Hiгhway 25.990904

866471766 

423 76.812056737

58865 

1526.210201

3626838 

11.29450880

7484421 

128.5072022

4618917 

0.06775797271

339992 

1.88046408

2498345 

AnnualCrop 23.521178
89312911 

839 38.318831942
78903 

1084.776478
4961537 

6.205419281
952714 

82.99917113
90823 

0.05463990302
945312 

1.90453545
63684471 

AnnualCrop 42.235088

76458446 

1 10827.5 0.0 866.5067014

694214 

0.0 12.4955756044

80305 

1.60836616

7279685 

AnnualCrop 43.405379

01230686 

282 117.49290780

141844 

1921.273724

2136936 

15.72740921

6106361 

152.9717181

5593236 

0.10934435175

738975 

1.87612119

6082828 

AnnualCrop 41.187467
7539537 

499 63.951903807
61523 

1365.094325
2115703 

12.49303617
744981 

140.6187668
7049383 

0.08226881618
9977 

1.89872287
9604376 

AnnualCrop 28.531614

93114735 

554 57.234657039

711195 

1302.641542

5040664 

9.952087561

576375 

122.3557550

9524085 

0.06123971034

688353 

1.89153337

0851744 
AnnualCrop 29.794017

77726525 

297 120.04882154

882155 

2031.679662

0776508 

14.58836573

3824194 

136.3387540

2526002 

0.11259615364

77045 

1.87596251

82737625 

AnnualCrop 25.004273
458250772 

210 154.88809523
809525 

2214.233396
439024 

16.01344622
032983 

164.5120770
230593 

0.13595647763
877985 

1.86602967
01012185 

AnnualCrop 44.203035

70389019 

908 35.161894273

12775 

995.8026433

018665 

7.523445194

513262 

71.12345634

409719 

0.04682321850

412369 

1.91632892

2102328 
AnnualCrop 21.493743

46913745 

264 130.62310606

060606 

2081.509554

066629 

12.15476589

9434235 

129.9488010

4072072 

0.12477175164

04765 

1.87879104

11441144 

AnnualCrop 51.116627
796838806 

904 34.133296460
17699 

844.2598369
11002 

9.375726742
02708 

80.34545780
024825 

0.05932462245
757251 

1.92002631
47467795 
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Table 4. The table in the form of vectors after normalization 
Classes contrast num_cont

ours 

mean_conto

ur_area 

std_contour_

area 

mean_contour

_perimeter 

std_contour_ 

perimeter 

mean_area_to_

perimeter_ratio 

fractal_dime

nsion 

River 0.448 0.297 0.001 0.053 0.008 0.32 0.001 0.739 

River 0.755 0.354 0.001 0.043 0.005 0.197 0.001 0.736 

River 0.3 0.675 0.0 0.038 0.001 0.159 0.0 0.825 
River 0.078 0.088 0.005 0.114 0.023 0.389 0.004 0.722 

River 0.599 0.945 0.0 0.026 0.001 0.129 0.0 0.822 

River 0.205 0.159 0.002 0.07 0.012 0.296 0.002 0.695 
River 0.905 0.681 0.0 0.029 0.003 0.13 0.001 0.79 

River 0.517 0.778 0.0 0.033 0.004 0.22 0.0 0.845 

River 0.605 0.807 0.0 0.027 0.004 0.169 0.0 0.829 
River 0.164 0.229 0.001 0.059 0.007 0.161 0.002 0.712 

Hiгhway 0.089 0.319 0.001 0.058 0.007 0.308 0.001 0.781 

Hiгhway 0.211 0.43 0.001 0.043 0.005 0.281 0.0 0.763 
Hiгhway 0.015 0.094 0.004 0.097 0.021 0.328 0.005 0.693 

Hiгhway 0.725 0.505 0.0 0.038 0.004 0.254 0.0 0.773 

Hiгhway 0.82 0.462 0.0 0.033 0.007 0.184 0.001 0.773 
Hiгhway 0.478 0.383 0.001 0.042 0.012 0.328 0.001 0.792 

Hiгhway 0.913 0.321 0.001 0.04 0.012 0.243 0.001 0.768 

Hiгhway 0.535 0.063 0.004 0.073 0.023 0.334 0.003 0.451 
Hiгhway 0.779 0.544 0.0 0.033 0.004 0.164 0.001 0.777 

Hiгhway 0.124 0.353 0.001 0.047 0.006 0.23 0.001 0.731 

AnnualCrop 0.073 0.702 0.0 0.033 0.001 0.149 0.0 0.785 
AnnualCrop 0.462 0.0 0.166 0.0 0.849 0.0 0.196 0.118 

AnnualCrop 0.486 0.235 0.001 0.059 0.01 0.274 0.001 0.721 

AnnualCrop 0.44 0.417 0.001 0.042 0.007 0.252 0.001 0.772 
AnnualCrop 0.177 0.463 0.0 0.04 0.005 0.219 0.001 0.756 

AnnualCrop 0.203 0.248 0.001 0.063 0.009 0.244 0.001 0.721 

AnnualCrop 0.103 0.175 0.002 0.068 0.011 0.295 0.002 0.698 
AnnualCrop 0.503 0.76 0.0 0.031 0.002 0.127 0.0 0.812 

AnnualCrop 0.03 0.22 0.002 0.064 0.007 0.233 0.002 0.727 

AnnualCrop 0.646 0.756 0.0 0.026 0.004 0.144 0.0 0.82 

 
 

Using the informative features of this training sample, we train the SVM algorithm: 

a. Illustration of a linear SVM: two groups of points (class −1 in blue and class +1 in red) are separated by 

a decision boundary. The dashed lines represent the margin boundaries 𝑓(𝑥) = ±1. The circled points are 

the support vectors that define the position of the hyperplane and the width of the margin. Figure 12 

Illustration of a linear SVM: two-point classes (−1: blue, +1: red) are separated by a linear decision 

boundary. Dashed lines represent the margins 𝑓(𝑥) = ±1, and circled support vectors determine the 

hyperplane and its margin width. 

b. Illustration of SVM with an RBF kernel: two groups of points (class −1 in blue and class +1 in red) are 

separated by a non-linear decision boundary. The shaded regions indicate the classification areas, and the 

black-outlined circles represent the support vectors that define the shape of the boundary. The RBF kernel 

function provides an implicit mapping of features into a higher-dimensional space where the classes 

become separable. 

 
 

 
 

Figure 12. SVM (Linear kernel) with margin equations 
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Figure 13 shows the SVM with an RBF kernel. Two classes of points (−1: blue, +1: red) are 

separated by a non-linear decision boundary. Shaded regions represent classification zones, while black-

circled points indicate the support vectors that define the shape of the boundary. The RBF kernel enables 

implicit feature mapping into a higher-dimensional space where the classes become linearly separable. 

 

 

 
 

Figure 13. Non-linear SVM classification with RBF kernel 

 

 

To assess the performance of the classification model, a confusion matrix is utilized to provide a 

comprehensive analysis of prediction accuracy across all classes. This tool not only highlights the overall 

accuracy but also uncovers specific misclassification patterns that can guide improvements to the model. 

Figure 14 illustrates the confusion matrix for the results of the multi-class classification task. The matrix is 

structured with actual class labels (0 to 4) along the vertical axis and predicted class labels on the horizontal 

axis. Each cell indicates the sample count, where diagonal cells represent correct classifications, and off-

diagonal cells signify errors. The color gradient, ranging from white (indicating zero counts) to dark blue 

(representing higher counts), offers an intuitive visual representation of classification performance. 

 

 

 
 

Figure 14. Confusion matrix 

 

 

Class 0 demonstrates outstanding accuracy, with 162 correctly classified samples and only one 

misclassified as class 2. Class 1 performs well, achieving 89 correct predictions, though 3 instances were 

incorrectly assigned to class 2. Class 2 shows solid results with 101 correct classifications, but some 

challenges are evident—8 samples were misclassified as class 1, 1 as class 3, and 2 as class 4. For class 3,  

69 instances were accurately classified; however, there is significant misclassification with 14 samples 
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confused with class 4, alongside a smaller number of errors spread across classes 0, 1, and 2. Finally, class 4 

shows the strongest performance, recording 193 correct predictions with minimal errors—4 samples 

misclassified as class 2 and 8 as class 3. 

The experimental evaluation demonstrated that the proposed approach achieved a classification 

accuracy of 93% with a loss value of 0.07. These results confirm the effectiveness of the applied feature 

extraction methods combined with the SVM classifier, ensuring both high precision and stability. Such 

performance highlights the practical applicability of the method for solving real-world image analysis tasks, 

particularly in the agricultural domain. 

Beyond the visualization of the confusion matrix, a detailed classification report offers essential 

performance metrics for each class, enabling a quantitative evaluation of the model’s strengths and 

weaknesses across various criteria. The classification report associated with Figure 15 provides precision, 

recall, F1-score, and support values for all five classes (0 through 4). 

For Class 0, the performance is outstanding, with precision, recall, and F1-score all at 0.99 across 

163 samples. This indicates near-perfect classification with negligible false positives or false negatives. Class 

1 exhibits solid results as well, achieving a precision of 0.88 and a recall of 0.97, culminating in an F1-score 

of 0.92 over 92 samples. While overall strong, this class displays slightly more false positive predictions. 

Class 2 delivers balanced performance, reporting a precision of 0.93, a recall of 0.89, and an F1-

score of 0.91 for its 113 samples, reflecting relatively equal rates of false positives and false negatives. 

Conversely, Class 3 fares the weakest, with its precision at 0.88, recall at 0.78, and F1-score at 0.83 across 88 

samples. These figures indicate that Class 3 is the most challenging for the model to classify correctly, facing 

higher confusion with other classes. In contrast, Class 4 demonstrates strong performance consistency, with 

precision at 0.92, recall at 0.94, and an F1-score of 0.93 across 205 samples, the largest subset, highlighting 

reliable performance. 

When evaluating the overall model performance, an accuracy of 0.93 is achieved over all 661 

samples. The macro average—representing unweighted mean scores across all classes—reports precision, 

recall, and F1-score values of 0.92 each. Meanwhile, the weighted average—which accounts for class 

imbalances—shows slightly higher values of 0.93 for precision, recall, and F1-score. The improved results in 

the weighted average suggest that the model performs particularly well on classes with larger sample sizes. 

 

 

 
 

Figure 15. Classification report 

 

 

The relationship between model accuracy and loss offers valuable insights into the trade-off 

between classification performance and prediction confidence. Visualizing these two complementary metrics 

together allows a better evaluation of whether the model has achieved an optimal balance between accurate 

predictions and minimal error. 

Figure 16 presents model accuracy and loss as interconnected metrics. The horizontal axis is divided 

into two evaluation criteria: "Accuracy" on the left and "Loss" on the right, while the vertical axis represents 

metric values, ranging from 0.0 to 1.0. The blue line links the two points, starting at an accuracy value of 

approximately 0.93 (93%) and declining to a loss value of around 0.07. This inverse relationship is both 

expected and indicative of a well-trained classification model—high accuracy paired with low loss reflects 

correct predictions made with strong confidence. The exact values beneath the graph (Accuracy: 0.93,  

Loss: 0.07) quantify the model's performance, indicating it successfully classifies 93% of test samples while 

maintaining an error rate of just 7%. The sharp downward slope of the connecting line underscores the 

pronounced inverse correlation, highlighting that the model has likely reached a stable and effective state. 
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Figure 16. Model accuracy and loss 

 

 

The observed accuracy-loss relationship demonstrates that the model has been trained efficiently, 

exhibiting no evidence of overfitting or underfitting. The concurrent presence of high accuracy and low loss 

values highlights the model’s strong generalization ability, reflecting its capacity to produce confident and 

accurate predictions on the test dataset. These performance indicators are further supported by the detailed 

analysis provided in the confusion matrix and classification report, which collectively validate the robustness 

and dependability of the classification system. 

 

 

4. DISCUSSION 

It should be noted separately that the above results were previously used by many researchers in 

their works and were accompanied by obtaining various results. In particular, a number of scientific 

publications devoted to the application of machine learning methods in medicine, early detection of diseases 

from images of leaves, as well as their widespread use in other areas, emphasized that one of the serious 

problems remains the lack of interpretability of models. This study focuses on short-term feature processing, 

which plays a key role in achieving high performance. An analysis conducted in another study came to the 

following conclusions: i) Classification by informative features allows to significantly reduce processing 

time; and ii) Results are achieved quickly and with high efficiency. However, the reliability that these studies 

rely on has not been confirmed in our study. Moreover, not only the reliability, but also the universality of the 

application of the corresponding methods to all machine learning algorithms, not just artificial neural 

networks, remains questionable. 

 

 

5. CONCLUSION 

This paper introduced the technology of extraction of informative features from images based on the 

technologies ORB and fractal analysis. Those technologies carry certain advantages and may be effectively 

used for a wide range of problems. ORB technology guarantees fast and effective detection and description 

of interest points, which is particularly valuable when there is a necessity to use those applications where 

there is a requirement for a fast speed of information processing and resistance to rotation of objects. Fractal 

analysis allows the detection of features due to the geometric nature and the degree of complexity of the 

structure of the image, which is particularly valuable when there is a necessity to analyze objects having an 

uneven and complex texture. 

Both methods were found to be effective and practical for computer vision and image processing 

challenges, providing stable and precise outcomes under varied conditions. Experiments on the feature 

extraction methods such as ORB and fractal analysis confirmed their practicality and real-world applicability. 

The ORB method was found to be a viable tool for precise and efficient extraction of scale-rotation invariant 

features. Fractal analysis helped us obtain broad understanding on the nature of images through the analysis 

of textural characteristics and fractal dimensions. The use of ORB and fractal analysis approaches to 

informative features extraction demonstrated their strong effectiveness when used in image processing 
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problems. ORB demonstrated an efficient and rapid approach to the detection of keypoints and building the 

construction of descriptors, which is particularly valuable when dealing with extensive datasets in real time. 

Fractal analysis opened an invaluable possibility to research the complex and irregular images' structures, 

opening the deeper insight into their geometric complexity. Thus, the use of both methods opens the gateway 

towards the continued development of computer vision and computer-driven image processing technologies. 
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