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Hydrothermal operation planning (HTOP) is a complex, large-scale optimal
control problem. Traditionally, mathematical programming is used to solve
it; however, metaheuristic techniques have emerged as an alternative
approach. However, even in the context of current technological
developments, the models developed to date generally require
simplifications in the formulation. In particular, in medium-term planning,
they have used a deterministic model or simplified transmission lines into a
single bus. However, this approach leads to conservative and unrealistic
solutions that may result in either oversizing or underutilization of resources.
Therefore, this work proposes a methodology for incorporating uncertainties
into the HTOP problem with a multi-bus topology. It was tested in a three-
bus system, where linear functions are applied to simplify the production of
hydroelectric plants and the cost of thermal units. The methodology
incorporated well-established techniques in an implicit stochastic
optimization (ISO) model, using a tree of 50 scenarios to model the
hydrological series, which is solved with linear programming (LP). The
results were validated with the costs of the 10000 generated series, showing
an error of 5.07%. Additionally, the solutions were compared with an
adapted metaheuristic technique for this problem to explore models
applicable to more complex formulations.
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1. INTRODUCTION

An essential requirement for the operation of any electric power system is the energy supply to meet
the demand economically, ie., maximizing social benefit or, under certain assumptions, minimizing
operating costs [1]. To achieve this goal, systems require careful planning that meets standards for quality,
security, environmental protection, and reliability, ensuring sustainable and efficient power system operation.

The type of primary resource used to obtain electric energy decisively determines the complexity of
planning. Hydropower, which relies on water reservoirs, is significantly affected by seasonal changes and
climate phenomena such as the El Nifio-Southern Oscillation (ENSO). On the other hand, thermal power
plants, typically powered by fossil fuels, offer a stable energy supply but result in environmental harm. A
hydrothermal system, therefore, balances both resources by considering that the water resource has no direct
monetary cost; thus, the operating cost is determined by the amount of thermal generation used. However, the
physical capacity of reservoirs limits the storage of water resources. Combined with the unpredictable nature
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of water inflow, this creates a dilemma about whether to use the resource immediately or conserve it for
future use, resulting in a temporary interdependence between these choices. Thus, hydrothermal operation
planning (HTOP) is a dynamic process that can be modeled as an optimization problem, where the objective
is to assess the amount of water that could replace thermal energy within a time horizon [2].

In addition to these dynamic and stochastic characteristics, HTOP is regarded as a complex
optimization problem because of i) its non-linear, non-separable, and non-convex nature [3]; ii) it includes
several constraints, such as energy balance, limits of water reserve volume, total outflows, hydroelectric
generation functions, and water balance equations; iii) it involves many variables with different time
discretization; and iv) it is hard to consider a long-time horizon divided into several short intervals. For all
these reasons, it is necessary to hierarchically disaggregate the problem into long-term, medium-term, and
short-term horizons. The coupling between horizons is carried out from the largest to the smallest, based on
the availability of water resources or other parameters resulting from previous planning, such as the value of
water [4].

Conventionally, HTOP problems are solved by mathematical programming [5], such as linear
programming (LP), dynamic programming (DP), nonlinear programming (NLP), or stochastic dynamic
programming (SDP) and stochastic dual dynamic programming (SDDP) [6], [7]. These procedures obtain the
global optimal solution if the necessary optimality conditions are satisfied; however, in complex systems,
they require being combined with decomposition [8], [9] linear approximations [10], [11] or simulation
techniques (e.g., Monte Carlo) [12], [13] and also need to consider significant simplifications, even though
technological advances in processors and software have reduced the number of these reductions. Another
emerging approach in recent decades to solving optimization problems is metaheuristic techniques. Although
an optimal global solution is not guaranteed, especially for complex and high-dimensional problems, they
provide near-optimal solutions in a reasonable time [14]. Given their features such as simplicity, adaptability,
and robustness, metaheuristic tools have been applied to solve HTOP problems, showing great potential to
address their complex formulation and to model them without extensive simplifications [15], [16]. In [17], a
comprehensive and up-to-date overview of the metaheuristic tools applied to HTOP in the short term is
provided. Regarding the development of tools applied in medium-term planning problems, the works [18]—
[21] remark that different tools, such as genetic algorithm (GA) or particle swarm (PSO), are implemented to
solve deterministic and single-bus problems.

Mathematical and metaheuristic models developed so far to solve the HTOP problem simplify the
nature of the objective function, the restrictions, or the variables. For example, studies such as [11] assume
the costs of thermal power plants as linear functions. Alternatively, works like [22] and different versions of
SDDP reduce the objective function to a piecewise linear form, but it is still convex. Regarding stochastic
modeling, [23] assumes uncertainty with a two-stage model, while [24] includes a stochastic environment
only in the final stages. In addition, some models condense the system into a single bus [25], and others
simplify the reservoirs using aggregation methodology [26]. On the metaheuristics side, works such as
[27]-[29] consider non-convex cost functions stochastically and non-linear water production functions, but
employ a single-bus model. Instead, [30]-[32] take on the transmission network but assume a deterministic
optimization problem.

Depending on the time horizon studied, each simplification could affect the results and decision-
making. For instance, in the medium-term horizon, electrical transmission constraints are significant in large,
loosely meshed systems such as those in South America, because the lines are more vulnerable to exceeding
their operating limits. Furthermore, it is important to stochastically model specific input parameters, such as
renewable primary resources and electricity demand, since uncertainty propagates over longer planning
horizons [33]. Taking into account the above-mentioned aspects, and considering that implementing realistic
economic dispatch models that reflect the physical restrictions and unpredictability of the generation is
essential to avoid either assignment of load that cannot be produced or oversizing or underutilization of
resources, the core research question addressed in this work is how to model the inherent uncertainty of
variables associated with renewable generation resources within a medium-term HTOP, while simultaneously
accounting for the transmission network and ensuring the resulting methodology can solve the problem
despite complex formulations. In this regard, this work proposes a novel optimization methodology that can
be applied to medium-term problems, where the network and the stochasticity of water inputs are included.
An implicit stochastic optimization (ISO) strategy was applied to address uncertainty in hydro unit inflows,
using a scenario tree with the progressive clustering method (PCM) [34], which was reduced through an
algorithm based on particle swarm optimization [35]. The proposed methodology was tested in a case study
in which the locations of the hydro and thermal power generators, as well as the load demand, were
considered at different system buses, and the inflows of the hydro plant were modeled using a reduced
scenario tree with 50 scenarios. Linear functions were used to represent hydro plant production and thermal
unit costs, and a linear programming (LP) tool was implemented to solve the optimization; however, the
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methodology incorporated a meta-heuristic technique to validate the case and to provide a tool that can treat
non-linear and non-convex problems.

In summary, this research established some theoretical ideas in power system optimization,
stochastic modeling, metaheuristic techniques, and sustainable energy planning to compute an optimal
solution presented through a novel methodology to address the HTOP problem, offering a practical tool for
medium-term planning in hydrologically variable regions, in which, moreover, an improvement over
classical approaches that consider single-bus simplifications is included, leading to a particular analysis of
meshed grids with high hydropower potential. The development of this efficient scenario reduction
technique, which enables the solution of a complex stochastic optimization problem critical to electrical grid
reliability, directly aligns with IJECE’s scope by presenting a significant computer engineering solution to
the field of electrical power systems engineering.

The structure of this paper is shown as follows: Initially, section 2 explains the theoretical
description of the stochastic model, outlining how uncertainties in hydrothermal operation planning are
addressed through scenario-based approaches using an ISO model. Subsequently, the ISO formulation for
HTOP is introduced as a minimization problem to optimize total operating costs while accounting for system
constraints and including the power flow for lines and stochastic variables. Then, the most relevant
characteristics of the metaheuristic technique used to validate the results are described. Section 3 describes
the application of the proposed methodology to the case study. Section 4 presents the results, comparing the
proposed scenario tree model against a baseline approach and highlighting its effectiveness in terms of cost
and reliability. Finally, section 5 presents the conclusions, showing the benefits for power system
management and suggesting directions for future work.

2. THE COMPREHENSIVE THEORETICAL BASIS
2.1. Stochastic programming

Optimization model solutions that include explicit uncertainties in parameters or variables are
developed through stochastic programming (SP), where the uncertainty of a random variable is described
using a continuous probability density function, which implies the presence of expected values within the
formulation. This approach generally has a complex evaluation, but one way to overcome this difficulty is to
approximate the continuous function to a discrete distribution function. Therefore, if a random variable is
observable over time, standard analysis used to evaluate its behavior is performed by defining scenarios or
steps.

Two methods are employed to perform this optimization. In the first approach, explicit stochastic
optimization (ESO) is an approach where the uncertainty is considered within the formulation of the problem.
This optimization is based on the two-stage model [34]. In the first stage, a decision is taken, assuming a
priori information (i.e., a value for the random variable is established). Due to the uncertainty, the assumed
value needs corrective actions (resources) in the second stage. This model can be expanded to include more
resources—a multistage problem—which would correspond to the evolution of the uncertainty over time. The
decisions for each stage depend only on this observable data, and the decisions at any stage are independent
of the next one. This characteristic is named non-anticipative of the decisions [36]. The second approach
involves using implicit stochastic optimization (ISO) [37], which includes indirect uncertainty. In this case,
different scenarios model the variable, and each one is run independently. Then, a multivariate analysis is
required to obtain the optimal solution. These models are known as Monte Carlo or Stochastic Simulation
(SS). While they do not consider the non-anticipative principle, its implementation implies a reduction in the
variables of the problem and, therefore, less computation time.

2.1.1. Scenario tree

In a multistage problem, the uncertainty in each stage ¢ of the random variable x can be sampled,
generating realizations that can be organized using a scenario tree. For its construction, it is assumed that
discrete values may represent the probability distribution of the variable at each stage.

In the tree, a scenario S; is defined as any path from the value of the variable in the first stage a;
(root), taking discrete values (nodes «;) in each stage 1,2,3,...,T. It means that each scenario, S;, has T
nodes. The structure of the scenario is exemplary in Figure 1. In this case, the random variable x is
represented by a tree of T = 3 stages, with 4 scenarios and 7 nodes. For example, it can be observed that S; is
described by nodes a;, @, y a4, where each one belongs to a stage 1, 2, and 3, respectively. Each node ¢;
branches into a set of successive nodes «@;, where the path between them has a transition probability
Mot Ja; > 0 (represented in the figure by the blue boxes). It represents the probability that successor node Ni
becomes @;". The probability Mo+ of node a; is calculated by (1),
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Figure 1. Example of a scenario tree

It is worth observing that in a tree, the scenarios share nodes in the early stages and branch out to
reflect the growth of uncertainty over time. This behavior occurs because a random variable can assume both
reduced and predictable values in the present. In contrast, the set of possible values in the later stages, i.e., the
number of nodes in the future, is greater. On the other hand, this branching structure guarantees that the
non-anticipative characteristic is explicitly and naturally represented, because a node must be the same across
all scenarios that share that history [36].

2.1.2. Building a scenario tree

Generating a scenario tree requires data to represent the occurrence of a random process, which is
described by a random variable family and its temporal evolution. There are different methods in the
literature for building a tree [34], where its structure is generally proposed as an input parameter; that is, the
number of nodes per stage is established a priori, and therefore, the total number of scenarios J of the tree.
PCM [38] was used in this work, as described below.
a. Progressive clustering method (PCM)

The random process realizations are denoted as {w?} and are considered broken into stages {w,}, as
it is shown in Figure 2. The scenario tree is defined by {S/} scenarios, where {S/} € {w"}, each one has a
probability 7/ for j = 1,2,...,], and {a;} nodes for i = 1,2,...,1, as previously stated. This method starts by
defining a root node a; to represent the first component w4, e.g., using the mean value of the whole series set
{wl} forr =1,2,...,R. The process continues by conditional clustering of the second component w, into as
many clusters as the number of nodes in the tree at stage 2. The centroids resulting from the clustering
process are used to establish the values of the nodes. In stage 3, the series {w}} are now grouped according to
their connection with the nodes of the second stage. Then, each group is clustered with respect to the
branches defined for each node in the third stage. Again, the node values are based on the centroids found
during clustering. The process continues in the same way until reaching the last stage.
b. Scenario tree reduction

Generally, scenario reduction techniques minimize the distance between the original and the reduced
tree. The established distance function defines the objective function, which selects the best-reduced tree
composed of the most representative scenarios among the entire set. This high-level optimization problem
has a combinatorial nature, and it is essentially a set cover problem [7]. Given the benefits of metaheuristics
and the ease of expressing the problem in terms of a fitness function, the model cited in [35] proposes a
scenario tree reduction using the PSO technique.
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Figure 2. Example of a random process realization

In this problem, the search space consists of the set of all J scenarios of the original tree, where
J scenarios of the reduced tree are established a priori as input data. The objective of the swarm is to
determine J € ] scenarios that are the furthest from each other, i.e., those that maximize the distance to their
neighbors. Each k-th particle of the swarm is measured in terms of its adaptability or fitness function using
the minimum multivariate normalized Euclidean distance 2 of the swarm, multiplied by its probability ¥, as
described in (2).

2
1ox Z{=1(“§,t—“§c,t)

. , o k)1
fitness particle k —1:2137111 P 2)

where J is number of scenarios in the reduced tree (i.e, number of particles of the swarm), k is index for the

particle or scenario for the reduced tree, 2 is index for (J — 1) different scenarios to scenario k, " is

probability of scenario k in the reduced tree, X is number of random variables, T is Total number of stages,

a¥, is value of random variable x corresponding to particle k at stage t, aj, is value of random variable x

corresponding to particle 1 at stage t, and 1y, and normalized factor for random variable x.

The applied algorithm is summarized in the next steps:

— Define parameters for PSO: search space, number of particles, and initialization of swarm.

— Calculate the probability of each scenario-particle k of the swarm: This is obtained by comparing each
particle with the original tree; thus, the probability of the k-th scenario corresponds to the probabilities of
the scenarios in the original tree that were closest to that scenario. Since the swarm is updated in each
iteration, the probability values vary, so particles have a dynamic probability.

— Assign to each particle k a fitness function value, (2). The objective function is the maximization of the
distance between the particles in the swarm, i.e.,

Objective(particle),, = max (fitness k)

— Save the best position of each particle k and that of its neighborhood, using (3):

vt = alvl + i (" = xk) — dara (0 — xk) €)

where vi*! expresses that the new velocity of particle k and iteration i + 1, i.e.; vi*! is influenced by its

previous velocity v, the constant inertia weight @;., the distance from its previous best performance y2?¢*

the distance from its nearest neighbor y2°¢*‘, its actual position y., and the acceleration coefficients ¢,
and ¢,, and finally, ; and 7, are independent random variables sampled from a uniform distribution
Unif (0,1). With the new velocity, the position is updated in each iteration, as is shown in (4):

Xt =+ vt “4)

The process is carried out until the stopping criterion defined by the user is achieved [39].
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2.2. Implicit stochastic optimization formulation for the hydro-thermal operation planning

In general, HTOP is written as a minimization function whose aim is to determine the optimal
combination of available generation resources to provide the demand to minimize the sum of production
costs associated with thermal units and penalty costs due to non-supplied energy for a given horizon, which is
usually subdivided into several intervals [3]. The annual horizon is divided into successive weekly intervals
to reduce computational effort. To consider the stochastic nature of water inflows within the optimization
problem, this work employed the ISO strategy. In this way, the formulation for the HOTP problem is written
in terms of an objective function for each scenario k (OF}), defined by T nodes, as shown in (5), and its
associated restrictions, described by (5):

OFj, = min ZZ:I[ n=1 Cn(grli,t) + Z§=1 Cﬁ(glé,t)] (5)
subject to:

211\1]=1 g!’f,t + Z£=1 pe’,f,t + Zf}:l g'ét = 21;:1 D[I;,t' (6a)
Pflz(,t = Ymee p‘)"f’l,t' (6b)
prlicq,t =Nm 'f(v§,t' qe’,f,t)' (6¢)
17~§,::+1 = Vg,t + [yg,t — Yimee Q§,‘Z” - Selz(,t + ZuEe(qs,‘;l + Sz'tu ] T, (6d)
fli = Acxn - (Gf + P5, + G5 — Df.), (6¢)
emin < Ve < Ve (69)
Qi < 46t < Qmppgyr (6g)
Prigpin < Pt < Py (6h)
Grpin < Gt < Gy (61)
Fipnin < filt S Flypg (6))

where:

k : Scenarios index (K: total number of scenarios of the tree to be optimized)

t : Stages index (T': total number of stages)

n : Thermal units index (N: total number of thermal plants)

e : Reservoirs index (E: total number of reservoirs)

m : Hydro plants index (M: total number of hydro plants)

u : Transmission lines index (L: total number of lines)

1 : Index to the set of plants directly upstream of reservoir e

B : Index of system buses (B: total number of buses)

7 : Time duration of each stage t [h]

gx . : Thermal generation of unit n at stage ¢ of scenario k in [MW]

g’g‘t : Power not supplied in bus S at stage t of scenario k in [MW]

C, (gﬁ,t) : Cost function of unit n at stage t of scenario k in [$]

éﬁ (g’g,t) : Cost of not served energy in [$] associated to bus k at stage t of scenario k

Gl’g"t : Power output in [MW] of thermal units connected to bus k at stage t of scenario k

Pé‘,t : Power output in [MW] of hydro plants connected to bus £ at stage t of scenario k

D;;‘,t : Load demand in [MW] of bus f at stage t of scenario k

p,",’l_t : Power output in [MW] of hydro plant m associated to reservoir e at stage t of scenario k
pé"_t : Power output in [MW] of hydro plants associated to reservoir e at stage t of scenario k
vé“t : Volume in [hm?] of water stored in reservoir e at stage t of scenario k
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ygt : Water inflow in [hm?/h] arriving at reservoir e at stage t of scenario k

qéﬁt : Turbined outflow in [hm?/h] of a hydro plant associated to reservoir e at stage t of scenario k
sgt : Spillage in [hm3/h] of reservoir e at stage t in scenario k

N : Productivity factor of hydro plant m in [MWh/m?]

flkt : Power flow for line 1 at stage t of scenario k in [MW]

A «p : Branch-to-bus incidence matrix

Keep in mind that in the ISO model, each scenario is optimized independently. Then, they are weighted by
their probability of obtaining the expected value (EV) described by (7).

EV = ¥{_, OF - m* @)

2.3. Metaheuristics techniques

Most metaheuristic algorithms are based on evolution algorithms such as GA, PSO, differential
evolution and evolutionary strategies (ES) [17]. Other evolution algorithms were recently developed, e.g.,
median-variance mapping optimization (MVMO) [40]. Previous works showed a favorable adaptation of the
algorithm in comparison to similar techniques when applied to the HTOP problem [41]. MVMO has some
fundamental conceptual similarities to other heuristic approaches. However, it exploits the statistical attribute
of search dynamics by using a unique mapping function for mutation operations based on the mean and
variance of the y-best solutions achieved so far and saved in a continuously updated archive. In addition, the
basic implementation of MVMO is characterized by a single-particle approach whose trade-off between
search diversification and intensification translates into fast progress rates with reduced risk of premature
convergence.

The recent variant of the mean-variance mapping optimization (MVMO-SH) algorithm enhances its
efficiency by incorporating a multi-parent crossover strategy, increasing population diversity, and improving
solution quality. As described in [42], the algorithm begins by initializing its parameters and generating a
normalized initial population of y particles. It then evaluates the population fitness and applies local search
techniques when necessary to improve solutions while maintaining a counter to track the number of
iterations. By updating an individual archive, the algorithm maintains a set of good and bad particles, thereby
guiding future search steps. During the offspring generation phase, the algorithm applies single-parent
crossover to bad particles based on the local best solutions to exploit nearby promising regions. On the other
hand, the mutation is applied by mapping selected dimensions using the local mean and variance, ensuring
variability in the generated offspring. The algorithm evaluates if the stopping conditions are met, such as
completing the maximum number of iterations or achieving a solution of the required quality. If the
convergence criteria are not accomplished, the process repeats from the fitness evaluation step until the
algorithm stops and outputs the best solution found.

3. METHOD

The primary objective of this section is to empirically validate the concepts, assertions, and
theoretical ideas described above, exhibiting the complex characteristics of the HTOP problem that were
included in the proposed methodology. The power system and experimental process are detailed below.

3.1. System

We propose a simulated three-bus power system which considers three transmission lines, as shown
Figure 3. The transmission system is assumed to be lossless. Bus B; is supplied by two thermal generators:
GT,and GT,; bus B, by a hydraulic generator GH;; and bus B3 by a hydraulic generator GH,. In each bus,
fictitious generators GF;, GF,, and GF; are incorporated to consider cases where the system cannot supply
energy. Thermal power plants are modeled by a linear cost function, given in (8).

Cy (glri,t) =by - gg,t (8)

Their costs and main technical parameters are presented in Table 1. Similarly, a linear cost function
1500 g’grt [$] was assumed for power not supplied by generators.

On the other hand, hydroelectric plants are modeled with the constant production function described
in (9). In this case, each reservoir e only has one hydro-plant associated with it, so m was used as a subscript
in the expressions.

p(gk:) = bn - gk, )
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All parameters for hydro-plants are described in Table 2. The parameters of the transmission network are
shown in Table 3.

GT: —
= — GHa
GT2 — ~
— GF2
GF1 —
I T T 1
i l GH: GFs e

D3

Figure 3. Single-phase diagram of the power system

Table 1. Parameters of thermal generators
Thermal Plant (n)  Bus (8)  Popmin IMW]  PinaxIMW] b, [$/MWh]

GT; 1 0 100 90.22
GT, 1 0 50 135.32
GF,, GF,, GF; 1,23 0 1000 15000

Table 2. Parameters of hydraulic generators
Hydro Plant(m)  Bus(8) Vi [h’] Voo [hm3]  Volhm®]  Vep[hm’] 1, [MW/m¥s]  Qupgu[m¥/s]  Prypsx[MW]
GN, 2 300 1200 500 500 0.72 300 216
GN, 3 300 800 400 400 0.72 150 108

Table 3. Parameters of transmission network
Line () Bus connection Susceptance [p.u]  Fipq, [MW]

1 1-2 0.047 60
2 1-3 0.023 60
3 3-2 0.064 60

With respect to load demand, it is modeled by D;, D,, and D5 using a load duration curve (LDC)
with four (4) load levels for each one, as illustrated in Figure 4. The LDC graph depicts the power supplied
over time, with distinct monthly load segments (blocks) corresponding to different power levels, all with the
same durations of 40, 300, 270, and 120 hours per month. Note that the time horizon for the optimization is

defined as one year, divided into twelve monthly intervals.

Load (D) [MW]

Time (t) [h]

Figure 4. LDC with four load levels

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 49-64



Int J Elec & Comp Eng ISSN: 2088-8708 a 57

3.2. Methodology

This section provides a clear and structured exposition of the methods applied. This approach
integrates generation time series, scenario tree construction and reduction, and optimization techniques to
address the complexities of HTOP under uncertainty.

3.2.1. Time series generation

A total of 10000 time series of water inflows for the 2 reservoirs were generated during the 12
stages, using an auto-regressive model [43], as shown in (10).

Yoir = et + OetXey (10)

where e is index respect to storage, Y, , is water inflow of reservoir e at stage t, 1., is periodic mean of water
inflow of reservoir e at stage t, g, is periodic standard deviation of water inflow of reservoir e at stage t;
X, is random variable.

In this case, X, represents the inflows in reservoir e at stage t. Each one can be modeled with a
first order auto-regressive model described by (11):

Xep = P1Xet—1) T/ 1 — pile; (11)
By replacing (11) in (10), it is obtained:

Yo, t-1) — Me,t-1)

Yoir = et + Oy (P1 +41- P125t)

O¢,(t-1)

where p; is the autocorrelation coefficient in t = 1 of the random variable X and &; is the independent
random residue. u,; and o, are estimated from historical water inflow. It was assumed that p; was equal to

0.5. & is a random number taken from a normal distribution NV'(0,1). The original data and the obtained
series are shown in Figure 5.

Real Data - Reservoir 1 Data generated with AR model - Reservoir 1

400" + £400 A

£ £

‘g 300 - - 5300

£ 200+ / | 2200

9 5}

2 100+ 1 ® 100

2 =

12
Stage [months] Stage [months]
Real Data - Reservoir 2 Data generated with AR model - Reservoir 2

5
@

£

&

w

s

<)

=

£

g

©

=

Stage [months] Stage [months]

Figure 5. Original data and the obtained series for the reservoirs of GH; and GH,

3.2.2. Scenarios tree

The PCM described in section 2.1.2. was applied to generate a scenario tree. The proposed structure
is as follows: the first stage has one branch; from the 2™ to the 12 stage, each node branches into two to
obtain a tree (with two dimensions, one for each reservoir) with 21 scenarios.
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3.2.3. Scenario reduction
The scenario reduction PSO mentioned above was applied, where the search space comprises the
complete set of scenarios from the original tree. Fifty particles were selected as input parameters for the

swarm. In this way, (2!1)? scenarios from the original tree were reduced only to 50 scenarios for each
reservoir, as is depicted in Figure 6.
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Figure 6. Original and reduced tree for the reservoirs of GH; and GH,

3.2.4. Optimization model for each scenario
Each scenario was solved by means of two techniques:
a. LP: Using the linprog function of MATLAB, the formulation was written in matrix terms. Due to the
mathematical fundamentals of this kind of optimization, the global solution is obtained.
b. MVMO: The adaptability of metaheuristic techniques facilitates the division of HOTP into hydro and
thermal sub-problems. This result was used as validation and introduced a tool that could be used in non-
linear or non-convex problems. This procedure is described below.

The storage variables vgt are defined as optimization variables or individuals. In this way, every y
individual has a length of t - E = 12 - 2 = 24. A LP algorithm is used to handle water balance constraints
instead of using a penalty scheme. Given that inflows yZ,"t are predetermined in each scenario and that the
optimization algorithms propose the vé‘,t values within the search boundaries, the purpose of using a LP is
to determine the values of sé‘,t and qéf ¢ such that (6d) is satisfied. Nevertheless, the fulfillment of the
maximum bounds of séf ¢+ and q(’; ¢ 1s not guaranteed when using LP. To overcome this problem, a heuristic
rule is applied after performing LP to ensure that qé‘_t < Qg Considering that sé,‘_t > 0 is the only
condition for s¥,, the rule is defined as follows:

k
G _[o 0< g5 < Quyos
et kK _ koS 0
et — Qmypar Qe Mmax

with sé‘_t and qé"t in [hm3h] from hydroelectric generation 6d and the production factor
N from Table 2, the total hydraulic energy in each stage EH, can be calculated.

From the EH; values, thermal generations gﬁlt and hydroelectric generations p,’ﬁl,t in each load demand
box are obtained through a DC load flow using LP. Values of p,’f,’l‘t are replaced in the cost function from

(8), where the outcomes are considered as the fitness function of the individual y. The MVMO algorithm
runs until the convergence criterion is accomplished.
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To enhance the robustness and clarity of our methodology, thereby enabling its seamless and
accurate application, a step-by-step exposition of the experimental procedure employed in this case study is
provided, as outlined below. Figure 7 shows the flow of the methodology.

a. Generate 10000 time series of reservoir inflows using the auto-regressive model (10)-(11) with
parameters p, = 0.5, normal distribution " (0,1), and historical means/std deviations.

b. Build a scenario tree via PCM: Start with the root node (mean of the first stage), and cluster subsequent
stages into two branches per node, yielding 2! scenarios for twelve stages and two reservoirs.

c. Reduce to 50 scenarios using PSO: Initialize the particles in the search space of original scenarios; update
velocities/positions; maximize fitness, (8), until convergence.

d. Each reduced scenario is solved using LP to obtain its global solution.

e. To introduce metaheuristic techniques, each reduced scenario is solved using the MVMO tool, where each
particle y is defined in terms of storages v[f’t corresponding to 24 decision variables (E = 2,T = 12) for
scenario k; use LP to compute spills/turbines satisfying water balance (6d); apply heuristic for bounds
(q!{ ¢t < Um,,,,); then, compute total hydraulic energy EH.. Subsequently, the thermal and hydro
generations for each load block are determined using DC-LP. These power values are used to evaluate the
total cost, defining the particle’s fitness y. Run MVMO until 10000 iterations.

f. Each solution k from the LP and MVMO is weighted by its probability 7* to compute the EV (7).

P
(1

¥ v
/ Historical Inflow / Solve HTOP with LP for Solve HTOP with MVMO for
Data scenario k scenario k
! :
Generate 10000 inflow series
with AR model / Probability scenario k /
.
Building Scenario Tree using PCM i -
1 ¥ ¥
Calculate EV for LP Calculate EV for MVMO
Scenario Reduction using PSO solutions solutions

| I J

Validate results LP vs. MVMO

k=1

.']_Jl

r

End

Figure 7. Flow chart of the proposed methodology

4. RESULTS AND DISCUSSION

The results for each of the 50 scenarios optimized with LP are shown in the third and eighth
columns, while the costs with MVMO are presented in the fourth and ninth columns of Table 4. Besides, the
error of MVMO techniques compared with the LP solution is described in the fifth and tenth columns,
showing that the costs obtained with the metaheuristic tool are close to the optimum achieved using LP. Note
that the probability 7 shown in the second and seventh columns is obtained through the application of the
scenario tree and reduction techniques.

The solution of the 10000 original time series without outliers, obtained by LP, was $111579.81 x
103. We compare this value with the EV of the cost finding with LP $105208.70 X 103, resulting in an error
of 5.70%. We position our work within network-constrained hydrothermal scheduling under uncertainty. On
one side, scenario tree reduction is a well-established technique in stochastic programming to improve
tractability while preserving solution quality. [38] shows that reducing a scenario tree by 50% can still
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maintain around 90% accuracy, based on Fortet—Mourier probability metrics. Conversely, while prior studies
demonstrate the transmission-constrained stochastic dispatch and SDDP-based policies, they employ the ESO
approach for non-convex problems [44]. Recent medium-term models focus on multistage stochasticity and
water valuation, frequently with simplified network representations [45].

Furthermore, compared to prior studies, our hybrid methodology demonstrates improved
performance in handling stochastic uncertainties in multi-bus hydrothermal systems that could be applied to
non-simplification problems. For instance, deterministic metaheuristic approaches in short-term HTOP, as
reviewed in [17] reported errors up to 5—-10% in cost estimations for simplified single-bus models. Moreover,
the findings show effective uncertainty management, with low average errors confirming the approach’s
reliability. Nevertheless, higher errors (~6%) in scenarios 17 and 35 indicate sensitivity to extreme inflows,
which advanced reduction techniques could address. Readers can learn that scenario tree reduction efficiently
captures 94.3% of original inflow variability using only 50 scenarios, avoiding the computational burden of
full Monte Carlo simulations. In context, this advances medium-term HTOP beyond deterministic models
ramp [18]-[21] by addressing uncertainty propagation, enabling more realistic planning in multi-bus systems.
For future applications, this methodology is handy for integrating renewables (e.g., wind, as in [24]),
modeling more realistic systems, and including scalable tools for larger systems via parallel computing, all in
favor of supporting the policy on reservoir management amid climate change and ensuring that operating
decisions can be executed.

Table 4. Results of proposed methodology compared with LP solution
Sce Prob. [%] Cost with LP Cost with LP Error [%] Sce Prob.[%] Costwith LP Cost with LP  Error [%)]

[$ x10°] [$ x10°] [$ x10°] [$ x10°]

1 423 106029.92 106289.62 0.24 26 1.46 109498.19  110809.82 1.20
2 0.42 91109.26 93380.17 2.49 27 6.00 131500.91 137946.44 4.90
3 0.97 105672.47 105676.62 0.00 28 235 96911.26 100122.04 3.31
4 3.00 119569.63 119616.83 0.04 29 1.33 86923.46 89985.55 3.52
5 1.42 80351.32 82110.38 2.19 30 439 108217.82 108675.75 0.42
6 0.97 87900.37 88705.32 0.92 31 0.63 108142.27 108198.56 0.05
7 1.46 81428.60 82861.59 1.76 32 3.88 105202.91 106381.66 1.12
8 0.92 111192.94  111271.10 0.07 33 0.84 106405.66  107606.37 1.13
9 2.01 116989.85 117160.27 0.15 34 3.50 108588.07 108822.22 0.22
10 5.32 117920.07 117969.09 0.04 35 0.8 70608.12 74693.93 5.79
11 2.33 103050.40  104395.61 1.31 36 3.09 124392.32 124781.60 0.31
12 1.85 104975.83 106850.45 1.79 37 0.55 92318.53 92753.49 0.47
13 1.51 85954.68 88608.42 3.09 38 0.98 98862.47 100940.76 2.10
14 1.18 99932.39 100571.58 0.64 39 0.63 101199.49  101752.35 0.55
15 1.28 95230.83 97761.24 2.66 40 1.30 92697.10 93462.87 0.83
16 2.76 110386.61 110397.83 0.01 41 0.44 92091.89 93781.46 1.83
17 0.79 87617.69 92914.58 6.05 42 1.16 117948.52 118034.12 0.07
18 436 78120.47 79827.29 2.18 43 137 83105.65 85342.51 2.69
19 0.66 102443.71 102713.10 0.26 44 1.24 93724.34 96952.57 3.44
20 1.77 110548.87 110748.32 0.18 45 1.44 94444.89 97499.24 3.23
21 1.03 96473.18 96541.80 0.07 46 2.40 107127.66  107627.55 0.47
22 2.07 120341.61 120401.09 0.05 47 1.66 116026.54  116264.92 0.21
23 0.88 85443.77 86254.36 0.95 48 1.30 77111.98 78993.13 2.44
24 1.67 106985.55 106991.38 0.01 49 2.23 80283.84 82085.97 224
25 5.30 107189.84  107540.43 0.33 50 4.82 119142.82 120440.69 1.09

EV 105208.70  106540.92 0.13

5. CONCLUSION

A novel methodology to optimize hydrothermal operation planning, incorporating stochastic water
inflows via ISO by multidimensional scenario trees reduced through PSO. Additionally, it considers
transmission constraints and multi-bus configurations and highlights the adaptability of the models to large
and sparsely meshed systems, such as those in South America. Key points include the generation of 10,000
time series, tree reduction to 50 scenarios, and its application on a 3-bus system case study, where the
constraints and objective function were assumed linear. A LP was implemented to run both the scenario tree
and the original time series with the Monte Carlo technique to validate the results, yielding an EV of
$105,208.70 x 103 with average errors of 5.7%, showing the robustness of this methodological approach.
Besides, this work proposes and validates a model using a metaheuristic tool (MVMO-SH), achieving near-
optimal costs with low errors in medium-term horizons and supplying a technique that could treat non-linear
and non-convex problems.

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 49-64



Int J Elec & Comp Eng ISSN: 2088-8708 a 61

Summarizing, this methodology allows the use of the scenario tree with a few scenarios in exchange
for a Monte Carlo technique, which requires a lot of these, obtaining similar results when we run them as ISO
models, and allows for modeling complex systems when it is combined with a MVMO tool. However, ISO
modeling does not consider the non-anticipative principle, used in an ESO models, which is key because it
ensures that hydrothermal operating decisions are made based on the information available at any given time,
avoiding fictitious solutions that use information from the future. As future work, we expect to incorporate
the ESO strategy into the methodology.

Other implications for future studies include extensions to incorporate renewables, such as wind and
solar, and considering models for real-time applications. In practice, this serves as an operational tool for
utilities in regions like South America, optimizing costs and reliability in sparse networks. For policy, it
informs regulations on reservoir management under climate variability (e.g., ENSO), promoting sustainable
energy planning.
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