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1. INTRODUCTION

It needs effective feature extraction techniques that may be employed to recognize, classify, and
segment objects within an image [1]. Features play a crucial role in the reduction and acceleration of data
processing as well as the improvement of the accuracy of recognition. The importance of this step in the
sequence of the process of images cannot be overemphasized since the success of the subsequent steps of
analysis largely depends on the quality of the features selected [2]. This paper shall present a class of
techniques that may be used to determine the most informative features of an image. Computer vision and
image processing continue gaining popularity among many disciplines in the field of science and technology.
This paper will discuss the family of methods allowing the determination of the most informative and
important characteristics of an image. Computer vision and the processing of images have become popular on
a global level in the areas of science and technology [3]. One of the most important steps of the process of the
analysis of an image is the definition of informative characteristics, which are compressed and generalized
data characterizing the image [4]. Computer vision and the processing of images continue to become popular
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on a global level in the areas of science and technology. One of the most important steps of the process of the
analysis of an image is the extraction of informative characteristics, which are compressed and generalized
data characterizing the image [5].

The literature review examines modern image processing techniques, including automated nuclear
receptor localization analysis [1], elevation map reconstruction using radar images [2], deep learning for
surface debris detection [3], and fire segmentation in drone images [4]. The approaches to improving feature
matching [5], classification of diseases in computed tomography (CT) images [6], fractal methods in remote
sensing [7], [8], watermark embedding [9], integration of convolutional neural network (CNN) and random
sample consensus (RANSAC) for object recognition [10], and other relevant areas in the field of computer
vision and image analysis [11]-[20] have been studied.

2. MATERIALS AND METHOD
2.1. Algorithm oriented FAST and rotated BRIEF (ORB) [6]

The methodology proposed in this study involves converting input images into vector
representations by extracting key informative features using the ORB algorithm [10]. ORB combines two
foundational algorithms: features from accelerated segment test (FAST) for identifying key points, and
binary robust independent elementary features (BRIEF) for computing descriptors [21]. The process begins
with the detection of informative points across the image using the FAST algorithm. For each candidate
pixel, the surrounding 16-pixel circular neighborhood is evaluated to determine whether it constitutes a key
point [22]. A pixel is classified as informative if the following condition is met for any subset of contiguous
pixels on the circle [11]:

let, I(p) — p be the intensity in pixels. If circle C contains n adjacent sets of pixels, then pixel p is
considered the base point.

I(p) — I(p;) > doorstep, or [(p;) — I(p) > doorstep (1)

here, p; is each pixel inside the circle.

The ORB algorithm is designed to transform images into feature vectors, enabling tasks such as
object recognition and image matching. This conversion process is structured into four key stages, each
building upon the previous one to generate reliable binary descriptors. The overall workflow of the ORB
algorithm is depicted in Figure 1. It starts with an input image and moves through the feature detection phase,
which leverages the FAST corner detector to efficiently identify potential keypoints. From this initial set, the
Harris corner measure is applied to refine the selection, isolating the most stable and distinctive points. After
pinpointing these optimal keypoints, the BRIEF descriptor is computed at each location, resulting in a
compact and robust binary representation. The end product is a feature vector representation of the image,
ready for use in tasks like matching or recognition.

This step-by-step approach enhances ORB's efficiency in real-time applications, leveraging the
computational simplicity of both FAST and BRIEF algorithms. Their integration produces a feature
descriptor that is not only resistant to noise but also rotation-invariant, making it ideal for diverse computer
vision tasks such as object tracking, image stitching, and visual odometry.

Input image

y
Find key point by FAST

v

Select best point by Harris

Y

Extract binary descriptor by BRIEF

v

Output image

Figure 1. Converting an image to a vector using ORB algorithm
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Harris corner measure is used to assess the stability of data points. Harris angular measure is
calculated as (2) [12]:

R = det(M) — k(trace(M))? )

where, M — gradients are the covariance matrix and a k is a constant (usually between 0.04-0.06). The
orientation of the ORB informative gradient points is used to determine the formula (3) [23]:

ZiwilP)yi
6 = arctan (#) 3
Xiwil(p)x; 3)
where, w; is the weight function, and I(p;) is the pixel intensity.
For descriptor computation, BRIEF performs binary comparisons between pairs of pixels in a
smoothed image patch. To ensure rotation invariance, the descriptor coordinates are rotated according to the
keypoint orientation [24]:

7(p, 0) = (ucosd — vsinb,usiné + vcosd), 4

where, T is the rotating coordinates of the descriptor patch, 8 is the orientation of the key point, u and v are
the coordinates of pairs of pixels [13].
When generating descriptors, the vector is expressed as a bit string:

BRIEF (p) = Z 21(1(p) + (uy, 6) < I(p) + (v, 6)

=1

where, N s the length of the descriptor (for example, 256 bits), I is the pixel intensity, and u; and v; are the
coordinates of the pixel pairs. ORB descriptors are 32 bits (256 bits) long, each bit is part of a descriptor and
represents a texture and other properties around an informative point [25].

2.2. Fractal dimension [7]

Informative features refer to fundamental attributes within an image that carry essential information
about its content. These features are critical in tasks such as image recognition, classification, and analysis
[14]. In contextual image recognition systems, such features are particularly vital, as their identification
enables more effective and accurate image processing [26]. Informative features are widely employed across
domains such as agriculture, environmental monitoring, and Earth remote sensing [27].

Some typical informative image features include [15]:

— Edges and borders: The lines, borders, and contours of objects in an image can be important signs of their
recognition [16].

— Corners and facet points: Certain points in an image, such as corners, line intersections, or texture nodes,
serve as primary markers for highlighting and recognizing objects [17].

— Color properties: Information about the color and color distribution in an image is useful for classifying
objects or defining special attributes [18].

— Texture properties: Describing texture properties, such as texture gradients or structural elements, will
help in selecting and classifying objects [28].

— Shape and size of objects: Information about the shape, size, and ratio of objects will be important for
their identification and classification [19].

— Features of objects: For instance, faces, key points of anatomy, or unique attributes of objects that can be
identified in an image [20].

These examples represent a subset of the numerous features that can be extracted for analysis. When
various types of features are combined and processed using digital image processing techniques or machine
learning models, the accuracy and efficiency of recognition systems can be significantly improved. One such
analytical method for structural feature identification is the fractal dimension, which adds an additional layer
of spatial complexity to the analysis of image structures [29].

Fractal dimension is a metric used to quantify the complexity or irregularity of a structure, especially
in spatially distributed data. In metric spaces, it is used to characterize sets that may not conform to
traditional Euclidean dimensions. There are several types of fractal dimensions, including Hausdorff and
box-counting dimensions [30]. They are calculated as follows.
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Fractal (Hausdorff, box-counting) dimensions are calculated using the formula:

_ 1. InN(§)
4= ©)

where, N (§) is the minimum number of cubes with a side of £, required to cover the entire complex [31]. The
measurement is defined as an exponent of the d degree in N (&) fid as shown in Figure 2.

— Border block allocation: N(&)oo ? ,

— Division of total volume blocks: N (&)oo ;—2 ,

Another fractal dimension method is the shoreline method: The length of the coastline is measured in [, then
the measured length is calculated using the (7) [32].

L = Al%, A= const (7

The box-counting method is implemented through a systematic grid-based measurement technique
applied to the target structure. The process is illustrated in Figure 2, which demonstrates the use of the
Hausdorff box-counting dimension on a tree structure. In Figure 2(a), the boundary line extraction process is
depicted, where the object's contour is transformed into a continuous linear path that represents its geometric
complexity for measurement. Figure 2(b) highlights the grid overlay methodology, where boxes of size € are
applied over the structure, and shaded boxes indicate interactions with the boundary, contributing to the
count N (§). This spatial segmentation enables quantification of how the boundary occupies space at specific
resolutions. Figure 2(c) illustrates the iterative refinement through seven stages, progressively increasing grid
resolution (decreasing ¢) from left to right. The transition in color from red to grayscale portrays the shift
toward finer measurement scales, revealing intricate details of the fractal boundary. By plotting logN ()

against log (%) based on these measurements, the fractal dimension is determined from the slope of the

resulting linear graph.

€|

(a) (b)

Figure 2. Hausdorff box-counting dimension, (a) separation of blocks by boundary line, (b) separation of
blocks by total volume, and (c) box-counting

Figure 3 shows traditional ideas about geometry, forms a scale in accordance with predictable,
understandable and familiar ideas about the space in which they are located. For example, take a line, divide
it into three equal parts, and then each part will be three times less than the length of the original line [33]. It
also happens on the plane. If you measure the area of a square and then measure the area of the square by %

the length of the side of the original square, it will be 9 times smaller than the area of the original square.
This measurement can be determined mathematically by using the measurement rule according to (8) [34]:
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Noog~P ®)

where, N is the number of parts, € is the dimensional coefficient, D is the dimensional coefficient, oo is the
fractal dimension, which means the proportion in this sign. This scaling rule confirms the traditional rules of

geometry scaling, since for a line N = 3, when & = §’ then D = 1, and for squares, because N = 9, when
&= %, D = 2. The same rule applies to fractal geometry, but it is less intuitive. To calculate the unit length of
a fractal line, at first glance, reduce the scale three times, in this case N = 4, when { = § and we obtain the

value of (8) by changing (9) [35]:

logN

log: N = =D

&)

logé

A gross simplification Moderate simplification The original outline

Figure 3. The total length of the coastline

2.3. Normalization signs [8]

Following the extraction of key image features, it is necessary to represent these features in a
standardized format suitable for subsequent analysis and classification tasks. This section outlines the process
by which object areas and their corresponding informative features are quantified and normalized for
consistent use in machine learning pipelines [36]. The following metrics are computed for each image and
serve as descriptors of its geometric and structural content:

Contrast: A measure of intensity variation across the image.
Number of contours (num_contours): Total number of distinct object boundaries detected.
Mean contour area (mean_contour_area): The average area enclosed by identified contours.
Standard deviation of contour area (std_contour_area): Variability in the size of detected regions.
Mean contour perimeter (mean_contour_perimeter): Average length of the perimeters of all contours.
Standard deviation of contour perimeter (std_contour_perimeter): Dispersion in the perimeter lengths.
Mean area-to-perimeter ratio (mean_area_to_perimeter_ratio): A shape descriptor capturing object
compactness.
Fractal dimension: A complexity measure that quantifies the self-similarity or irregularity of the object's
shape.

Figure 4 displays the progression of box-counting across three dimensions (D =1,D = 2, and
D = 3) over three iteration levels (I = 1,I = 2,and ! = 3). In the first column (D = 1), one-dimensional
objects are represented as line segments. At iteration level [ = 1, there is a single unit line segment with
N = 1. When subdivided at [ = 2, the line comprises N = 2 segments, and at [ = 3, N increases to 3
segments, demonstrating a linear relationship where N = [. The second column (D = 2) depicts square grids
in two dimensions. At ! = 1, the square consists of N = 1 unit. This grows to N = 4 units at [ = 2, forming a
2x 2 grid, and to N =9 units at [ = 3, resulting in a 3 X 3 grid. This scaling follows the relationship
N = [2. In the third column (D = 3), three-dimensional cubic structures are illustrated. At [ = 1, there is a
single cube (N = 1). This count increases to N = 8 cubes at | = 2, forming a 2 X 2 X 2 configuration, and
reaches N = 27 cubes at | = 3 with a 3 x 3 X 3 configuration. The scaling here follows the formula N = 3.
This visualization effectively demonstrates the general scaling law N = [, which serves as the mathematical
basis for calculating fractal dimensions using the box-counting method.

@ oo o

=
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D=1 D=2 D=3
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N=1
N=1
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=2 |
N=2 ;
- N=8
=3 ———
N=3
N=9 N=27

Figure 4. The traditional representation of geometry in measurements and scale determination

The power-law relationship between the number of units and the measurement scale is what sets
apart objects of varying dimensionalities and forms the foundation for assessing non-integer fractal
dimensions in intricate natural structures. Each of these characteristics corresponds to a feature column in the
dataset, representing numerical values that describe an individual image in vector form. These features are
critical inputs for classification models, enabling the system to distinguish between image categories based
on structural, geometric, and textural patterns.

After identifying informative features, each feature is normalized in the range from 0 to 1 according
to formula (10) [37]:

I; =1
Inormal T M 5 | 10
Lj — jmax_jmin (10)
ij ij
were, [ in}prmal is normalized values, I; j 1s input values in the column, Il-"]l-ax s Il-r‘nm minimum and maximum

values of the column. By applying this transformation, all feature vectors are scaled uniformly, ensuring that
no single feature disproportionately influences the learning process. This step is essential for maintaining
model robustness and optimizing classification performance in high-dimensional image datasets.

2.4. Support vector machine [9]

In this study, the support vector machine (SVM) algorithm was employed for the classification of
features extracted from images. This machine learning technique was selected due to its high effectiveness in
scenarios involving limited training data and its strong generalization capability across diverse datasets. At
the initial stage of the classification pipeline, key informative features were extracted from the input images
using a combination of ORB feature detection and fractal dimension analysis. These features encapsulated
both geometric and textural properties of the target objects. The resulting feature vectors were subsequently
normalized, as outlined in section 2.3, and served as input to the SVM classifier.

SVM is a well-established supervised learning algorithm particularly suited for binary classification
tasks. The core idea behind SVM is the identification of an optimal separating hyperplane within the feature
space that maximizes the margin between data points belonging to different classes. This margin
maximization strategy contributes significantly to the model's generalization performance. The SVM
operates through the following sequence of steps, enabling effective classification of images based on the
extracted features:

2.4.1. Linear support vector machine
Given a labeled training dataset:

{(xi! yl)}!l = 1v2v o n, xiERd! yie{_li +1} (10)
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where x; is a feature vector extracted from an image and y; is the corresponding class label, SVM seeks to
find the optimal separating hyperplane, n is number of training examples [38].
The goal of SVM is to find a hyperplane:

wix+b=0 (11)
that maximizes the margin between the two classes. The optimization problem is formulated as:

%151% llwl|? (12)
subject to the constraint:

yiwTx; + b) > 1,¥i (13)
This ensures that all data points are correctly classified with a margin of at least 1. Figure 5 illustration of a

linear SVM. The decision boundary separates two data classes and is placed midway between the nearest
data points (support vectors). Dashed lines indicate the maximum margin.

LINEAR SVM

Decision boundary

X X Margin
X

Figure 5. Two-dimensional scatter plot with a linear separating hyperplane of the SVM

2.4.2. Soft margin SVM
In real-world scenarios, perfect separation may not be possible. Therefore, slack variables €; = 0 are
introduced to allow some misclassification. The modified optimization problem becomes [39]:

1
min > wll> +CYXr, & (14)
subject to:
yiwix; +b)=>1—¢;, =0 (15)

where C > 0 is a regularization parameter that controls the trade-off between maximizing the margin and
minimizing classification errors. Figure 6 two-dimensional plot illustrating the soft margin SVM, where
some data points are allowed within or beyond the margin boundaries.

Figure 6. Two-dimensional plot of the support vector machine with a soft margin (soft margin SVM)
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2.4.3. Non-linear SVM and kernel trick

When the data is not linearly separable in the original space, a non-linear mapping ¢(x) is applied
to project the data into a higher-dimensional feature space where linear separation may be possible. This is
efficiently implemented using a kernel function K (xi, xj) defined as [40]:

K(xi,xj) = d)(xi)Td)(xj) (16)

Common kernel functions include:

— Linear kernel: K(x;, x;) = x[ x;

— Polynomial kernel: K (x;,x;) = (x{x; + c)d

— Radial basis function (RBF) kernel: K (xl-, xj) = exp (—y”xi - xj||2)

In this study, the RBF kernel was used due to its ability to handle non-linear feature distributions typical in

agricultural image data. Figure 7 visualization of a non-linear SVM using the kernel trick to project data into
a higher-dimensional space for linear separation.

NON-LINEAR SVM
AND KERNEL TRICK

O X

O X
X
O X
” X
O X
(@] Kernel
Trick

Figure 7. Visualization of a non-linear SVM and the application of the Kernel trick

2.4.4. Decision function
The final decision function used for classification is defined as:

f(x) =sign(Xl, ;v K(x;, x) + b) (17)

where a; are Lagrange multipliers determined during the training phase, and K (x;, x) computes the similarity
between the support vectors and the test input.

The extracted features from the agricultural images—capturing texture, geometric structure, and
keypoint-based descriptors—were used to train an SVM model with an RBF kernel. The model parameters C
and y were optimized using k-fold cross-validation to prevent overfitting and ensure generalization. The
SVM classifier demonstrated high accuracy and robustness in distinguishing between different image
categories based on the informative features. Figure 8 visualization of the SVM decision function and the
margin boundaries defined by f(x) = +1.

DECISION FUNCTION
SVM

\ fx)=0

f=1 N /
i \

BN

N
~f(x)=0 \ B
\ \
\

Margin \

\

\
|

Figure 8. SVM decision function and margin boundaries
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2.5. Evaluation metrics

To quantitatively assess the performance of the proposed image classification approach, several
standard evaluation metrics were employed. These metrics provide insight into both the overall accuracy and
the reliability of the classifier across different categories.
a. Accuracy

Accuracy is the proportion of correctly classified instances among the total number of samples. It is
defined as:

TP+TN
Accuracy = P — (18)
where TP (True Positives): Number of correctly classified positive samples, TN (True Negatives): Number
of correctly classified negative samples, FP (False Positives): Number of negative samples incorrectly
classified as positive, FN (False Negatives): Number of positive samples incorrectly classified as negative. In
this study, the SVM classifier achieved high accuracy in the test dataset, demonstrating high performance in
distinguishing image classes based on the extracted informative features.
b. Precision, Recall, and F1-Score

In addition to accuracy, the following metrics were calculated:

— Precision:

TP
TP+FP

Precision =

(19)
Measures the proportion of positive identifications that were actually correct.
— Recall (Sensitivity)

TP
TP+FN

Recall = (20)
Measures the proportion of actual positives that were correctly identified.
— F1-Score

Precision ‘Recall

Fl=2 2D

Precision+Recall
Provides a harmonic mean of precision and recall, especially useful in imbalanced datasets.
c. Cross-validation
To ensure generalizability and avoid overfitting, k-fold cross-validation was performed with k = 5.
The model maintained stable performance across all folds, indicating its robustness on unseen data.

3. RESULTS

Using the above methods, the results of the study will be as follows. It can be used in several fields,
such as remote sensing of the Earth, early detection of diseases by tomato leaves - this, in turn, is a fast and
effective result achieved using machine learning. To derive meaningful fractal characteristics from leaf
images, a detailed preprocessing and feature extraction pipeline is essential. This multi-step approach
processes raw leaf images into precise geometric metrics, which can be utilized for species identification and
classification.

Figure 9 outlines the entire workflow for extracting informative features and conducting fractal
analysis on a leaf sample. The process starts with Figure 9(a), where a contrast-enhanced binary image
isolates the leaf structure from the background, providing a distinct silhouette for further examination. In
Figure 9(b), the turn contours representation is displayed, highlighting the traced leaf boundary with key
directional changes marked by blue, yellow, and red points connected by lines to emphasize significant
geometric properties along the edge. Figure 9(c) demonstrates the calculation of the mean contour area
through a vector-based overlay that accounts for the average spatial distribution of boundary features.
Similarly, Figure 9(d) quantifies the standard deviation of the contour area, capturing variability in boundary
complexity across different parts of the leaf and using a comparable vector notation. The process continues
with Figure 9(e), which features the mean contour perimeter measurement, where vectors map characteristic
distances along the leaf’s edge. In Figure 9(f), the standard deviation of the contour perimeter highlights
variations in boundary length across different regions, with denser vector clusters pinpointing areas of high
geometric complexity, such as serrated edges. Figure 9(g) showcases the mean area-to-perimeter ratio—a
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dimensionless metric indicating compactness and irregularity of boundary segments—through spatially
distributed measurement vectors. Lastly, Figure 9(h) demonstrates fractal dimension analysis using the box-
counting method. Seven iterations with progressively finer grid resolutions (box sizes from 2 to 128 pixels)
are presented, illustrating a shift from coarse red grids to fine grayscale grids. Each iteration captures
increasingly detailed boundary features, with count values displayed above each grid (ranging from 7 to 311).
These values represent a power-law scaling relationship, enabling the computation of the fractal dimension.

“(b)

kl
(e
Box size: 2 Box size: 4 Box size: 8 Box size: 32

Count: 5339 Count: 2133 Count: 711 Cou

Figure 9. Informative signs, (a) contrast, (b) num_contours, (c) mean_contour_area, (d) std_contour_area,
(e) mean_contour_perimeter, (f) std_contour_perimeter, (g) mean_area_to_perimeter _ratio,
(g) mean_area_to_perimeter _ratio, and (h) fractal _dimension (box-counting)

This detailed feature extraction method delivers a variety of complementary geometric descriptors
that, when integrated, form a reliable signature for identifying leaves. Notably, the fractal dimension
measurement provides a scale-invariant representation of boundary complexity, maintaining consistency
regardless of changes in viewing distances or image resolutions.

Methods for identifying informative features in agricultural images (Mirzaakbar Hudayberdiev)



266 a ISSN: 2088-8708

Figure 10 outlines the visualization pipeline used to emphasize key informative features of a leaf
specimen. In the left panel, the original image captures a green leaf set against a neutral gray backdrop,
showcasing its venation patterns and serrated edges with clarity. Moving to the middle panel, the application
of Canny edge detection transforms the leaf into a binary edge map. This step effectively highlights the
complete boundary outline and internal vein structures as white lines on a black background, isolating the
geometric framework of the leaf. Lastly, the right panel displays the results of ORB keypoints detection,
where prominent features are marked on the original image using bright green circles and markers. These
keypoints are predominantly located around the serrated edges of the leaf and at intersection points within the
venation network, identifying areas of notable geometric intricacy and structural uniqueness. Their spatial
arrangement emphasizes that the most significant features arise at points of pronounced curvature changes
and texture variation, rather than in the more uniform central regions of the leaf.

Original Image Canny Edge Detection

100
30
00

250

ORB KeyPoints Detection

100

Figure 10. Visualization that highlights informative features

These capabilities allow images to be assessed in terms of their texture, structure, geometric
characteristics, and fractal complexity. The resulting data can be used to analyze, classify, or identify patterns
in images. Let's consider the results of image research, which are used in several fields when highlighting
informative features of an object in an image. A quick and effective result can be obtained with early
detection of the disease through tomato leaves. Let's add the above image to the vector representation in the
table to facilitate calculations. It can be seen that Table 1 highlights the feature without normalization, and
Table 2 highlights it after normalization.

Remote sensing is a method of obtaining information about the Earth's surface and its changes using
instruments mounted on satellites, airplanes, or unmanned aerial vehicles. This process involves taking

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 256-277
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images and measuring various characteristics of the Earth's surface-such as terrain, vegetation, temperature,
humidity, and other parameters-without direct physical contact with the object being observed. Remote
sensing data is widely used in fields such as agriculture, environmental monitoring, cartography, geology,
natural resource management, and emergency response.

The feature extraction methodology, while predominantly demonstrated using botanical specimens,
exhibits a versatile application across various domains, including geospatial and remote sensing analysis. The
computational techniques, particularly edge detection and keypoint extraction algorithms, prove efficacious
for examining intricate natural patterns at diverse spatial scales, spanning from microscopic leaf structures to
extensive terrain configurations.

Table 1. Table in the form of vectors before normalization

Classes contrast num_conto mean_contour std_contour_ mean_contour std_contour pe mean_area to_ fractal dimen
urs area area _perimeter rimeter perimeter_ratio sion
Healthy 37.365882475 745 41.673154362 1096.158809  8.330579827 83.116454927 0.069898376262 1.9015853296
04914 416106 5661043 295853 42072 9732 688576
Healthy 49.927715119 75 799.96 6858.562852  45.57271534 309.37147289 0.387901362635 1.9007252278
28245 25994 12501 112323 4471 148954
Healthy 44.800203163 1070 31.042523364 921.8226545 11.55998361 133.91557719 0.052316928614 1.9556830542
762916 48598 107976 277803 418205 51514 139174
Healthy 35.329407806 1242 26.270128824  897.8260553  6.992370426 103.71063206 0.032662478234 1.9420276684
03492 47665 703684 366871 434167 222254 554578
Healthy 36.331917022 1291 25.538729666 884.1931264  6.707476758 91.272370811 0.031870865753 1.9437245964
94344 924866 970506 938442 40451 74872 225456
Healthy 51.038177014 830 37.859638554  1050.186030  10.27192246 145.63491861 0.047664516223 1.9190272444
839626 216865 793863 1239688 360953 8748 42953
Healthy 51.806849264 507 61.188362919  1344.055329  11.74123455 125.64160858 0.058907243655 1.8830814944
93237 13215 3395762 2460545 519503 364615 139642
Healthy 38.437593501 1107 28.365853658 907.8612297  6.858337591 73.441080533 0.040485004800 1.9260870754
32606 536587 55167 118714 26875 98933 634025
Healthy 39.368361543 1240 25.129838709  848.3892383  6.508126003 76.177331564 0.038053655871 1.9306454133
602774 67742 064318 223081 44132 191874 277848
Healthy 38.427830200 1107 28.365853658 907.8612297  6.858337591 73.441080533 0.040485004800 1.9260870754
702935 536587 55167 118714 26875 98933 634025
First stage ~ 39.273999725 1151 27.804083405 901.1011957  6.915189238 71.410153756 0.039857619859 1.9322419918
351175 734143 386394 344452 71913 78902 797769
First stage ~ 52.574191866 746 40.354557640 1048.168157  12.17192235 159.29330957 0.055207835424 1.9124510072
971965 75067 5750595 8846537 984564 36158 460874
First stage  57.724040606 134 199.17910447  2290.542996  26.64659788 252.77808826 0.096436608361 1.8154330077
86768 761193 3049346 8042677 862093 05468 924903
First stage ~ 44.605436260 1061 30.922714420  913.9804572  11.99331322 151.25996205 0.052012221871 1.9560939503
083 35815 898736 8263819 132623 901104 145802
First stage  36.850640038 925 35.019459459  875.3959500  13.16857907 73.773105269 0.097102098866 1.9482650268
076165 45946 426417 900939 1163 63952 0254
First stage ~ 38.087304850 919 34.727965179  860.3282270  14.26350399 88.300246560 0.089033445673 1.9497392751
55974 542984 824276 4075206 40648 67813 0281
First stage ~ 36.850228013 925 35.019459459  875.3959500  13.16857907 73.773105269 0.097102098866 1.9482650268
990964 45946 426417 900939 1163 63952 0254
First stage ~ 37.981698385 881 36.147559591  887.8118660  14.58813381 93.496715143 0.093238970979 1.9499467056
328215 37344 809864 1409438 38834 92496 614945
First stage ~ 48.927130475 124 206.52822580 2274.736007  16.74269818 127.89865018 0.199076223730 1.7870345881
00953 645162 6380814 8750975 772072 69814 590417
First stage ~ 37.341197460 1443 24.197158697 867.3857943  8.667020413 101.71834110 0.042667114635 1.9709397658
46685 1587 19548 417909 152199 731494 466221
Second stage  39.105916852 1377 25.344952795 887.9329218  9.792837373 127.36523494 0.041119528492 1.9731529065
80323 93319 727079 571459 747124 179015 387348
Second stage  38.883401942 1438 23.944367176  855.7981179  9.049501862 100.33991615 0.043926147823 1.9714532246
783486 634213 409844 1645 395894 58721 356589
Second stage  57.751775260 678 51.416666666 1247.227874  15.82244071 180.83996105 0.059434476041 1.9388854743
08782 666664 8259562 3556116 724125 207156 964816
Second stage  38.723336976 214 165.38317757  2375.864990  26.32458263 247.41023763 0.101063525668 1.8891355810
75324 009347 617573 802751 390655 38821 648385
Second stage  61.990945474 405 94.475308641 1872.799461  18.66859204 261.19016418 0.058761544720 1.9252923799
076625 9753 4606037 5630938 05129 15027 446915
Second stage  48.828609021 480 76.351041666 1633.104460  16.81595203 208.06915011 0.072378797423 1.9268975575
30554 66666 3246444 4294604 468107 22235 27838
Second stage  49.659731961 464 78.337284482  1630.156895  18.12171400 196.44569501 0.079360119212 1.9275725718
609914 75862 9190565 1071865 262737 40371 87288
Second stage  64.782108384 200 178.595 2496.776985  21.18620608 245.21243202 0.098907925595 1.8911743632
93861 1300295 7470055 87682 67718 205258
Second stage  65.308792970 132 246.93560606 2803.693101  25.01716114 211.53595109 0.173533073466 1.8533187558
94319 060606 8053665 354856 977022 32676 839517
Second stage 38.336558774 1092 32.548534798 1038.256717  8.528816192 116.44484812 0.046228123066 1.9526010944
60931 534796 694864 46888 521401 102245 058116
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Table 2. Table in the form of vectors after normalization
Classes contrast num _cont mean _contour  std contour mean contour std contour mean area to  fractal dime

ours area area _perimeter perimeter  perimeter ratio nsion
Healthy 0.52 0.002 0.019 0.022 0.214 0.002 0.794 0.52
Healthy 0.319 0.005 0.042 0.046 0.326 0.004 0.754 0.319
Healthy 0.267 0.006 0.049 0.032 0.161 0.015 0.701 0.267
Healthy 0.246 0.007 0.052 0.036 0.164 0.016 0.703 0.246
Healthy 0.576 0.002 0.019 0.022 0.218 0.001 0.861 0.576
Healthy 0.349 0.005 0.037 0.038 0.203 0.006 0.777 0.349
Healthy 0.075 0.046 0.231 0.091 0.441 0.021 0.91 0.075
Healthy 0.75 0.001 0.012 0.018 0.126 0.002 0.943 0.75
Healthy 0.118 0.016 0.084 0.104 0.537 0.009 0.5 0.118
Healthy 0.809 0.001 0.009 0.019 0.157 0.002 0.977 0.809
First stage 0.322 0.005 0.046 0.036 0.3 0.006 0.781 0.322
First stage 0.516 0.002 0.012 0.02 0.043 0.006 0.687 0.516
First stage 0.317 0.005 0.041 0.051 0.358 0.005 0.762 0.317
First stage 0.484 0.002 0.013 0.027 0.108 0.005 0.698 0.484
First stage 0.228 0.007 0.042 0.053 0.277 0.009 0.56 0.228
First stage 0.532 0.002 0.023 0.016 0.157 0.003 0.782 0.532
First stage 0.553 0.002 0.016 0.016 0.211 0.001 0.72 0.553
First stage 0.929 0.0 0.0 0.018 0.115 0.002 0.941 0.929
First stage 0.062 0.028 0.116 0.091 0.353 0.023 0.257 0.062
First stage 1.0 0.0 0.0 0.008 0.047 0.0 0.891 1.0
Second stage  0.981 0.0 0.001 0.009 0.058 0.001 0.902 0.981
Second stage 0.71 0.001 0.013 0.029 0.146 0.003 1.0 0.71
Second stage ~ 0.762 0.001 0.008 0.027 0.167 0.002 0.984 0.762
Second stage  0.319 0.005 0.042 0.046 0.326 0.004 0.754 0.319
Second stage  0.406 0.004 0.037 0.047 0.343 0.005 0.92 0.406
Second stage ~ 0.252 0.006 0.034 0.065 0.326 0.011 0.655 0.252
Second stage ~ 0.105 0.031 0.18 0.122 0.552 0.015 0.936 0.105
Second stage ~ 0.075 0.045 0.227 0.124 0.557 0.02 0.951 0.075
Second stage  0.283 0.005 0.016 0.053 0.211 0.009 0.669 0.283
Second stage  0.828 0.001 0.006 0.01 0.017 0.002 0.84 0.828

Figure 11 exemplifies the utilization of the feature extraction pipeline on an earth remote sensing
image obtained via satellite. In the leftmost panel, the original image showcases a meandering river system
characterized by sinuous curves traversing heterogeneous terrain such as forested areas (denoted by green-
brown regions) and water bodies (depicted in blue). This imagery, sourced via Google Earth, serves as a
practical case study to assess the robustness of geometric feature extraction algorithms in identifying natural
fractal patterns. The middle panel illustrates the application of the Canny edge detection technique,
effectively delineating the complex boundaries of the river and surrounding terrain features with white edge
outlines against a black background. This outcome highlights the algorithm's capability in tracing the river's
intricate meanders and branching patterns, embodying the self-similar characteristics typical of natural
waterways.

In the rightmost panel, ORB keypoints detection is represented through bright green markers
superimposed on the original satellite image. These markers are predominantly concentrated along the river's
course and at branching intersections, pinpointing areas of elevated geometric complexity where structural
curvature and directional variations are most prominent. Such findings underscore the efficacy of feature
extraction methodologies in providing nuanced insights into the spatial organization of natural systems.

Original Image Canny Edge Detection ORB KeyPoints Detection
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Figure 11. Earth remote sensing image
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In Table 3, the selection of features is carried out without normalization, whereas Table 4 shows the
results after normalization of the data. The results obtained during the study represent an important stage,
given the importance of the informative features of the image. They contribute to achieving high
classification accuracy while reducing the time spent on its implementation.

Table 3. Table in the form of vectors before normalization

Classes contrast num co mean_contour std contour  mean conto std contour  mean_area to  fractal dime
ntours area area ur_perimeter  perimeter  perimeter_ratio nsion

River 41.579241 356 92.676966292 1725.514929 13.39729790 178.9384372 0.06561092475 1.88423111
258787164 13484 536606 774624 1429133 978911 0988124

River 56.344880 424 76.067216981 1391.398560 10.50240280 109.8762436 0.06799473008 1.88283169
469028105 13208 7287061 3526735 9138233 265143 1810061

River 34.451080 807  44.351920693 1231.001382 6.159621827 88.92491196 0.04467432071 1.92204599
17051144 92813 376676 368991 611734 4744475 38532337

River 23.756907 106 365.11792452 3690.835168 28.61598781 217.1344290 0.30046454816 1.87626306
041875834 83019 149927 369767 5071608 201057 51870513

River 48.836862 1129 27.232506643 856.3461536 6.107549364 71.96252663 0.03404462077 1.92102219
005475844 046943 745542 319726 718285 599574 67360916

River 29.892062 191 167.53403141 2271.712281 17.43102739 165.1211445 0.14271972660 1.86435394
869046782 361255 2170646 8059506 7696077 807225 48644586

River 63.549698 814  36.417076167 948.3267863 8.709786703 72.60089266 0.06080565082 1.90654759
62628099 07617 328883 7506 187208 6632286 45763684

River 44.897363 930  36.429569892 1068.867869 9.070762598 122.8510200 0.04773615862 1.93100376
58550866 47312 6301859 770921 688499 623374 7361902

River 49.143693 964  30.929979253 868.0745702 9.514807352 94.42718911 0.05300327151 1.92375683
35632184 112034 807158 139247 101834 522794 89445021

River 27.901166 275 119.41636363 1915.860158 12.28654299 89.94536370 0.16882338988 1.87200694
235867635 636364 6625298 4325812 12741 968654 81494108

Hirhway 24.297871 382 97.098167539 1881.065521 12.62681988 171.7896730 0.08045482259 1.90285743
127189143 26701 1725839 1469167 3188227 770706 53750936

Hirhway 30.175713 514 62.595330739 1400.208319 10.48518162 157.0159388 0.05910165107 1.89472556
281400608 29961 220948 2700004 289095 639241 65501204

Hirhway 20.757009 113 301.48230088 3140.885321 26.21504213 182.8915980 0.32160021440 1.86375935
600171084 495575 2838976 0082054 2793318 524045 05343975

Hirhway 54.922013 604  52.011589403 1223.344301 9.621697483 142.0082352 0.04014155482 1.89897184
71141501 97351 3587835 473266 7656254 530131 56210611

Hirhway 59.447483 553 55.531645569 1080.829686 12.60104258 102.9990607 0.07953180842 1.89902126
75742923 62025 994994 0647666 9962143 282428 78125535

Hirhway 43.010927 458  70.151746724 1362974156 17.10592951 183.2987638 0.09104375200 1.90759656
24014021 89083 671575 5507544 2125718 685441 24867124

Hirhway 63.939397 384 85.2109375  1312.688667 17.43903036 135.7155945 0.10704124585 1.89701328
578341016 4061832 9122822 2354566 914597 33897535

Hirhway 45.740507 76 277.89473684 2377.237781 28.24101323 186.3268409 0.24690430716 1.75633957
14140135 210526 372075 0461824 792821 452835 81215114

Hirhway 57.477367 651  48.653609831 1058.520620 9.034160144 91.66209372 0.06539159168 1.90109159
984442445 029186 5867694 134967 75507 850626 64546966

Hirhway 25.990904 423 76.812056737 1526.210201 11.29450880 128.5072022 0.06775797271 1.88046408
866471766 58865 3626838 7484421 4618917 339992 2498345
AnnualCrop  23.521178 839  38.318831942 1084.776478 6.205419281 82.99917113 0.05463990302 1.90453545
89312911 78903 4961537 952714 90823 945312 63684471

AnnualCrop  42.235088 1 10827.5 0.0 866.5067014 0.0 12.4955756044  1.60836616
76458446 694214 80305 7279685

AnnualCrop  43.405379 282 117.49290780 1921.273724 15.72740921 1529717181 0.10934435175 1.87612119
01230686 141844 2136936 6106361 5593236 738975 6082828

AnnualCrop  41.187467 499 63.951903807 1365.094325 12.49303617 140.6187668 0.08226881618 1.89872287
7539537 61523 2115703 744981 7049383 9977 9604376

AnnualCrop  28.531614 554 57.234657039 1302.641542 9.952087561 122.3557550 0.06123971034 1.89153337
93114735 711195 5040664 576375 9524085 688353 0851744

AnnualCrop  29.794017 297 120.04882154 2031.679662 14.58836573 136.3387540 0.11259615364 1.87596251
77726525 882155 0776508 3824194 2526002 77045 82737625

AnnualCrop  25.004273 210 154.88809523 2214.233396 16.01344622 164.5120770 0.13595647763 1.86602967
458250772 809525 439024 032983 230593 877985 01012185
AnnualCrop  44.203035 908  35.161894273 995.8026433 7.523445194 71.12345634 0.04682321850 1.91632892
70389019 12775 018665 513262 409719 412369 2102328

AnnualCrop  21.493743 264 130.62310606 2081.509554 12.15476589 129.9488010 0.12477175164 1.87879104
46913745 060606 066629 9434235 4072072 04765 11441144

AnnualCrop  51.116627 904  34.133296460 844.2598369 9.375726742 80.34545780 0.05932462245 1.92002631
796838806 17699 11002 02708 024825 757251 47467795
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Table 4. The table in the form of vectors after normalization

Classes contrast num cont mean conto std contour mean contour std contour ~ mean area to  fractal dime
ours ur_area area _perimeter perimeter perimeter ratio nsion
River 0.448 0.297 0.001 0.053 0.008 0.32 0.001 0.739
River 0.755 0.354 0.001 0.043 0.005 0.197 0.001 0.736
River 0.3 0.675 0.0 0.038 0.001 0.159 0.0 0.825
River 0.078 0.088 0.005 0.114 0.023 0.389 0.004 0.722
River 0.599 0.945 0.0 0.026 0.001 0.129 0.0 0.822
River 0.205 0.159 0.002 0.07 0.012 0.296 0.002 0.695
River 0.905 0.681 0.0 0.029 0.003 0.13 0.001 0.79
River 0.517 0.778 0.0 0.033 0.004 0.22 0.0 0.845
River 0.605 0.807 0.0 0.027 0.004 0.169 0.0 0.829
River 0.164 0.229 0.001 0.059 0.007 0.161 0.002 0.712
Hirhway 0.089 0.319 0.001 0.058 0.007 0.308 0.001 0.781
Hirhway 0.211 0.43 0.001 0.043 0.005 0.281 0.0 0.763
Hirhway 0.015 0.094 0.004 0.097 0.021 0.328 0.005 0.693
Hirhway 0.725 0.505 0.0 0.038 0.004 0.254 0.0 0.773
Hirhway 0.82 0.462 0.0 0.033 0.007 0.184 0.001 0.773
Hirhway 0.478 0.383 0.001 0.042 0.012 0.328 0.001 0.792
Hirhway 0.913 0.321 0.001 0.04 0.012 0.243 0.001 0.768
Hirhway 0.535 0.063 0.004 0.073 0.023 0.334 0.003 0.451
Hirhway 0.779 0.544 0.0 0.033 0.004 0.164 0.001 0.777
Hirhway 0.124 0.353 0.001 0.047 0.006 0.23 0.001 0.731
AnnualCrop ~ 0.073 0.702 0.0 0.033 0.001 0.149 0.0 0.785
AnnualCrop  0.462 0.0 0.166 0.0 0.849 0.0 0.196 0.118
AnnualCrop  0.486 0.235 0.001 0.059 0.01 0.274 0.001 0.721
AnnualCrop 0.44 0.417 0.001 0.042 0.007 0.252 0.001 0.772
AnnualCrop  0.177 0.463 0.0 0.04 0.005 0.219 0.001 0.756
AnnualCrop 0203 0.248 0.001 0.063 0.009 0.244 0.001 0.721
AnnualCrop  0.103 0.175 0.002 0.068 0.011 0.295 0.002 0.698
AnnualCrop ~ 0.503 0.76 0.0 0.031 0.002 0.127 0.0 0.812
AnnualCrop 0.03 0.22 0.002 0.064 0.007 0.233 0.002 0.727
AnnualCrop  0.646 0.756 0.0 0.026 0.004 0.144 0.0 0.82

Using the informative features of this training sample, we train the SVM algorithm:

a. Illustration of a linear SVM: two groups of points (class —1 in blue and class +1 in red) are separated by
a decision boundary. The dashed lines represent the margin boundaries f(x) = +1. The circled points are
the support vectors that define the position of the hyperplane and the width of the margin. Figure 12
[lustration of a linear SVM: two-point classes (—1: blue, +1: red) are separated by a linear decision
boundary. Dashed lines represent the margins f(x) = +1, and circled support vectors determine the
hyperplane and its margin width.

b. Illustration of SVM with an RBF kernel: two groups of points (class —1 in blue and class +1 in red) are
separated by a non-linear decision boundary. The shaded regions indicate the classification areas, and the
black-outlined circles represent the support vectors that define the shape of the boundary. The RBF kernel
function provides an implicit mapping of features into a higher-dimensional space where the classes

become separable.
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Figure 12. SVM (Linear kernel) with margin equations
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Figure 13 shows the SVM with an RBF kernel. Two classes of points (—1: blue, +1: red) are
separated by a non-linear decision boundary. Shaded regions represent classification zones, while black-
circled points indicate the support vectors that define the shape of the boundary. The RBF kernel enables
implicit feature mapping into a higher-dimensional space where the classes become linearly separable.
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Figure 13. Non-linear SVM classification with RBF kernel

To assess the performance of the classification model, a confusion matrix is utilized to provide a
comprehensive analysis of prediction accuracy across all classes. This tool not only highlights the overall
accuracy but also uncovers specific misclassification patterns that can guide improvements to the model.
Figure 14 illustrates the confusion matrix for the results of the multi-class classification task. The matrix is
structured with actual class labels (0 to 4) along the vertical axis and predicted class labels on the horizontal
axis. Each cell indicates the sample count, where diagonal cells represent correct classifications, and off-
diagonal cells signify errors. The color gradient, ranging from white (indicating zero counts) to dark blue
(representing higher counts), offers an intuitive visual representation of classification performance.

Confusion Matrix
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Figure 14. Confusion matrix

Class 0 demonstrates outstanding accuracy, with 162 correctly classified samples and only one
misclassified as class 2. Class 1 performs well, achieving 89 correct predictions, though 3 instances were
incorrectly assigned to class 2. Class 2 shows solid results with 101 correct classifications, but some
challenges are evident—S8 samples were misclassified as class 1, 1 as class 3, and 2 as class 4. For class 3,
69 instances were accurately classified; however, there is significant misclassification with 14 samples
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confused with class 4, alongside a smaller number of errors spread across classes 0, 1, and 2. Finally, class 4
shows the strongest performance, recording 193 correct predictions with minimal errors—4 samples
misclassified as class 2 and 8 as class 3.

The experimental evaluation demonstrated that the proposed approach achieved a classification
accuracy of 93% with a loss value of 0.07. These results confirm the effectiveness of the applied feature
extraction methods combined with the SVM classifier, ensuring both high precision and stability. Such
performance highlights the practical applicability of the method for solving real-world image analysis tasks,
particularly in the agricultural domain.

Beyond the visualization of the confusion matrix, a detailed classification report offers essential
performance metrics for each class, enabling a quantitative evaluation of the model’s strengths and
weaknesses across various criteria. The classification report associated with Figure 15 provides precision,
recall, Fl-score, and support values for all five classes (0 through 4).

For Class 0, the performance is outstanding, with precision, recall, and F1-score all at 0.99 across
163 samples. This indicates near-perfect classification with negligible false positives or false negatives. Class
1 exhibits solid results as well, achieving a precision of 0.88 and a recall of 0.97, culminating in an F1-score
0f 0.92 over 92 samples. While overall strong, this class displays slightly more false positive predictions.

Class 2 delivers balanced performance, reporting a precision of 0.93, a recall of 0.89, and an F1-
score of 0.91 for its 113 samples, reflecting relatively equal rates of false positives and false negatives.
Conversely, Class 3 fares the weakest, with its precision at 0.88, recall at 0.78, and F1-score at 0.83 across 88
samples. These figures indicate that Class 3 is the most challenging for the model to classify correctly, facing
higher confusion with other classes. In contrast, Class 4 demonstrates strong performance consistency, with
precision at 0.92, recall at 0.94, and an F1-score of 0.93 across 205 samples, the largest subset, highlighting
reliable performance.

When evaluating the overall model performance, an accuracy of 0.93 is achieved over all 661
samples. The macro average—representing unweighted mean scores across all classes—reports precision,
recall, and Fl-score values of 0.92 each. Meanwhile, the weighted average—which accounts for class
imbalances—shows slightly higher values of 0.93 for precision, recall, and F1-score. The improved results in
the weighted average suggest that the model performs particularly well on classes with larger sample sizes.

Classification Report:

precision recall fl-score  support

0 0.99 0.99 0.99 163

1 0.88 0.97 0.92 g2

2 0.93 0.89 0.91 113

3 0.88 0.78 0.83 88

4 0.92 0.84 0.93 205

accuracy 0.93 66l
macro avg 0.92 0.92 1,82 66l
weighted avg 0.93 0.93 1.93 66l

Figure 15. Classification report

The relationship between model accuracy and loss offers valuable insights into the trade-off
between classification performance and prediction confidence. Visualizing these two complementary metrics
together allows a better evaluation of whether the model has achieved an optimal balance between accurate
predictions and minimal error.

Figure 16 presents model accuracy and loss as interconnected metrics. The horizontal axis is divided
into two evaluation criteria: "Accuracy" on the left and "Loss" on the right, while the vertical axis represents
metric values, ranging from 0.0 to 1.0. The blue line links the two points, starting at an accuracy value of
approximately 0.93 (93%) and declining to a loss value of around 0.07. This inverse relationship is both
expected and indicative of a well-trained classification model—high accuracy paired with low loss reflects
correct predictions made with strong confidence. The exact values beneath the graph (Accuracy: 0.93,
Loss: 0.07) quantify the model's performance, indicating it successfully classifies 93% of test samples while
maintaining an error rate of just 7%. The sharp downward slope of the connecting line underscores the
pronounced inverse correlation, highlighting that the model has likely reached a stable and effective state.
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Model Accuracy and Loss
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Figure 16. Model accuracy and loss

The observed accuracy-loss relationship demonstrates that the model has been trained efficiently,
exhibiting no evidence of overfitting or underfitting. The concurrent presence of high accuracy and low loss
values highlights the model’s strong generalization ability, reflecting its capacity to produce confident and
accurate predictions on the test dataset. These performance indicators are further supported by the detailed
analysis provided in the confusion matrix and classification report, which collectively validate the robustness
and dependability of the classification system.

4. DISCUSSION

It should be noted separately that the above results were previously used by many researchers in
their works and were accompanied by obtaining various results. In particular, a number of scientific
publications devoted to the application of machine learning methods in medicine, early detection of diseases
from images of leaves, as well as their widespread use in other areas, emphasized that one of the serious
problems remains the lack of interpretability of models. This study focuses on short-term feature processing,
which plays a key role in achieving high performance. An analysis conducted in another study came to the
following conclusions: i) Classification by informative features allows to significantly reduce processing
time; and ii) Results are achieved quickly and with high efficiency. However, the reliability that these studies
rely on has not been confirmed in our study. Moreover, not only the reliability, but also the universality of the
application of the corresponding methods to all machine learning algorithms, not just artificial neural
networks, remains questionable.

5. CONCLUSION

This paper introduced the technology of extraction of informative features from images based on the
technologies ORB and fractal analysis. Those technologies carry certain advantages and may be effectively
used for a wide range of problems. ORB technology guarantees fast and effective detection and description
of interest points, which is particularly valuable when there is a necessity to use those applications where
there is a requirement for a fast speed of information processing and resistance to rotation of objects. Fractal
analysis allows the detection of features due to the geometric nature and the degree of complexity of the
structure of the image, which is particularly valuable when there is a necessity to analyze objects having an
uneven and complex texture.

Both methods were found to be effective and practical for computer vision and image processing
challenges, providing stable and precise outcomes under varied conditions. Experiments on the feature
extraction methods such as ORB and fractal analysis confirmed their practicality and real-world applicability.
The ORB method was found to be a viable tool for precise and efficient extraction of scale-rotation invariant
features. Fractal analysis helped us obtain broad understanding on the nature of images through the analysis
of textural characteristics and fractal dimensions. The use of ORB and fractal analysis approaches to
informative features extraction demonstrated their strong effectiveness when used in image processing
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problems. ORB demonstrated an efficient and rapid approach to the detection of keypoints and building the
construction of descriptors, which is particularly valuable when dealing with extensive datasets in real time.
Fractal analysis opened an invaluable possibility to research the complex and irregular images' structures,
opening the deeper insight into their geometric complexity. Thus, the use of both methods opens the gateway
towards the continued development of computer vision and computer-driven image processing technologies.
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