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 Hydrothermal operation planning (HTOP) is a complex, large-scale optimal 

control problem. Traditionally, mathematical programming is used to solve 

it; however, metaheuristic techniques have emerged as an alternative 

approach. However, even in the context of current technological 

developments, the models developed to date generally require 

simplifications in the formulation. In particular, in medium-term planning, 

they have used a deterministic model or simplified transmission lines into a 

single bus. However, this approach leads to conservative and unrealistic 

solutions that may result in either oversizing or underutilization of resources. 

Therefore, this work proposes a methodology for incorporating uncertainties 

into the HTOP problem with a multi-bus topology. It was tested in a three-

bus system, where linear functions are applied to simplify the production of 

hydroelectric plants and the cost of thermal units. The methodology 

incorporated well-established techniques in an implicit stochastic 

optimization (ISO) model, using a tree of 50 scenarios to model the 

hydrological series, which is solved with linear programming (LP). The 

results were validated with the costs of the 10000 generated series, showing 

an error of 5.07%. Additionally, the solutions were compared with an 

adapted metaheuristic technique for this problem to explore models 

applicable to more complex formulations. 
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1. INTRODUCTION  

An essential requirement for the operation of any electric power system is the energy supply to meet 

the demand economically, i.e., maximizing social benefit or, under certain assumptions, minimizing 

operating costs [1]. To achieve this goal, systems require careful planning that meets standards for quality, 

security, environmental protection, and reliability, ensuring sustainable and efficient power system operation. 

The type of primary resource used to obtain electric energy decisively determines the complexity of 

planning. Hydropower, which relies on water reservoirs, is significantly affected by seasonal changes and 

climate phenomena such as the El Niño-Southern Oscillation (ENSO). On the other hand, thermal power 

plants, typically powered by fossil fuels, offer a stable energy supply but result in environmental harm. A 

hydrothermal system, therefore, balances both resources by considering that the water resource has no direct 

monetary cost; thus, the operating cost is determined by the amount of thermal generation used. However, the 

physical capacity of reservoirs limits the storage of water resources. Combined with the unpredictable nature 
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of water inflow, this creates a dilemma about whether to use the resource immediately or conserve it for 

future use, resulting in a temporary interdependence between these choices. Thus, hydrothermal operation 

planning (HTOP) is a dynamic process that can be modeled as an optimization problem, where the objective 

is to assess the amount of water that could replace thermal energy within a time horizon [2]. 

In addition to these dynamic and stochastic characteristics, HTOP is regarded as a complex 

optimization problem because of i) its non-linear, non-separable, and non-convex nature [3]; ii) it includes 

several constraints, such as energy balance, limits of water reserve volume, total outflows, hydroelectric 

generation functions, and water balance equations; iii) it involves many variables with different time 

discretization; and iv) it is hard to consider a long-time horizon divided into several short intervals. For all 

these reasons, it is necessary to hierarchically disaggregate the problem into long-term, medium-term, and 

short-term horizons. The coupling between horizons is carried out from the largest to the smallest, based on 

the availability of water resources or other parameters resulting from previous planning, such as the value of 

water [4]. 

Conventionally, HTOP problems are solved by mathematical programming [5], such as linear 

programming (LP), dynamic programming (DP), nonlinear programming (NLP), or stochastic dynamic 

programming (SDP) and stochastic dual dynamic programming (SDDP) [6], [7]. These procedures obtain the 

global optimal solution if the necessary optimality conditions are satisfied; however, in complex systems, 

they require being combined with decomposition [8], [9] linear approximations [10], [11] or simulation 

techniques (e.g., Monte Carlo) [12], [13] and also need to consider significant simplifications, even though 

technological advances in processors and software have reduced the number of these reductions. Another 

emerging approach in recent decades to solving optimization problems is metaheuristic techniques. Although 

an optimal global solution is not guaranteed, especially for complex and high-dimensional problems, they 

provide near-optimal solutions in a reasonable time [14]. Given their features such as simplicity, adaptability, 

and robustness, metaheuristic tools have been applied to solve HTOP problems, showing great potential to 

address their complex formulation and to model them without extensive simplifications [15], [16]. In [17], a 

comprehensive and up-to-date overview of the metaheuristic tools applied to HTOP in the short term is 

provided. Regarding the development of tools applied in medium-term planning problems, the works [18]–

[21] remark that different tools, such as genetic algorithm (GA) or particle swarm (PSO), are implemented to 

solve deterministic and single-bus problems. 

Mathematical and metaheuristic models developed so far to solve the HTOP problem simplify the 

nature of the objective function, the restrictions, or the variables. For example, studies such as [11] assume 

the costs of thermal power plants as linear functions. Alternatively, works like [22] and different versions of 

SDDP reduce the objective function to a piecewise linear form, but it is still convex. Regarding stochastic 

modeling, [23] assumes uncertainty with a two-stage model, while [24] includes a stochastic environment 

only in the final stages. In addition, some models condense the system into a single bus [25], and others 

simplify the reservoirs using aggregation methodology [26]. On the metaheuristics side, works such as  

[27]–[29] consider non-convex cost functions stochastically and non-linear water production functions, but 

employ a single-bus model. Instead, [30]–[32] take on the transmission network but assume a deterministic 

optimization problem. 

Depending on the time horizon studied, each simplification could affect the results and decision-

making. For instance, in the medium-term horizon, electrical transmission constraints are significant in large, 

loosely meshed systems such as those in South America, because the lines are more vulnerable to exceeding 

their operating limits. Furthermore, it is important to stochastically model specific input parameters, such as 

renewable primary resources and electricity demand, since uncertainty propagates over longer planning 

horizons [33]. Taking into account the above-mentioned aspects, and considering that implementing realistic 

economic dispatch models that reflect the physical restrictions and unpredictability of the generation is 

essential to avoid either assignment of load that cannot be produced or oversizing or underutilization of 

resources, the core research question addressed in this work is how to model the inherent uncertainty of 

variables associated with renewable generation resources within a medium-term HTOP, while simultaneously 

accounting for the transmission network and ensuring the resulting methodology can solve the problem 

despite complex formulations. In this regard, this work proposes a novel optimization methodology that can 

be applied to medium-term problems, where the network and the stochasticity of water inputs are included. 

An implicit stochastic optimization (ISO) strategy was applied to address uncertainty in hydro unit inflows, 

using a scenario tree with the progressive clustering method (PCM) [34], which was reduced through an 

algorithm based on particle swarm optimization [35]. The proposed methodology was tested in a case study 

in which the locations of the hydro and thermal power generators, as well as the load demand, were 

considered at different system buses, and the inflows of the hydro plant were modeled using a reduced 

scenario tree with 50 scenarios. Linear functions were used to represent hydro plant production and thermal 

unit costs, and a linear programming (LP) tool was implemented to solve the optimization; however, the 
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methodology incorporated a meta-heuristic technique to validate the case and to provide a tool that can treat 

non-linear and non-convex problems. 

In summary, this research established some theoretical ideas in power system optimization, 

stochastic modeling, metaheuristic techniques, and sustainable energy planning to compute an optimal 

solution presented through a novel methodology to address the HTOP problem, offering a practical tool for 

medium-term planning in hydrologically variable regions, in which, moreover, an improvement over 

classical approaches that consider single-bus simplifications is included, leading to a particular analysis of 

meshed grids with high hydropower potential. The development of this efficient scenario reduction 

technique, which enables the solution of a complex stochastic optimization problem critical to electrical grid 

reliability, directly aligns with IJECE’s scope by presenting a significant computer engineering solution to 

the field of electrical power systems engineering. 

The structure of this paper is shown as follows: Initially, section 2 explains the theoretical 

description of the stochastic model, outlining how uncertainties in hydrothermal operation planning are 

addressed through scenario-based approaches using an ISO model. Subsequently, the ISO formulation for 

HTOP is introduced as a minimization problem to optimize total operating costs while accounting for system 

constraints and including the power flow for lines and stochastic variables. Then, the most relevant 

characteristics of the metaheuristic technique used to validate the results are described. Section 3 describes 

the application of the proposed methodology to the case study. Section 4 presents the results, comparing the 

proposed scenario tree model against a baseline approach and highlighting its effectiveness in terms of cost 

and reliability. Finally, section 5 presents the conclusions, showing the benefits for power system 

management and suggesting directions for future work. 

 

 

2. THE COMPREHENSIVE THEORETICAL BASIS 

2.1.  Stochastic programming 

Optimization model solutions that include explicit uncertainties in parameters or variables are 

developed through stochastic programming (SP), where the uncertainty of a random variable is described 

using a continuous probability density function, which implies the presence of expected values within the 

formulation. This approach generally has a complex evaluation, but one way to overcome this difficulty is to 

approximate the continuous function to a discrete distribution function. Therefore, if a random variable is 

observable over time, standard analysis used to evaluate its behavior is performed by defining scenarios or 

steps. 

Two methods are employed to perform this optimization. In the first approach, explicit stochastic 

optimization (ESO) is an approach where the uncertainty is considered within the formulation of the problem. 

This optimization is based on the two-stage model [34]. In the first stage, a decision is taken, assuming a 

priori information (i.e., a value for the random variable is established). Due to the uncertainty, the assumed 

value needs corrective actions (resources) in the second stage. This model can be expanded to include more 

resources–a multistage problem–which would correspond to the evolution of the uncertainty over time. The 

decisions for each stage depend only on this observable data, and the decisions at any stage are independent 

of the next one. This characteristic is named non-anticipative of the decisions [36]. The second approach 

involves using implicit stochastic optimization (ISO) [37], which includes indirect uncertainty. In this case, 

different scenarios model the variable, and each one is run independently. Then, a multivariate analysis is 

required to obtain the optimal solution. These models are known as Monte Carlo or Stochastic Simulation 

(SS). While they do not consider the non-anticipative principle, its implementation implies a reduction in the 

variables of the problem and, therefore, less computation time. 

 

2.1.1. Scenario tree 

In a multistage problem, the uncertainty in each stage t of the random variable 𝑥 can be sampled, 

generating realizations that can be organized using a scenario tree. For its construction, it is assumed that 

discrete values may represent the probability distribution of the variable at each stage. 

In the tree, a scenario 𝑆𝑗 is defined as any path from the value of the variable in the first stage 𝛼1 

(root), taking discrete values (nodes 𝛼𝑖) in each stage 1, 2, 3, . . . , 𝑇. It means that each scenario, 𝑆𝑗, has 𝑇 

nodes. The structure of the scenario is exemplary in Figure 1. In this case, the random variable 𝑥 is 

represented by a tree of 𝑇 = 3 stages, with 4 scenarios and 7 nodes. For example, it can be observed that 𝑆1 is 

described by nodes 𝛼1, 𝛼2 y 𝛼4, where each one belongs to a stage 1, 2, and 3, respectively. Each node 𝛼𝑖 

branches into a set of successive nodes 𝛼𝑖
+, where the path between them has a transition probability 

𝜋𝛼𝑖
+/𝛼𝑖

> 0 (represented in the figure by the blue boxes). It represents the probability that successor node 𝑁𝑖 

becomes 𝛼𝑖
+. The probability 𝜋𝛼𝑖

+  of node 𝛼𝑖
+ is calculated by (1), 
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𝜋1 = 1 for 𝛼𝑖
+ = 1 (1) 

 

𝜋𝛼𝑖
+ = 𝜋𝛼𝑖

+/𝛼𝑖
∙ 𝜋𝛼𝑖

 for 𝛼𝑖
+ ≠ 1  

 

where nodes in the last stage have a probability of each scenario 𝜋𝑖; e.g., in Figure 1, 𝜋5 corresponds to the 

probability of 𝛼5, and also defines the probability  𝜋2 of 𝑆2. 

 

 

 
 

Figure 1. Example of a scenario tree 

 

 

It is worth observing that in a tree, the scenarios share nodes in the early stages and branch out to 

reflect the growth of uncertainty over time. This behavior occurs because a random variable can assume both 

reduced and predictable values in the present. In contrast, the set of possible values in the later stages, i.e., the 

number of nodes in the future, is greater. On the other hand, this branching structure guarantees that the  

non-anticipative characteristic is explicitly and naturally represented, because a node must be the same across 

all scenarios that share that history [36].  

 

2.1.2. Building a scenario tree 

Generating a scenario tree requires data to represent the occurrence of a random process, which is 

described by a random variable family and its temporal evolution. There are different methods in the 

literature for building a tree [34], where its structure is generally proposed as an input parameter; that is, the 

number of nodes per stage is established a priori, and therefore, the total number of scenarios 𝐽 of the tree. 

PCM [38] was used in this work, as described below. 

a. Progressive clustering method (PCM) 

The random process realizations are denoted as {𝜔𝑅} and are considered broken into stages {𝜔𝑡}, as 

it is shown in Figure 2. The scenario tree is defined by {𝑆𝑗} scenarios, where {𝑆𝑗} ∈ {𝜔𝑅}, each one has a 

probability 𝜋𝑗 for 𝑗 = 1, 2, . . . , 𝐽, and {𝛼𝑖} nodes for 𝑖 = 1, 2, . . . , 𝐼, as previously stated. This method starts by 

defining a root node 𝛼1 to represent the first component 𝜔1, e.g., using the mean value of the whole series set 

{𝜔1
𝑟} for 𝑟 = 1, 2, . . . , 𝑅. The process continues by conditional clustering of the second component 𝜔2 into as 

many clusters as the number of nodes in the tree at stage 2. The centroids resulting from the clustering 

process are used to establish the values of the nodes. In stage 3, the series {𝜔3
𝑟} are now grouped according to 

their connection with the nodes of the second stage. Then, each group is clustered with respect to the 

branches defined for each node in the third stage. Again, the node values are based on the centroids found 

during clustering. The process continues in the same way until reaching the last stage. 

b. Scenario tree reduction 

Generally, scenario reduction techniques minimize the distance between the original and the reduced 

tree. The established distance function defines the objective function, which selects the best-reduced tree 

composed of the most representative scenarios among the entire set. This high-level optimization problem 

has a combinatorial nature, and it is essentially a set cover problem [7]. Given the benefits of metaheuristics 

and the ease of expressing the problem in terms of a fitness function, the model cited in [35] proposes a 

scenario tree reduction using the PSO technique. 
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Figure 2. Example of a random process realization 

 

 

In this problem, the search space consists of the set of all 𝐽 scenarios of the original tree, where 

ℑ scenarios of the reduced tree are established a priori as input data. The objective of the swarm is to 

determine ℑ ∈ 𝐽 scenarios that are the furthest from each other, i.e., those that maximize the distance to their 

neighbors. Each 𝜅-th particle of the swarm is measured in terms of its adaptability or fitness function using 

the minimum multivariate normalized Euclidean distance ℶ of the swarm, multiplied by its probability 𝜋𝜅, as 

described in (2). 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝜅 = 𝑚𝑖𝑛
ℶ∈ℑ 

𝜋𝜅 {
1

𝑋
∑

√∑ (𝛼𝑥,𝑡
𝜅 −𝛼𝑥,𝑡

ℶ )
2𝑇

𝑡=1

𝜓𝑥

𝑋
𝑥=1 } (2) 

 

where ℑ is number of scenarios in the reduced tree (i.e, number of particles of the swarm), 𝜅 is index for the 

particle or scenario for the reduced tree, ℶ is index for (ℑ − 1) different scenarios to scenario 𝜅, 𝜋𝜅 is 

probability of scenario 𝜅 in the reduced tree, 𝑋 is number of random variables, 𝑇 is Total number of stages, 

𝛼𝑥,𝑡
𝜅  is value of random variable 𝑥 corresponding to particle 𝜅 at stage 𝑡, 𝛼𝑥,𝑡

ℶ  is value of random variable 𝑥 

corresponding to particle ℶ at stage t, and 𝜓𝑥 and normalized factor for random variable 𝑥. 

The applied algorithm is summarized in the next steps: 

− Define parameters for PSO: search space, number of particles, and initialization of swarm. 

− Calculate the probability of each scenario-particle κ of the swarm: This is obtained by comparing each 

particle with the original tree; thus, the probability of the 𝜅-th scenario corresponds to the probabilities of 

the scenarios in the original tree that were closest to that scenario. Since the swarm is updated in each 

iteration, the probability values vary, so particles have a dynamic probability. 

− Assign to each particle 𝜅 a fitness function value, (2). The objective function is the maximization of the 

distance between the particles in the swarm, i.e., 

 

Objective(particle)𝜅 = max (fitness 𝜅) 

 

− Save the best position of each particle κ and that of its neighborhood, using (3): 

 

𝜐𝜅
𝑖+1 = 𝜛𝜅

𝑖𝜐𝜅
𝑖 + 𝜙1𝑟1(𝜒𝜅

𝑝𝑏𝑒𝑠𝑡
− 𝜒𝜅

𝑖 ) − 𝜙1𝑟2(𝜒𝜅
𝑔𝑏𝑒𝑠𝑡

− 𝜒𝜅
𝑖 ) (3) 

 

where 𝜐𝜅
𝑖+1 expresses that the new velocity of particle 𝜅 and iteration 𝑖 + 1, i.e.; 𝜐𝜅

𝑖+1 is influenced by its 

previous velocity 𝜐𝜅
𝑖 , the constant inertia weight 𝜛𝜅

𝑖 , the distance from its previous best performance 𝜒𝜅
𝑝𝑏𝑒𝑠𝑡

 

the distance from its nearest neighbor 𝜒𝜅
𝑔𝑏𝑒𝑠𝑡

, its actual position 𝜒𝜅
𝑖 , and the acceleration coefficients 𝜙1 

and 𝜙2, and finally, 𝑟1 and 𝑟2 are independent random variables sampled from a uniform distribution 

𝑈𝑛𝑖𝑓(0,1). With the new velocity, the position is updated in each iteration, as is shown in (4): 

 

𝜒𝜅
𝑖+1 = 𝜒𝜅

𝑖 +   𝜐𝜅
𝑖+1 (4) 

 

The process is carried out until the stopping criterion defined by the user is achieved [39]. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 49-64 

54 

2.2.  Implicit stochastic optimization formulation for the hydro-thermal operation planning 

In general, HTOP is written as a minimization function whose aim is to determine the optimal 

combination of available generation resources to provide the demand to minimize the sum of production 

costs associated with thermal units and penalty costs due to non-supplied energy for a given horizon, which is 

usually subdivided into several intervals [3]. The annual horizon is divided into successive weekly intervals 

to reduce computational effort. To consider the stochastic nature of water inflows within the optimization 

problem, this work employed the ISO strategy. In this way, the formulation for the HOTP problem is written 

in terms of an objective function for each scenario 𝑘 (𝑂𝐹𝑘), defined by 𝑇 nodes, as shown in (5), and its 

associated restrictions, described by (5): 

 

𝑂𝐹𝑘 = min ∑ [∑ 𝐶𝑛(𝑔𝑛,𝑡
𝑘 )𝑁

𝑛=1 + ∑ 𝐶̃𝛽(𝑔̃𝛽,𝑡
𝑘 )𝐵

𝛽=1 ]𝑇
𝑡=1  (5) 

 

subject to: 

 

∑ 𝑔𝑛,𝑡
𝑘𝑁

𝑛=1 + ∑ 𝑝𝑒,𝑡
𝑘𝐸

𝑒=1 + ∑ 𝑔̃𝛽,𝑡
𝑘𝐵

𝛽=1 = ∑ 𝐷𝛽,𝑡
𝑘𝐵

𝛽=1 ,     (6a) 

 

𝑝𝑒,𝑡
𝑘 = ∑ 𝑝𝑚,𝑡

𝑘
𝑚∈𝑒 , (6b) 

 

𝑝𝑚,𝑡
𝑘 = 𝜂𝑚 ⋅ 𝑓(𝑣𝑒,𝑡

𝑘 , 𝑞𝑒,𝑡
𝑘 ), (6c) 

 

𝑣𝑒,𝑡+1
𝑘 = 𝑣𝑒,𝑡

𝑘 + [𝑦𝑒,𝑡
𝑘 − ∑ 𝑞𝑒,𝑡

𝑘,𝑚
𝑚∈𝑒 − 𝑠𝑒,𝑡

𝑘 + ∑ (𝑞𝑒,𝑡
𝑘,𝑢 + 𝑠𝑒,𝑡

𝑘,𝑢)𝑢∈𝑒 ] ⋅ 𝜏, (6d) 

 

𝑓𝑙,𝑡
𝑘 = 𝒜ℒ×ℬ ⋅ (𝐺𝛽,𝑡

𝑘 + 𝑃𝛽,𝑡
𝑘 + 𝑔̃𝛽,𝑡

𝑘 − 𝐷𝛽,𝑡
𝑘 ), (6e) 

 

𝑉𝑒𝑚𝑖𝑛
≤ 𝑣𝑒,𝑡

𝑘 ≤ 𝑉𝑒𝑚𝑎𝑥
, (6f) 

 

𝑄𝑚𝑚𝑖𝑛
≤ 𝑞𝑒,𝑡

𝑘 ≤ 𝑄𝑚𝑚𝑎𝑥
, (6g) 

 

𝑃𝑚𝑚𝑖𝑛
≤ 𝑝𝑒,𝑡

𝑘,𝑚 ≤ 𝑃𝑚𝑚𝑎𝑥
, (6h) 

 

𝐺𝑛𝑚𝑖𝑛
≤ 𝑔𝑛,𝑡

𝑘 ≤ 𝐺𝑛𝑚𝑎𝑥
, (6i) 

 

𝐹𝑙𝑚𝑖𝑛
≤ 𝑓𝑙,𝑡

𝑘 ≤ 𝐹𝑙𝑚𝑎𝑥
, (6j) 

 

where: 

𝑘 : Scenarios index (𝐾: total number of scenarios of the tree to be optimized) 

𝑡 : Stages index (𝑇: total number of stages) 

𝑛 : Thermal units index (𝑁: total number of thermal plants) 

𝑒 : Reservoirs index (𝐸: total number of reservoirs) 

𝑚 : Hydro plants index (𝑀: total number of hydro plants) 

𝑢 : Transmission lines index (𝐿: total number of lines) 

𝑙 : Index to the set of plants directly upstream of reservoir 𝑒 

𝛽 : Index of system buses (𝐵: total number of buses) 

𝜏 : Time duration of each stage 𝑡 [h] 

𝑔𝑛,𝑡
𝑘  : Thermal generation of unit n at stage 𝑡 of scenario 𝑘 in [MW] 

𝑔̃𝛽,𝑡
𝑘  : Power not supplied in bus 𝛽 at stage 𝑡 of scenario 𝑘 in [MW] 

𝐶𝑛(𝑔𝑛,𝑡
𝑘 ) : Cost function of unit 𝑛 at stage 𝑡 of scenario 𝑘 in [$] 

𝐶̃𝛽(𝑔̃𝛽,𝑡
𝑘 ) : Cost of not served energy in [$] associated to bus 𝑘 at stage 𝑡 of scenario 𝑘 

𝐺𝛽,𝑡
𝑘  : Power output in [MW] of thermal units connected to bus 𝑘 at stage 𝑡 of scenario 𝑘 

𝑃𝛽,𝑡
𝑘  : Power output in [MW] of hydro plants connected to bus 𝛽 at stage 𝑡 of scenario 𝑘 

𝐷𝛽,𝑡
𝑘  : Load demand in [MW] of bus 𝛽 at stage 𝑡 of scenario 𝑘 

𝑝𝑚,𝑡
𝑘  : Power output in [MW] of hydro plant 𝑚 associated to reservoir 𝑒 at stage 𝑡 of scenario 𝑘 

𝑝𝑒,𝑡
𝑘  : Power output in [MW] of hydro plants associated to reservoir 𝑒 at stage 𝑡 of scenario 𝑘 

𝑣𝑒,𝑡
𝑘  : Volume in [hm3] of water stored in reservoir 𝑒 at stage 𝑡 of scenario 𝑘 
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𝑦𝑒,𝑡
𝑘  : Water inflow in [hm3/h] arriving at reservoir 𝑒 at stage 𝑡 of scenario 𝑘 

𝑞𝑒,𝑡
𝑘  : Turbined outflow in [hm3/h] of a hydro plant associated to reservoir 𝑒 at stage 𝑡 of scenario 𝑘 

𝑠𝑒,𝑡
𝑘  : Spillage in [hm3/h] of reservoir 𝑒 at stage 𝑡 in scenario 𝑘 

𝜂𝑚 : Productivity factor of hydro plant m in [MWh/m3] 

𝑓𝑙,𝑡
𝑘  : Power flow for line l at stage 𝑡 of scenario 𝑘 in [MW] 

𝒜ℒ×ℬ : Branch-to-bus incidence matrix 

Keep in mind that in the ISO model, each scenario is optimized independently. Then, they are weighted by 

their probability of obtaining the expected value (EV) described by (7). 

 

𝐸𝑉 = ∑ 𝑂𝐹𝑘
𝐾
𝑘=1 ⋅ π𝑘 (7) 

 

2.3.  Metaheuristics techniques 

Most metaheuristic algorithms are based on evolution algorithms such as GA, PSO, differential 

evolution and evolutionary strategies (ES) [17]. Other evolution algorithms were recently developed, e.g., 

median-variance mapping optimization (MVMO) [40]. Previous works showed a favorable adaptation of the 

algorithm in comparison to similar techniques when applied to the HTOP problem [41]. MVMO has some 

fundamental conceptual similarities to other heuristic approaches. However, it exploits the statistical attribute 

of search dynamics by using a unique mapping function for mutation operations based on the mean and 

variance of the 𝜒-best solutions achieved so far and saved in a continuously updated archive. In addition, the 

basic implementation of MVMO is characterized by a single-particle approach whose trade-off between 

search diversification and intensification translates into fast progress rates with reduced risk of premature 

convergence. 

The recent variant of the mean-variance mapping optimization (MVMO-SH) algorithm enhances its 

efficiency by incorporating a multi-parent crossover strategy, increasing population diversity, and improving 

solution quality. As described in [42], the algorithm begins by initializing its parameters and generating a 

normalized initial population of 𝜒 particles. It then evaluates the population fitness and applies local search 

techniques when necessary to improve solutions while maintaining a counter to track the number of 

iterations. By updating an individual archive, the algorithm maintains a set of good and bad particles, thereby 

guiding future search steps. During the offspring generation phase, the algorithm applies single-parent 

crossover to bad particles based on the local best solutions to exploit nearby promising regions. On the other 

hand, the mutation is applied by mapping selected dimensions using the local mean and variance, ensuring 

variability in the generated offspring. The algorithm evaluates if the stopping conditions are met, such as 

completing the maximum number of iterations or achieving a solution of the required quality. If the 

convergence criteria are not accomplished, the process repeats from the fitness evaluation step until the 

algorithm stops and outputs the best solution found. 

 

 

3. METHOD 

The primary objective of this section is to empirically validate the concepts, assertions, and 

theoretical ideas described above, exhibiting the complex characteristics of the HTOP problem that were 

included in the proposed methodology. The power system and experimental process are detailed below. 

 

3.1.  System  

We propose a simulated three-bus power system which considers three transmission lines, as shown 

Figure 3. The transmission system is assumed to be lossless. Bus B1 is supplied by two thermal generators: 

GT1and GT2; bus B2 by a hydraulic generator GH1; and bus B3 by a hydraulic generator GH2. In each bus, 

fictitious generators GF1, GF2, and GF3 are incorporated to consider cases where the system cannot supply 

energy. Thermal power plants are modeled by a linear cost function, given in (8). 

 

𝐶𝑛(𝑔𝑛,𝑡
𝑘 ) = 𝑏𝑛 ⋅ 𝑔𝑛,𝑡

𝑘  (8) 

 

Their costs and main technical parameters are presented in Table 1. Similarly, a linear cost function  

1500 𝑔̃𝛽,𝑡
𝑘  [$] was assumed for power not supplied by generators. 

On the other hand, hydroelectric plants are modeled with the constant production function described 

in (9). In this case, each reservoir 𝑒 only has one hydro-plant associated with it, so 𝑚 was used as a subscript 

in the expressions. 

 

𝑝(𝑔m,𝑡
𝑘 ) = 𝑏𝑛 ⋅ 𝑔𝑛,𝑡

𝑘  (9) 
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All parameters for hydro-plants are described in Table 2. The parameters of the transmission network are 

shown in Table 3. 

 

 

 
 

Figure 3. Single-phase diagram of the power system 

 

 

Table 1. Parameters of thermal generators 
Thermal Plant (𝑛) Bus (𝛽) 𝑃𝑛𝑚í𝑛 [MW] 𝑃𝑛𝑚𝑎𝑥[MW] 𝑏𝑛[$/MWh] 

GT1 1 0 100 90.22 

GT2 1 0 50 135.32 

GF1, GF2, GF3 1,2,3 0 1000 15000 

 

 

Table 2. Parameters of hydraulic generators 
Hydro Plant(𝑚) Bus(𝛽) 𝑉𝑚𝑚í𝑛 [hm3] 𝑉𝑚𝑚𝑎𝑥[hm3] 𝑉0[hm3] 𝑉𝑒𝑇[hm3] 𝜂𝑚[MW/m3/s] 𝑄𝑚𝑚á𝑥[m3/s] 𝑃𝑚𝑚á𝑥[MW] 

GN1 2 300 1200 500 500 0.72 300 216 

GN2 3 300 800 400 400 0.72 150 108 

 

 

Table 3. Parameters of transmission network 
Line (𝑙) Bus connection  Susceptance [p.u] 𝐹𝑙𝑚𝑎𝑥 [MW] 

1 1-2 0.047 60 
2 1-3 0.023 60 

3 3-2 0.064 60 

 

 

With respect to load demand, it is modeled by D1, D2, and D3 using a load duration curve (LDC) 

with four (4) load levels for each one, as illustrated in Figure 4. The LDC graph depicts the power supplied 

over time, with distinct monthly load segments (blocks) corresponding to different power levels, all with the 

same durations of 40, 300, 270, and 120 hours per month. Note that the time horizon for the optimization is 

defined as one year, divided into twelve monthly intervals. 

 

 

 
 

Figure 4. LDC with four load levels 
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3.2.  Methodology 

This section provides a clear and structured exposition of the methods applied. This approach 

integrates generation time series, scenario tree construction and reduction, and optimization techniques to 

address the complexities of HTOP under uncertainty. 

 

3.2.1. Time series generation  

A total of 10000 time series of water inflows for the 2 reservoirs were generated during the 12 

stages, using an auto-regressive model [43], as shown in (10). 

 

𝑌𝑒,𝑡 = 𝜇𝑒,𝑡 + 𝜎𝑒,𝑡𝑋𝑒,𝑡 (10) 

 

where 𝑒 is index respect to storage, 𝑌𝑒,𝑡 is water inflow of reservoir 𝑒 at stage 𝑡, 𝜇𝑒,𝑡 is periodic mean of water 

inflow of reservoir 𝑒 at stage 𝑡, 𝜎𝑒,𝑡 is periodic standard deviation of water inflow of reservoir 𝑒 at stage 𝑡; 

𝑋𝑒,𝑡 is random variable. 

In this case, 𝑋𝑒,𝑡 represents the inflows in reservoir 𝑒 at stage 𝑡. Each one can be modeled with a 

first order auto-regressive model described by (11): 

 

 𝑋𝑒,𝑡 = 𝜌1𝑋𝑒,(𝑡−1) + √1 − 𝜌1
2𝜀𝑡 (11) 

 

By replacing (11) in (10), it is obtained: 

 

𝑌𝑒,𝑡 = 𝜇𝑒,𝑡 + 𝜎𝑒,𝑡 (𝜌1

𝑌𝑒,(𝑡−1) − 𝜇𝑒,(𝑡−1)

𝜎𝑒,(𝑡−1)

+ √1 − 𝜌1
2𝜀𝑡) 

 

where 𝜌1 is the autocorrelation coefficient in 𝑡 = 1 of the random variable 𝑋 and 𝜀𝑡 is the independent 

random residue. 𝜇𝑒,𝑡 and 𝜎𝑒,𝑡 are estimated from historical water inflow. It was assumed that 𝜌1 was equal to 

0.5. 𝜀𝑡 is a random number taken from a normal distribution 𝒩(0,1). The original data and the obtained 

series are shown in Figure 5. 

 

 

 
 

Figure 5. Original data and the obtained series for the reservoirs of 𝐺𝐻1 and 𝐺𝐻2 

 

 

3.2.2. Scenarios tree 

The PCM described in section 2.1.2. was applied to generate a scenario tree. The proposed structure 

is as follows: the first stage has one branch; from the 2nd to the 12th stage, each node branches into two to 

obtain a tree (with two dimensions, one for each reservoir) with 211 scenarios. 
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3.2.3. Scenario reduction 

The scenario reduction PSO mentioned above was applied, where the search space comprises the 

complete set of scenarios from the original tree. Fifty particles were selected as input parameters for the 

swarm. In this way, (211)2 scenarios from the original tree were reduced only to 50 scenarios for each 

reservoir, as is depicted in Figure 6. 

 

 

 
 

Figure 6. Original and reduced tree for the reservoirs of 𝐺𝐻1 and 𝐺𝐻2 

 

 

3.2.4. Optimization model for each scenario 

Each scenario was solved by means of two techniques: 

a. LP: Using the 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function of MATLAB, the formulation was written in matrix terms. Due to the 

mathematical fundamentals of this kind of optimization, the global solution is obtained. 

b. MVMO: The adaptability of metaheuristic techniques facilitates the division of HOTP into hydro and 

thermal sub-problems. This result was used as validation and introduced a tool that could be used in non-

linear or non-convex problems. This procedure is described below. 

− The storage variables 𝑣𝑒,𝑡
𝑘  are defined as optimization variables or individuals. In this way, every 𝜒 

individual has a length of 𝑡 · 𝐸 = 12 · 2 = 24. A LP algorithm is used to handle water balance constraints 

instead of using a penalty scheme. Given that inflows 𝑦𝑒,𝑡
𝑘  are predetermined in each scenario and that the 

optimization algorithms propose the 𝑣𝑒,𝑡
𝑘  values within the search boundaries, the purpose of using a LP is 

to determine the values of 𝑠𝑒,𝑡
𝑘  and 𝑞𝑒,𝑡

𝑘  such that (6d) is satisfied. Nevertheless, the fulfillment of the 

maximum bounds of 𝑠𝑒,𝑡
𝑘  and 𝑞𝑒,𝑡

𝑘  is not guaranteed when using LP. To overcome this problem, a heuristic 

rule is applied after performing LP to ensure that 𝑞𝑒,𝑡
𝑘 ≤ 𝑄𝑚𝑚𝑎𝑥

. Considering that 𝑠𝑒,𝑡
𝑘 ≥ 0 is the only 

condition for 𝑠𝑒,𝑡
𝑘 , the rule is defined as follows: 

 

𝑠𝑒,𝑡
𝑘 = {

0,                      0 <  𝑞𝑒,𝑡
𝑘 ≤ 𝑄𝑚𝑚𝑎𝑥

𝑞𝑒,𝑡
𝑘 − 𝑄𝑚𝑚𝑎𝑥

, 𝑞𝑒,𝑡
𝑘 > 𝑄𝑚𝑚𝑎𝑥

 

 

with 𝑠𝑒,𝑡
𝑘  and 𝑞𝑒,𝑡

𝑘  in [hm3/h] from hydroelectric generation 6d and the production factor  
𝜂𝑚 from Table 2, the total hydraulic energy in each stage 𝐸𝐻𝑡  can be calculated. 

− From the 𝐸𝐻𝑡  values, thermal generations 𝑔𝑛,𝑡
𝑘  and hydroelectric generations 𝑝𝑚,𝑡

𝑘  in each load demand 

box are obtained through a DC load flow using LP. Values of 𝑝𝑚,𝑡
𝑘  are replaced in the cost function from 

(8), where the outcomes are considered as the fitness function of the individual 𝜒. The MVMO algorithm 

runs until the convergence criterion is accomplished. 
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To enhance the robustness and clarity of our methodology, thereby enabling its seamless and 

accurate application, a step-by-step exposition of the experimental procedure employed in this case study is 

provided, as outlined below. Figure 7 shows the flow of the methodology.  

a. Generate 10000 time series of reservoir inflows using the auto-regressive model (10)-(11) with 

parameters 𝜌1 = 0.5, normal distribution 𝒩(0,1), and historical means/std deviations. 

b. Build a scenario tree via PCM: Start with the root node (mean of the first stage), and cluster subsequent 

stages into two branches per node, yielding 211 scenarios for twelve stages and two reservoirs. 

c. Reduce to 50 scenarios using PSO: Initialize the particles in the search space of original scenarios; update 

velocities/positions; maximize fitness, (8), until convergence. 

d. Each reduced scenario is solved using LP to obtain its global solution. 

e. To introduce metaheuristic techniques, each reduced scenario is solved using the MVMO tool, where each 

particle 𝜒 is defined in terms of storages 𝑣𝑒,𝑡
𝑘  corresponding to 24 decision variables (𝐸 = 2, 𝑇 = 12) for 

scenario 𝑘; use LP to compute spills/turbines satisfying water balance (6d); apply heuristic for bounds 

(𝑞𝑒,𝑡
𝑘 ≤ 𝑄𝑚𝑚𝑎𝑥

); then, compute total hydraulic energy 𝐸𝐻𝑡 . Subsequently, the thermal and hydro 

generations for each load block are determined using DC-LP. These power values are used to evaluate the 

total cost, defining the particle’s fitness 𝜒. Run MVMO until 10000 iterations. 

f. Each solution 𝑘 from the LP and MVMO is weighted by its probability 𝜋𝑘 to compute the EV (7). 

 

 

 
 

Figure 7. Flow chart of the proposed methodology 

 

 

4. RESULTS AND DISCUSSION  

The results for each of the 50 scenarios optimized with LP are shown in the third and eighth 

columns, while the costs with MVMO are presented in the fourth and ninth columns of Table 4. Besides, the 

error of MVMO techniques compared with the LP solution is described in the fifth and tenth columns, 

showing that the costs obtained with the metaheuristic tool are close to the optimum achieved using LP. Note 

that the probability 𝜋𝑘 shown in the second and seventh columns is obtained through the application of the 

scenario tree and reduction techniques.  

The solution of the 10000 original time series without outliers, obtained by LP, was $111579.81 ×
103. We compare this value with the EV of the cost finding with LP $105208.70 × 103, resulting in an error 

of 5.70%. We position our work within network-constrained hydrothermal scheduling under uncertainty. On 

one side, scenario tree reduction is a well-established technique in stochastic programming to improve 

tractability while preserving solution quality. [38] shows that reducing a scenario tree by 50% can still 
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maintain around 90% accuracy, based on Fortet–Mourier probability metrics. Conversely, while prior studies 

demonstrate the transmission-constrained stochastic dispatch and SDDP-based policies, they employ the ESO 

approach for non-convex problems [44]. Recent medium-term models focus on multistage stochasticity and 

water valuation, frequently with simplified network representations [45]. 

Furthermore, compared to prior studies, our hybrid methodology demonstrates improved 

performance in handling stochastic uncertainties in multi-bus hydrothermal systems that could be applied to 

non-simplification problems. For instance, deterministic metaheuristic approaches in short-term HTOP, as 

reviewed in [17] reported errors up to 5–10% in cost estimations for simplified single-bus models. Moreover, 

the findings show effective uncertainty management, with low average errors confirming the approach’s 

reliability. Nevertheless, higher errors (∼6%) in scenarios 17 and 35 indicate sensitivity to extreme inflows, 

which advanced reduction techniques could address. Readers can learn that scenario tree reduction efficiently 

captures 94.3% of original inflow variability using only 50 scenarios, avoiding the computational burden of 

full Monte Carlo simulations. In context, this advances medium-term HTOP beyond deterministic models 

ramp [18]–[21] by addressing uncertainty propagation, enabling more realistic planning in multi-bus systems. 

For future applications, this methodology is handy for integrating renewables (e.g., wind, as in [24]), 

modeling more realistic systems, and including scalable tools for larger systems via parallel computing, all in 

favor of supporting the policy on reservoir management amid climate change and ensuring that operating 

decisions can be executed. 

 

 

Table 4. Results of proposed methodology compared with LP solution 
Sce Prob. [%] Cost with LP 

[$ ×103] 

Cost with LP 

[$ ×103] 

Error [%] Sce Prob. [%] Cost with LP 

[$ ×103] 

Cost with LP 

[$ ×103] 

Error [%] 

1 4.23 106029.92 106289.62 0.24 26 1.46 109498.19 110809.82 1.20 
2 0.42 91109.26 93380.17 2.49 27 6.00 131500.91 137946.44 4.90 

3 0.97 105672.47 105676.62 0.00 28 2.35 96911.26 100122.04 3.31 

4 3.00 119569.63 119616.83 0.04 29 1.33 86923.46 89985.55 3.52 
5 1.42 80351.32 82110.38 2.19 30 4.39 108217.82 108675.75 0.42 

6 0.97 87900.37 88705.32 0.92 31 0.63 108142.27 108198.56 0.05 

7 1.46 81428.60 82861.59 1.76 32 3.88 105202.91 106381.66 1.12 
8 0.92 111192.94 111271.10 0.07 33 0.84 106405.66 107606.37 1.13 

9 2.01 116989.85 117160.27 0.15 34 3.50 108588.07 108822.22 0.22 

10 5.32 117920.07 117969.09 0.04 35 0.8 70608.12 74693.93 5.79 
11 2.33 103050.40 104395.61 1.31 36 3.09 124392.32 124781.60 0.31 

12 1.85 104975.83 106850.45 1.79 37 0.55 92318.53 92753.49 0.47 

13 1.51 85954.68 88608.42 3.09 38 0.98 98862.47 100940.76 2.10 
14 1.18 99932.39 100571.58 0.64 39 0.63 101199.49 101752.35 0.55 

15 1.28 95230.83 97761.24 2.66 40 1.30 92697.10 93462.87 0.83 

16 2.76 110386.61 110397.83 0.01 41 0.44 92091.89 93781.46 1.83 
17 0.79 87617.69 92914.58 6.05 42 1.16 117948.52 118034.12 0.07 

18 4.36 78120.47 79827.29 2.18 43 1.37 83105.65 85342.51 2.69 

19 0.66 102443.71 102713.10 0.26 44 1.24 93724.34 96952.57 3.44 
20 1.77 110548.87 110748.32 0.18 45 1.44 94444.89 97499.24 3.23 

21 1.03 96473.18 96541.80 0.07 46 2.40 107127.66 107627.55 0.47 

22 2.07 120341.61 120401.09 0.05 47 1.66 116026.54 116264.92 0.21 
23 0.88 85443.77 86254.36 0.95 48 1.30 77111.98 78993.13 2.44 

24 1.67 106985.55 106991.38 0.01 49 2.23 80283.84 82085.97 2.24 

25 5.30 107189.84 107540.43 0.33 50 4.82 119142.82 120440.69 1.09 
 EV 105208.70 106540.92 0.13 

 

 

5. CONCLUSION 

A novel methodology to optimize hydrothermal operation planning, incorporating stochastic water 

inflows via ISO by multidimensional scenario trees reduced through PSO. Additionally, it considers 

transmission constraints and multi-bus configurations and highlights the adaptability of the models to large 

and sparsely meshed systems, such as those in South America. Key points include the generation of 10,000 

time series, tree reduction to 50 scenarios, and its application on a 3-bus system case study, where the 

constraints and objective function were assumed linear. A LP was implemented to run both the scenario tree 

and the original time series with the Monte Carlo technique to validate the results, yielding an EV of 

$105, 208.70 × 103 with average errors of 5.7%, showing the robustness of this methodological approach. 

Besides, this work proposes and validates a model using a metaheuristic tool (MVMO-SH), achieving near-

optimal costs with low errors in medium-term horizons and supplying a technique that could treat non-linear 

and non-convex problems. 
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Summarizing, this methodology allows the use of the scenario tree with a few scenarios in exchange 

for a Monte Carlo technique, which requires a lot of these, obtaining similar results when we run them as ISO 

models, and allows for modeling complex systems when it is combined with a MVMO tool. However, ISO 

modeling does not consider the non-anticipative principle, used in an ESO models, which is key because it 

ensures that hydrothermal operating decisions are made based on the information available at any given time, 

avoiding fictitious solutions that use information from the future. As future work, we expect to incorporate 

the ESO strategy into the methodology. 

Other implications for future studies include extensions to incorporate renewables, such as wind and 

solar, and considering models for real-time applications. In practice, this serves as an operational tool for 

utilities in regions like South America, optimizing costs and reliability in sparse networks. For policy, it 

informs regulations on reservoir management under climate variability (e.g., ENSO), promoting sustainable 

energy planning. 
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