
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 5, October 2025, pp. 4785~4802

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i5.pp4785-4802  4785

Journal homepage: http://ijece.iaescore.com

Anomaly-based intrusion detection leveraging optimized

firewall log analysis: a real-time machine learning solution

Tran Cong Hung1, Dam Minh Linh2, Han Minh Chau3, Ngo Xuan Thoai2, Thai Duc Phuong1,

Huynh De Thu1
1School of Computer Science and Engineering, The Saigon International University, Ho Chi Minh City, Vietnam

2Information Security Technology Lab and Faculty of Information Technology, Posts and Telecommunications Institute of Technology,

Ho Chi Minh City, Vietnam
3Faculty of Information Technology, HUTECH University, Ho Chi Minh City, Vietnam

Article Info ABSTRACT

Article history:

Received May 26, 2025

Revised Jul 7, 2025

Accepted Jul 12, 2025

 Firewall logs play a vital role in cybersecurity by recording network traffic

and flagging potential threats. This study evaluates five machine learning

algorithms-decision tree (DT), random forest (RF), extra trees (ET),

CatBoost (CB), and AdaBoost (AB)-on a dataset of 65,532 firewall log

entries. Models were assessed using accuracy, precision, recall,

training/prediction time, and Pearson correlation for feature selection, across

multiple train-test splits. The DT model achieved the best performance,

reaching 99.45% test accuracy, 97.457% precision, and 93.389% recall at a

7:3 split, along with the fastest training time (0.20642 s). We propose real-

time flow-level intrusion detection (RT-FLID), novel, lightweight, real-time

intrusion detection system that leverages multithreaded processing and flow-

level analysis to boost detection speed and scalability. Unlike existing

approaches that rely heavily on deep packet inspection or computationally

intensive processing, RT-FLID requires minimal resources while

maintaining high detection accuracy. The architecture efficiently handles

large traffic volumes and dynamically identifies anomalies such as

distributed denial-of-service (DDoS) and port scans. Validated on real-world

logs, the system maintained high accuracy in critical classes like “deny” and

“reset-both.” These findings highlight RT-FLID’s novelty and practical

advantages, demonstrating its potential for deployment in high-throughput,

low-latency network environments.

Keywords:

Anomaly detection

Cybersecurity

Firewall logs

Intrusion detection

Multi-threading

Real-time systems

This is an open access article under the CC BY-SA license.

Corresponding Author:

Dam Minh Linh

Information Security Technology Lab and Faculty of Information Technology, Posts and Telecommunications

Institute of Technology

Ho Chi Minh City, Vietnam

Email: linhdm@ptit.edu.vn

1. INTRODUCTION

Firewalls play a crucial role in an organization's network security, acting as the primary barrier

against threats. They offer protection against both external and internal attacks, ensuring comprehensive

security coverage. Given their significance in safeguarding systems, the logs generated by firewalls provide

valuable insights into network traffic patterns and facilitate enhanced monitoring and analysis.

Cisco’s 2024 cybersecurity readiness index offered an in-depth assessment of global cybersecurity

preparedness within organizations [1], revealing that only 3% of companies are equipped to address current

threats, whereas two-thirds of organizations are at the beginner or formative stages of preparedness. Notably,

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4786

73% of respondents expected a cybersecurity incident to impact their business within the next 12 to 24

months. The price of unpreparedness can be significant, as 52% of impacted respondents incurred a cost of at

least US $300,000. The Federal Bureau of Investigation (FBI) developed a “Tech Tuesday” in [2] and the

Phoenix Field Office alerted the public about criminal actors engaging in phishing and spoofing scams and

provided tips to reduce the likelihood of falling victim. The FBI’s internet crime complaint center (IC3)

reported that phishing scams were the most prevalent type of cybercrime in 2020, with over 240,000 victims

and losses of nearly $50 million. Although spoofing scams impacted fewer individuals—approximately

28,000—the financial losses exceeded S215 million. Noting the rise in global security threats, the 2024

Microsoft digital defense report [3] highlighted a sharp increase in identity-related attacks, especially

password breaches, which account for over 99% of the 600 million daily identity-focused attacks. However,

one key solution inferred from recent cybersecurity reports is to enhance firewall log data analysis to improve

real-time threat detection and significantly reduce the risk of successful cyberattacks.

In recent years, the application of artificial intelligence (AI) techniques—particularly machine

learning (ML) and deep learning (DL)—has gained increasing attention in cybersecurity, especially in firewall

anomaly detection. Traditional firewall systems, which rely on manually configured rule sets to filter network

traffic, are prone to misconfigurations and may fail to detect novel threats. To overcome these limitations,

advanced ML and DL approaches have been proposed to enhance the detection of suspicious activities in

firewall logs [4]. Komadina et al. [5] investigated the effectiveness of anomaly detection by injecting synthetic

attack data into firewall logs, offering a controlled yet realistic evaluation environment. Building upon this

foundation, subsequent research [6] leveraged AI to autonomously optimize and validate firewall rule sets in

high-performance network infrastructures, thereby enhancing policy accuracy and reducing manual

configuration errors. Extending this line of work, a lightweight and cost-effective Smart Unified Threat

Management System was proposed in [7], which was deployed on a Raspberry Pi platform to secure home

networks against modern cyber threats. The system achieved a detection accuracy of up to 99% while reducing

memory consumption by approximately 55% compared to traditional signature-based solutions.

Firewall logs are a vital component of network security, providing visibility into data traffic and

enabling the identification of potential network security risks and suspicious behaviors. The critical role of

firewall logs in intrusion detection systems (IDS) has spurred the adoption of ML approaches to evaluate

network security datasets, particularly for identifying abnormal traffic patterns indicative of targeted attacks

on critical servers. Aljabri et al. [8] developed a ML-based framework to classify firewall sessions into

categories such as “Allow,” “Drop,” “Deny,” and “Reset-both.” Their evaluation utilized a firewall log

dataset containing 65,532 records, distributed as follows: Allow (37,640), Deny (14,987), Drop (12,851), and

Reset-Both (54). By introducing two novel features, application and category, the study significantly

improved classification performance, with the random forest (RF) algorithm achieving up to 99.64%

accuracy. However, the current system remains suboptimal in terms of availability and rapid response for

real-time network environments. Based on the same firewall log dataset, study [9] proposed a multiclass

classification method using support vector machine (SVM) to categorize connection sessions into four

actions: allow, deny, drop, and reset-both, through systematic comparison of kernel functions to optimize

classification performance. Subsequently, the research in [10] implemented and evaluated multiple

classification algorithms, with RF achieving up to 99% accuracy, demonstrating the effectiveness of feature

extraction techniques in firewall log analysis. Nevertheless, both research efforts primarily rely on pre-

labeled data and provide limited exploration of real-time responsiveness and data imbalance issues.

Li et al. [11] introduced a novel intrusion detection model, adversarial environment with soft actor-

critic (AE-SAC), which integrates adversarial learning and deep reinforcement learning to address challenges

in imbalanced datasets and minority attack detection. Experimental results demonstrate that AE-SAC

achieves an accuracy of 84.15%, an F1-score of 83.97% on the NSL-KDD dataset and exceeds 98.9% for

both metrics on the AWID dataset. Similarly, Bamber et al. [12] emphasized optimizing feature selection

through recursive feature elimination combined with a DT classifier and evaluated multiple DL architectures,

with the convolutional neural network–long short-term memory model outperforming others by achieving

95% accuracy, 0.89 recall, and a 0.94 F1-score on the NSL-KDD dataset. However, these two studies exhibit

certain limitations related to model accuracy, processing time, and varying data split ratios between training

and testing phases.

To effectively mitigate targeted attacks on server infrastructures, the systematic collection and

analysis of log files play a pivotal role in anomaly detection and tracing attack behavior chains. As

demonstrated in the study by Artioli et al. [13], advanced Security Information and event management

systems can be enhanced by integrating natural language processing-based classifiers trained on synthetic log

datasets, such as Siem Ingesting EVEnts, which are generated using the semantic augmentation technique

known as semantic perturbation and instantiation for content enrichment. The SVM model maintained

consistent performance across both synthetic and real-world logs (Macro-F1: 0.9477–0.9636). In contrast,

Int J Elec & Comp Eng ISSN: 2088-8708 

 Anomaly-based intrusion detection leveraging optimized firewall log … (Tran Cong Hung)

4787

although the bidirectional encoder representations from transformers (BERT) model—a pre-trained DL

model widely used in text classification—achieved high performance on synthetic data (Macro-F1: 0.9528–

0.9730), it exhibited limited generalization capability when applied to real-world logs (Macro-F1: 0.8864–

0.9182). To further support anomaly detection and classification in IDS systems, a context-aware logging and

advanced log analysis framework—Semantic-aware generator—has been proposed in [14]. Meanwhile, the

studies [15], [16] emphasize the role of policies and log analysis in distributed firewalls, proposing a data

mining and ML approach to detect anomalies from large-scale logs collected in real-world environments. At

the same time, Bringhenti and Valenza [17] emphasize that optimizing firewall configurations to reduce

energy consumption while maintaining cybersecurity is essential for enhancing system sustainability.

Similarly, the study in [18] proposes a semi-automated approach for firewall anomaly detection and

resolution, which automatically addresses sub-optimizations while involving human intervention for conflict

management, thereby reducing the workload of administrators. Subsequently, Park et al. [19] developed a

visualization tool to assist administrators in monitoring and managing cybersecurity incidents, while also

performing anomaly classification within firewall policies. Additionally, the research in [20] addresses

effective and standardized alarm rationalization for cybersecurity monitoring.

Sharma et al. [21] made a significant contribution by proposing an optimized solution for firewall

packet classification using advanced ensemble models, applied to a large dataset consisting of 65,532 log

entries with four firewall action labels (accept, drop, reject, TCP reset). The study employed both voting and

stacking ensemble models based on five popular ML algorithms, with the stacking model using a RF as the

meta-classifier, achieving an accuracy of 99.8% and a precision of 91%. However, this research mainly

focused on classification using static log data and did not thoroughly explore aspects such as real-time

processing capabilities and latency, which remain important areas for further investigation.

Efeoğlu and Tuna [22] evaluated multiple classification algorithms on a firewall log dataset

comprising 65,532 entries with 12 attributes, using the action field as the target class. Simple cart and Naive

Bayes (NB) tree achieved the highest accuracy (99.84%), while decision stump performed the worst

(79.68%). To address class imbalance, the study employed the Matthews correlation coefficient for more

robust evaluation. However, the approach lacks real-time processing capabilities. In contrast, Mingze [23]

contributed a firewall log visualization system that achieved 98.3% accuracy, 92.1% precision, 97.5% recall,

98.1% F1-score, and 91.2% real-time performance in experimental evaluations. To clearly position our work

in relation to existing research, Table 1 summarizes the key approaches, advantages, and limitations of the

related studies discussed.

Table 1. Summary of related work on firewall log analysis and intrusion detection
Study/Reference Dataset used Algorithms Best accuracy Training/testing

time (s)

Real-time

capability

Aljabri et al. [8] 65,532 firewall
logs

RF, k-nearest neighbors
(KNN), NB, J48, artificial

neural network (ANN)

RF: Accuracy 99.64% Not reported Not supported

Rahman et al.
[10]

65,532 firewall
logs

RF (others not specified) RF: F1-score 99% Not reported Not supported

Efeoğlu and Tuna
[22]

65,532 firewall
logs

Simple cart, NB tree, FT tree,
J48, BF tree, Decision stump

Simple cart: Accuracy
99.84%

Not reported Not supported

Mingze [23] 65,532 firewall

logs

IG-based feature selection,

visualization-based
classification

Accuracy 98.3%, F1-

score 98.1%

Not reported Supported

Li et al. [11] NSL-KDD AE-SAC

(adversarial Env + SAC RL)

Accuracy: 84.15% Not reported Limited

performance on
NSL-KDD; not

tested on firewall

logs
Bamber et al.

[12]

NSL-KDD ANN, long short-term memory

(LSTM), bidirectional LSTM

(BiLSTM), gated recurrent unit
(GRU), bidirectional GRU

(BiGRU), convolutional neural

network (CNN)-LSTM

CNN-LSTM:

Accuracy 95%, Recall

89%, F1-score 94%

Not reported Not applied to real

logs; lacks real-

time processing

Our study 65,532 firewall

logs

DT, RF, ET, CatBoost,

AdaBoost; Proposed: RT-

FLID

Accuracy (Train/Test):

99.86% / 99.45%;

Precision (Train/Test):
99.20% / 97.46%;

Recall (Train/Test):

99.25% / 93.39%

Train:

0.20642s,

Test: 0.05292 s

RT-FLID:

lightweight,

multithreaded, real-
time capable; detects

distributed denial-of-

service (DDoS)/port
scan; effective on

real logs

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4788

The major contributions of this paper are:

a. A real-time detection algorithm is proposed to identify abnormal increases in total packet size within

server traffic, based on key statistical characteristics extracted from the dataset. Additionally, the study

utilizes dataset [8], publicly available via [24], and demonstrates superior accuracy and real-time

applicability compared to prior works [21], [22] and [23], particularly in practical server environments.

b. Five ML algorithms—DT, RF, ET, CB, and AB—were evaluated based on multiple performance metrics,

including accuracy, precision, training/testing time, and confusion matrix, across diverse train-test ratios

ranging from 1:9 to 9:1. Among them, the DT model demonstrated superior accuracy and consistent

performance, leading to its selection as the final prediction model.

c. The experimental results revealed that a 7:3 train-test split provided the most balanced trade-off between

training sufficiency and testing reliability. Furthermore, Pearson correlation coefficient analysis was

incorporated to assess the relevance of input features, supporting effective feature selection and

enhancing overall model performance.

d. The proposed experimental system presents a novel multi-threaded network intrusion detection

architecture that leverages parallel machine learning-based prediction to achieve real-time and scalable

threat detection. By integrating efficient flow aggregation, synchronized multi-threaded processing, and

automated resource management, the experimental implementation significantly enhances detection

accuracy and operational performance compared to traditional IDS solutions. This architecture is

particularly well-suited for dynamic and high-throughput network environments, providing a robust

foundation for adaptive and intelligent network security.

These limitations reveal a significant research gap in developing real-time, lightweight intrusion

detection systems that can effectively operate in dynamic and high-volume network environments.

The motivation for this study stems from the growing volume and complexity of modern network traffic,

which presents significant challenges for timely and accurate intrusion detection. Traditional methods often

rely on deep packet inspection or computationally intensive techniques, which are not suitable for high-

speed, resource-constrained environments. Meanwhile, firewall logs—although readily available—remain

underutilized for real-time threat detection. To address these limitations, we propose RT-FLID, a lightweight

and scalable intrusion detection system that leverages machine learning and flow-level log analysis to detect

anomalies such as DDoS and port scanning efficiently in live network environments.

The structure of the paper is as follows: section 2 outlines the proposed algorithm, including the

detection model architecture and the real-time network traffic anomaly detection algorithm. Section 3

describes the evaluation methods and dataset, covering the firewall logs dataset, evaluation metrics and

statistical techniques, as well as dataset splitting strategies for model assessment. Section 4 presents the

results and discussion, focusing on the performance evaluation of ML-based intrusion detection models using

firewall logs, the experimental validation of real-time processing on a live server environment, and an overall

discussion of key findings. Finally, section 5 concludes the study and provides acknowledgements.

2. PROPOSED ALGORITHM

The proposed algorithm introduces a real-time, flow-level network intrusion detection approach that

leverages machine learning for accurate and adaptive traffic classification. The detection model architecture

is organized into seven interconnected phases, encompassing packet acquisition, flow aggregation, thread

synchronization, parallel background processing, multi-threaded prediction, result aggregation, and

automated flow management. This design enables the system to efficiently process high-volume network

traffic, promptly identify both known and unknown threats, and maintain robust performance under dynamic

network conditions. The RT-FLID algorithm integrates synchronized feature extraction and parallel ML

inference to deliver timely and reliable anomaly detection for modern network environments.

2.1. Detection model architecture

As illustrated in Figure 1, the proposed multi-threaded network intrusion detection system is

architected as a sequence of interconnected processing phases, each responsible for a distinct functional

aspect of real-time traffic analysis and threat detection. By decomposing the system into well-defined phases,

we ensure modularity, scalability, and efficient resource utilization throughout the detection pipeline. The

following sections detail each phase of the system, from initial packet acquisition to parallelized machine

learning-based prediction and automated flow management.

Phase 1: Packet capture and processing

The system initiates with real-time packet sniffing on the server’s network interface (e.g.,

Tailscale0). Each incoming transmission control protocol/user datagram protocol (TCP/UDP) packet is

parsed to extract metadata, including source IP, destination port, protocol type, packet size, and TCP flags

Int J Elec & Comp Eng ISSN: 2088-8708 

 Anomaly-based intrusion detection leveraging optimized firewall log … (Tran Cong Hung)

4789

(e.g., SYN). Flows are uniquely identified by the tuple (source IP, destination port), enabling granular

behavioral tracking.

Phase 2: Flow aggregation and statistics compilation

Extracted flow metadata is aggregated into a structured dictionary, where each entry stores

cumulative statistics:

− Total packets: Count of packets per flow.

− Total data volume: Sum of payload sizes (bytes).

− SYN counter (pktsent): Number of SYN packets (indicative of connection attempts).

− Last activity timestamp: Time since the last packet in the flow.

This phase ensures continuous monitoring of flow behavior while minimizing redundant computations.

Phase 3: Thread synchronization

A thread lock safeguards concurrent access to the shared aggregation dictionary. This prevents race

conditions during parallel updates by the packet processing thread (Phase 1) and background maintenance

threads (Phase 4), ensuring data integrity.

Phase 4: Parallel background threads

Three dedicated threads operate concurrently:

− Packet processing thread: Core thread for continuous packet capture and flow updates.

− Summary and prediction thread: At fixed intervals (e.g., 60 seconds), this thread triggers flow analysis,

invokes parallel ML predictions via a ThreadPoolExecutor, and generates intrusion reports.

− Flow cleanup thread: Periodically purges inactive flows (e.g., no packets within 60 seconds) to optimize

memory usage.

Phase 5: Multi-threaded ML prediction

During each summary cycle, flow features (dport, total data, packet count, pktsent) are normalized

using a pre-trained scaler and fed into a machine learning model. Predictions (Allow/Deny) are executed in

parallel across a thread pool, leveraging multi-core CPUs to maintain low latency under high traffic loads.

Phase 6: Result consolidation and reporting

Prediction results are aggregated into a human-readable summary, highlighting suspicious flows

(e.g., high DENY rates). Alerts are logged or forwarded to security tools for automated mitigation.

Phase 7: Flow aging and cleanup

Inactive flows are automatically evicted from the aggregation dictionary, ensuring the system

remains lightweight and responsive to evolving traffic patterns.

The architecture in Figure 1 visually encapsulates these phases, emphasizing the parallelized

workflow between packet processing, ML inference, and resource management. The ThreadPoolExecutor’s

role in enabling concurrent predictions is a critical innovation, distinguishing this system from conventional

single-threaded IDS solutions. This phased design not only enhances detection accuracy through ML-driven

analysis but also ensures operational efficiency in dynamic network environments.

Figure 1. Architecture of a multi-threaded network IDS with parallel machine learning-based prediction

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4790

2.2. Proposed real-time network traffic anomaly detection algorithm

To address the challenge of detecting malicious traffic in real-time, we propose a lightweight yet

effective algorithm that operates directly at the flow level. The proposed approach leverages a pre-trained

machine learning classification model and maintains minimal in-memory statistics to achieve both low

latency and high throughput. The algorithm, named real-time flow-level intrusion detection (RT-FLID), is

designed to process live packets, extract essential flow-level features, and periodically classify traffic

behavior without interrupting the ongoing packet capture process.

Algorithm 1. RT-FLID – real-time flow-level intrusion detection using ML classification
Input: Incoming packets captured on network interface

Output: Traffic label ∈ {ALLOW, DENY}
1: Initialize model ← Load classification model from joblib

2: Initialize scaler ← Load feature scaler from joblib

3: Initialize ip_aggregation as empty dictionary

4: Start background thread to execute Print_Summary_Every_60s()

5: Start background thread to execute Cleanup_Expired_IPs()

6: Set my_ip ← Get IP of monitored interface

7: while True do

8: pkt ← Capture next incoming packet from network interface

9: if pkt contains IP and (TCP or UDP) then

10: src ← Source IP address of pkt

11: dst ← Destination IP address of pkt

12: dport ← Destination port from TCP/UDP header

13: size ← Length of pkt in bytes

14: timestamp ← Current time

15: if dst=my_ip then

16: ip_key ← (src, dport)

17: Acquire Lock

18: if ip_key not in ip_aggregation then

19: ip_aggregation[ip_key] ← {total_length: size, packet_count: 1, pktsent: 0,

last_update: timestamp}

20: if pkt is TCP and SYN flag is set and ACK is not set then

21: ip_aggregation[ip_key].pktsent ← 1

22: end if

23: else

24: Update total_length, packet_count, last_update

25: if pkt is TCP and SYN flag is set and ACK is not set then

26: ip_aggregation[ip_key].pktsent ← pktsent + 1

27: end if

28: end if

29: Release Lock

30: end if

31: end if

32: end while

Procedure: Print_Summary_Every_60s()

1: while True do

2: Sleep 60 seconds

3: Acquire Lock

4: for each (ip_key, data) in ip_aggregation do

5: if packet_count > 0 then

6: features ← [dport, total_length, packet_count, pktsent]

7: Scale features using scaler

8: prediction ← model.predict(features)

9: label ← “Allow” if prediction=1 else “Deny”

10: Print prediction with src IP and dport

11: end if

12: end for

13: Release Lock

14: end while

Procedure: Cleanup_Expired_IPs()

1: while True do

2: Sleep 5 seconds

3: Get current_time

4: Acquire Lock

5: for each (ip_key, data) in ip_aggregation do

6: if current_time - last_update > 60 then

7: Remove ip_key

8: Print timeout message

9: end if

10: end for

11: Release Lock

12: end while

Int J Elec & Comp Eng ISSN: 2088-8708 

 Anomaly-based intrusion detection leveraging optimized firewall log … (Tran Cong Hung)

4791

RT-FLID is a proposed real-time detection algorithm that leverages ML to classify network traffic

based on aggregated flow statistics. The system continuously captures packets from the monitored interface

and maintains per-flow statistics based on the tuple (source IP, destination port). Every 60 seconds, these

statistics are converted into feature vectors, scaled, and classified using a pretrained ML model to determine

whether the traffic should be allowed or denied.

− Initialization phase (Lines 1–6): The system loads the pretrained ML model and corresponding scaler

using joblib. It initializes a dictionary (𝑖𝑝_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛) to store flow statistics and launches two

background threads: one for periodic prediction and one for garbage collection of stale flow entries.

− Real-time packet processing loop (Lines 7–32): Each incoming packet is analyzed if it includes IP and

transport-layer headers (TCP or UDP). If the destination matches the monitored host, the flow is

identified by its (source IP, destination port) tuple. The algorithm then updates the total bytes, packet

count, and SYN packet count, maintaining a lock to ensure thread safety.

− Prediction procedure – 𝑃𝑟𝑖𝑛𝑡_𝑆𝑢𝑚𝑚𝑎𝑟𝑦_𝐸𝑣𝑒𝑟𝑦_60𝑠() (Lines 1–14): Every 60 seconds, the system

iterates over active IP flows, extracts feature vectors [dport, total_length, packet_count, pktsent], applies

scaling, and performs classification using the trained model. Each flow is then labeled as Allow or Deny

based on the prediction result. The outcome is printed for monitoring and logging purposes, supporting

real-time intrusion detection and decision auditing.

− Cleanup procedure – 𝐶𝑙𝑒𝑎𝑛𝑢𝑝_𝐸𝑥𝑝𝑖𝑟𝑒𝑑_𝐼𝑃𝑠() (Lines 1–12): To maintain memory efficiency and

prevent resource exhaustion, this background thread periodically (every 5 seconds) checks for inactive

IP flows in the 𝑖𝑝_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 structure. If a flow has not been updated for more than 60 seconds, it is

removed from memory, and a timeout message is logged. This mechanism ensures optimal performance

and scalability of the real-time intrusion detection system.

Overall, RT-FLID achieves a balance between low-latency packet handling and batch-based ML

classification, making it suitable for lightweight deployment in real-time intrusion detection on resource-

constrained systems.

3. EVALUATION METHODS AND DATASET

In this section, we utilize a firewall log dataset collected from a real-world environment, which

contains detailed information about inbound and outbound packets as well as network access behaviors. The

performance of the models is evaluated using quantitative metrics, including confusion matrix (CMa),

accuracy (Acc), precision (Pre), and recall (Rec), along with training and prediction time. These are

combined with statistical analysis techniques to ensure the reliability and significance of the results. The

dataset is partitioned using various training/testing ratios to examine the stability and generalization

capabilities of the models across different data distribution scenarios. The integration of quantitative

evaluation metrics with statistical validation enhances the objectivity and credibility of the abnormal traffic

detection assessment.

3.1. Firewall logs dataset

This dataset collected events from the firewall device in the attack detection system [8] [24], and the

dataset was named “firewall logs.” The firewall device is used to collect logs of events that occur during the

process of preventing attacks such as DDoS, and phishing. The firewall logs dataset contained 65,532 records.

The number of corresponding actions for each type is presented in Table 2, in which the Action attribute was

classified into four labels: “Allow” (3), “Deny” (2), “Drop” (1), and “Reset-Both” (0). These actions are directly

related to granting or denying access to resources from the external network to the internal network of the

firewall system. Additionally, the dataset includes 12 different attributes, as described in Table 3.

3.2. Machine learning models

Machine learning algorithms were selected in this study due to their efficiency, interpretability, and

strong generalization capabilities across diverse data distributions. These characteristics make ML

particularly suitable for processing complex, high-volume traffic logs in real-time network environments. To

comprehensively evaluate their applicability to anomaly detection in firewall logs, five widely-used ML

algorithms were systematically selected and assessed:

− Decision tree: A simple yet effective tree-based model that splits data based on feature thresholds,

offering high interpretability and fast training time.

− Random forest: An ensemble of decision trees that improves classification performance and reduces

overfitting through bootstrap aggregation (bagging).

− Extra trees: A randomized ensemble method similar to Random Forest, which introduces additional

randomness in feature splits to enhance computational speed and robustness.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4792

− CatBoost: A gradient boosting algorithm optimized for handling categorical features efficiently, offering

competitive accuracy with minimal preprocessing.

− AdaBoost: An adaptive boosting technique that iteratively focuses on misclassified instances to construct

a strong composite classifier from multiple weak learners.

The five machine learning models were evaluated across nine distinct train–test split scenarios

(ranging from 1:9 to 9:1). Their performance was assessed using standard evaluation metrics, including Acc,

Pre, Rec, CMa, and training/prediction time (in seconds). Pearson correlation coefficient analysis was also

applied to examine feature relevance and support effective feature selection. Among all evaluated models, the

decision tree consistently achieved the highest Acc and exhibited the most stable performance across all

experimental configurations, leading to its selection as the final prediction model for abnormal traffic

detection in server systems.

Table 2. Firewall logs dataset
Action type No. of actions

Allow 37640

Deny 14987

Drop 12851
Reset-both 54

Total 65532

Table 3. Attributes in the dataset
No. Attribute Description

1 Source port Port to which the packet is sent from the source machine, integer data type [0 to 65535]

2 Destination port The gateway on the destination device knows which application or service the packet needs to be

delivered to, integer data type [0 to 65535] (e.g., requesting access to a website over HTTPS; it is 443)
3 NAT source port Network address translation (NAT) source port is the conversion from source port (e.g., internal,

22354) of internal IP (e.g., 192.168.1.100) to source port (e.g., After NAT, 56676) of public IP

(e.g., 203.0.113.1)
4 NAT destination port NAT Destination port is changing from destination port (Outside; e.g., port 80) to destination port

(Internal; port 8080), and forwarding the packet to the internal server (e.g., 192.168.1.10:8080)

5 Action The IPS system detects and processes traffic.
Allow: Allow normal connections (classified as “3”).

Deny: Reject the connection with notification to the sender (“2”).

Drop: Block traffic suspected to be malicious (“1”).
Reset-Both: Terminate any connection detected as malicious (“0”).

6 Bytes Sum of bytes sent and bytes received (e.g., 177 bytes=94 bytes + 83 bytes)

7 Bytes sent Total data (in bytes) sent over the network by a device or application (e.g., 94 bytes)
8 Bytes received Total data (in bytes) received from the network by the device or application (e.g., 83 bytes)

9 Packets Sum of packets sent and packets received; Each packet is 1,500 bytes in size (Ethernet standard)

10 Elapsed time (sec) The firewall will record the elapsed time (in seconds) to track the lifetime of each connection.
11 Pkts_Sent (packets sent) Total number of packets sent by the device or application over the network.

12 Pkts_Received

(packets received)

Total number of packets received by the device or application from the network.

3.3. Evaluation metrics and statistical methods

To assess the classification performance of the proposed ML models, several standard evaluation

metrics were employed, including the CMa, Acc, Pre, and Rec, as described in [25]–[27]. These metrics

allow for a detailed analysis of both overall performance and error distribution across classes. In particular,

the confusion matrix, as presented in (1), captures the correspondence between predicted and ground truth

labels in the classification process.

𝐶𝑀𝑎 = [𝑇𝑁 𝐹𝑃 𝐹𝑁 𝑇𝑃] (1)

The confusion matrix provides four essential quantities for binary classification analysis. True positive (𝑇𝑃)

represents correctly identified malicious instances (e.g., drop, deny, reset-both), while True Negative (𝑇𝑁)

corresponds to correctly identified benign instances (e.g., allow). In contrast, false positive (𝐹𝑃) and false

negative (𝐹𝑁) represent misclassifications of benign and malicious traffic, respectively, and serve as the

foundation for further metric calculations.

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2)

Int J Elec & Comp Eng ISSN: 2088-8708 

 Anomaly-based intrusion detection leveraging optimized firewall log … (Tran Cong Hung)

4793

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3)

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4)

Acc measures the overall correctness of predictions. Pre quantifies the proportion of positive

identifications that were actually correct, while Rec (or true positive rate) indicates the model’s ability to

identify positive instances. A high recall is especially important in security contexts, where failing to detect a

malicious instance can be costly.

The Pearson correlation coefficient [28] is a statistical measure used to quantify the strength and

direction of the linear relationship between two continuous variables. It is frequently used in ML and data

analysis for feature selection, where identifying strong correlations can improve model interpretability and

performance. For example, Chen et al. [29] utilized this coefficient to assess the importance of input

variables in reliability analysis and predictive modeling. The coefficient is computed as (5):

𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 ∙ ∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

 (5)

The average values of variables 𝑥 and 𝑦 are computed as 𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 and 𝑦̅ =

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
, respectively. In these

formulas, 𝑥𝑖 and 𝑦𝑖 denote the values of 𝑥 and 𝑦 at the 𝑖-th observation, and 𝑛 represents the total number of

observations. Furthermore, the Pearson correlation coefficient 𝑟 quantifies the degree of linear association

between the two variables, where 𝑟 = 1 indicates a perfect positive correlation, 𝑟 = −1 indicates a perfect

negative correlation, and 𝑟 = 0 signifies no linear correlation.

3.4. Dataset splitting for model evaluation

Equation (6) was used to define multiple training–testing splits in order to evaluate model

performance metrics, including Acc, Pre, and Rec, across five ML algorithms: DT, RF, ET, CB, and AB. In

each simulation scenario 𝑖, the test size refers to the proportion of the dataset reserved for testing, while the

training size is the complement of that fraction, as illustrated in Figure 2. This ratio-based splitting approach

enabled the identification of an optimal data partitioning scheme for predictive modeling.

Figure 2. Distribution of training and testing data proportions across nine simulation scenarios using the

firewall logs dataset (65,532 records)

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4794

𝑇𝑒𝑠𝑡𝑖𝑛𝑔 (𝑖) = 1 − 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (𝑖) (6)

where 𝑖 ∈ {1, 2, … ,9} represents different simulation configurations. The Firewall logs dataset, consisting of

65,532 records, was divided accordingly into training and testing subsets. As the training portion increases

across simulations, the corresponding testing portion decreases, allowing an empirical examination of how

model performance varies with data availability. The computation time for training or testing in each scenario

was calculated using (7), by taking the difference between the end and start timestamps:

△ 𝑡 = 𝑡2 − 𝑡1 (7)

where △ 𝑡 denotes the elapsed time, 𝑡1 is the start time, and 𝑡2 is the end time.

The training and testing data proportions used in this study are illustrated in Figure 2, based on the

firewall logs dataset, which comprises 65,532 records. Across nine simulation iterations (from 1 to 9), the

proportion of training data progressively increased, while the testing data proportion decreased

correspondingly. Each iteration corresponded to a specific train–test ratio, ranging from 1:9 to 9:1. These

data partitioning schemes were employed to investigate the effect of different data splits on the performance

of classification models.

4. RESULTS AND DISCUSSION

The experimental assessments were conducted on a high-performance computing server equipped

with dual Intel Xeon E5-2696 v3 processors (2.30 GHz, 36 cores/72 threads) and 64 GB of DDR4 RAM,

powered by an ASUS TUF 1200 W Gold ATX 3.0 power supply to ensure operational stability during

intensive workloads. Although the system was equipped with an NVIDIA GeForce RTX 3090 XC3 Ultra

Hybrid GPU (24 GB GDDR6X, 10,496 CUDA cores), all training and inference tasks were executed on the

CPU, as the study focused exclusively on ML models rather than DL architectures. DL models typically

require larger datasets and more computational resources, which may not be feasible or necessary for the

problem of detecting abnormal traffic in server systems. Therefore, ML algorithms were preferred for their

efficiency and interpretability in this study. Five ML algorithms—DT, RF, ET, CB, and AB—were

systematically evaluated across nine train–test ratio scenarios (ranging from 1:9 to 9:1). Model performance

was assessed using standard metrics, including 𝐴𝑐𝑐, 𝑃𝑟𝑒, 𝑅𝑒𝑐, and 𝐶𝑀𝑎 analysis, training and testing times

(measured in seconds) of the five algorithms, as well as the evaluation of the correlation matrix. Among these

models, DT consistently demonstrated the highest accuracy and most stable performance, leading to its

selection as the final prediction model in this study on detecting abnormal traffic in server systems.

4.1. Assessing ML-based intrusion detection models using firewall logs

As shown in Table 4, DT consistently achieved the highest and most stable accuracy across all

train–test splits, with training accuracy ranging from 99.862% to 99.893% and test accuracy from 98.835% to

99.45%. At the 7:3 split, DT attained its peak test accuracy of 99.45%, outperforming ET (99.389%), CB

(99.338%), RF (95.005%), and AB (95.005%). While ET and CB remained competitive (e.g., 99.374% and

99.343% at the 9:1 and 8:2 splits), their performance was consistently lower than that of DT. In contrast, RF

and AB yielded noticeably lower test accuracies, particularly under minimal training conditions (e.g., both at

96.108% with the 1:9 split). These results from Table 4 confirm that DT offers superior generalization and

robustness across varying data distributions for detecting abnormal traffic in server systems, and Figure 3

further reinforces this finding by comparing the accuracy of the five algorithms at the 7:3 training–testing

ratio, where DT demonstrates the best performance.

Table 4. Accuracies of the five algorithms across different train–test splits.
Training–

testing ratio

DT RF ET CB AB

Train Test Train Test Train Test Train Test Train Test

1:9 0.99862 0.98835 0.96307 0.96108 0.99862 0.98904 0.99603 0.98986 0.96307 0.96108
2:8 0.99885 0.99078 0.96238 0.96269 0.99885 0.99048 0.99427 0.99113 0.96238 0.96269

3:7 0.99893 0.99217 0.97670 0.97680 0.99893 0.99125 0.99394 0.99193 0.97670 0.97680

4:6 0.99881 0.99282 0.97688 0.97723 0.99881 0.99231 0.99393 0.99249 0.97688 0.97723
5:5 0.99874 0.99328 0.96267 0.96337 0.99874 0.99230 0.99389 0.99252 0.96267 0.96337

6:4 0.99877 0.99355 0.96431 0.96455 0.99877 0.99298 0.99387 0.99248 0.96431 0.96455

7:3 0.99875 0.9945 0.94920 0.95005 0.99875 0.99389 0.99359 0.99338 0.94920 0.95005
8:2 0.9987 0.99427 0.96467 0.96459 0.99870 0.99435 0.99359 0.99343 0.96467 0.96459

9:1 0.99871 0.99359 0.97765 0.97741 0.99871 0.99374 0.99370 0.99267 0.97765 0.97741

Int J Elec & Comp Eng ISSN: 2088-8708 

 Anomaly-based intrusion detection leveraging optimized firewall log … (Tran Cong Hung)

4795

Figure 3. Comparison of the accuracy of the five algorithms at the 7:3 training–testing ratio

According to the results presented in Table 5, DT consistently achieved the highest training

precision across all train–test ratios, ranging from 99.2% to 99.875%. Although its test precision initially

started lower (74.985% at the 1:9 split), it improved significantly to 99.455% at the 8:2 split, demonstrating

strong generalization as more training data was introduced. In comparison, RF and AB exhibited limited

improvement, with test precision remaining below 72.556%. ET and CB showed stronger performance

gains—CB reached 99.341% and ET achieved 99.472% at the 8:2 split—yet they still trailed DT in overall

consistency. These findings from Table 5 further affirm DT’s robustness and adaptability in detecting

abnormal traffic within server systems under varying data conditions.

Table 5. Comparison of precision among the five algorithms after training and testing
Training–

testing ratio
DT RF ET CB AB

Train Test Train Test Train Test Train Test Train Test

1:9 0.99839 0.74985 0.71130 0.71027 0.99839 0.83987 0.99616 0.95504 0.71130 0.71027

2:8 0.99865 0.85029 0.71102 0.71141 0.99865 0.92880 0.99435 0.94169 0.71102 0.71141
3:7 0.99875 0.92151 0.72522 0.72561 0.99875 0.92941 0.99393 0.97656 0.72522 0.72561

4:6 0.9986 0.87677 0.72515 0.72583 0.99860 0.91811 0.99390 0.97014 0.72515 0.72583

5:5 0.99855 0.88435 0.70974 0.71077 0.99855 0.91005 0.99394 0.96174 0.70974 0.71077
6:4 0.99858 0.91549 0.71185 0.71221 0.99858 0.94385 0.97837 0.96507 0.71185 0.71221

7:3 0.992 0.97547 0.71453 0.71496 0.99200 0.97865 0.97895 0.99341 0.71453 0.71496

8:2 0.99269 0.99455 0.72058 0.72055 0.99269 0.99472 0.95963 0.99343 0.72058 0.72055
9:1 0.99342 0.99393 0.72554 0.72523 0.99342 0.99418 0.98377 0.99287 0.72554 0.72523

As detailed in Table 6, DT consistently achieved the highest recall on the training data, ranging from

98.982% to 99.923%, and demonstrated notable test recall performance, peaking at 93.389% with the 7:3

split. In contrast, RF and AB maintained relatively low recall on test sets across all splits, remaining around

70.000% to 73.000%. ET displayed improved test recall, reaching 98.020% at the 7:3 split, whereas CB

demonstrated stable performance, with test recall gradually increasing to 87.492% at the 5:5 split and

85.987% at the 8:2 split. Despite fluctuations, DT consistently outperformed the other methods in both

training and test scenarios. These findings reinforce DT’s effectiveness in capturing true abnormal traffic

patterns within server systems.

As shown in Table 7, DT consistently exhibited the lowest computational time across all train–test

splits, with training times ranging from 0.05843 seconds (1:9) to 0.20642 seconds (7:3) and testing times

from 0.05292 seconds (7:3) to 0.13196 seconds (4:6). RF and ET demonstrated moderate training and testing

durations; for instance, RF’s training time increased from 0.23983 seconds (1:9) to 0.99801 seconds (9:1),

while ET’s training time rose more steeply from 0.45540 to 2.30398 seconds, with its maximum test time

reaching 2.03108 seconds at the 9:1 split. In contrast, CB incurred the highest training costs among all

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4796

models, starting at 6.43591 seconds (1:9) and climbing to 32.7983 seconds (9:1), although its testing time

remained relatively stable, ranging from 0.41535 to 0.47654 seconds. AB maintained relatively low testing

times, such as 0.4228 seconds at 7:3 and 0.43434 seconds at 9:1, but its training time still increased steadily

from 0.22743 to 1.00326 seconds across the splits. These results highlight the computational efficiency of

DT, particularly in scenarios requiring low-latency model deployment, while underscoring the substantial

training overhead introduced by ensemble methods like CB and ET.

Table 6. Comparison of recall across the five algorithms
Training–

testing ratio
DT RF ET CB AB

Train Test Train Test Train Test Train Test Train Test

1:9 0.999 0.75748 0.72442 0.72411 0.99900 0.76396 0.99726 0.77439 0.72442 0.72411

2:8 0.99915 0.83671 0.72470 0.72532 0.99915 0.84865 0.86039 0.76803 0.72470 0.72532
3:7 0.99923 0.84353 0.73154 0.73178 0.99923 0.84321 0.88727 0.84392 0.73154 0.73178

4:6 0.9991 0.87774 0.73207 0.73223 0.99910 0.90896 0.86026 0.82359 0.73207 0.73223

5:5 0.98982 0.87479 0.72648 0.72712 0.98982 0.89277 0.88538 0.87492 0.72648 0.72712
6:4 0.99128 0.89313 0.72726 0.72816 0.99128 0.92690 0.86362 0.83633 0.72726 0.72816

7:3 0.99251 0.93389 0.70038 0.70127 0.99251 0.98020 0.85164 0.85552 0.70038 0.70127

8:2 0.99324 0.90537 0.71738 0.71724 0.99324 0.97339 0.85675 0.85987 0.71738 0.71724
9:1 0.99393 0.846 0.73299 0.73267 0.99393 0.84597 0.86882 0.79577 0.73299 0.73267

The correlation matrix in Figure 4 was utilized in Formula 5 to evaluate the linear relationships

among the 12 attributes listed in Table 3. Pairwise correlations were analyzed, with values ranging from -1

to 1. A strong positive correlation was observed between “Bytes Sent” and “Packets” (correlation ≈ 1),

suggesting that the number of bytes sent is closely related to the number of packets transmitted.

Multicollinearity was also assessed; if two attributes exhibited a correlation coefficient above 0.8—such as

“Pkts_Sent” and “Bytes Sent”—one of them could be excluded to reduce redundancy. Anomalies and

potential data skewness were detected, as “Source Port” showed no meaningful correlation with traffic-

related attributes (e.g., “Bytes Sent”), indicating inconsistency. Overall, the correlation matrix supported both

the identification of key attributes and the reduction of redundant features.

Table 7. Computational time (sec) for training and testing the five algorithms
Training–

testing ratio

DT RF ET CB AB

Train Test Train Test Train Test Train Test Train Test

1:9 0.05843 0.06757 0.23983 0.50174 0.45540 1.54212 6.43591 0.45376 0.22743 0.51638

2:8 0.06439 0.08054 0.31961 0.47798 0.63115 1.34037 10.5973 0.42859 0.32101 0.47017

3:7 0.18488 0.11959 0.43802 0.47426 0.68648 1.40431 13.2961 0.43802 0.41556 0.46706
4:6 0.18458 0.13196 0.53620 0.64084 0.94017 1.49161 17.9506 0.44295 0.77490 0.69974

5:5 0.09423 0.07615 0.89977 0.65402 1.12006 1.49527 19.3591 0.44001 0.81980 0.42654

6:4 0.14438 0.07434 0.71156 0.44066 2.02746 1.66075 23.2456 0.41535 0.71063 0.41697
7:3 0.20642 0.05292 0.80928 0.42493 1.54956 1.57220 25.6398 0.44855 0.85290 0.42280

8:2 0.1631 0.09987 0.91445 0.43844 1.77004 1.62620 28.3562 0.47654 0.90184 0.44737

9:1 0.14216 0.06657 0.99801 0.43490 2.30398 2.03108 32.7983 0.41856 1.00326 0.43434

Based on Figure 5, which presents the confusion matrices for the five classification algorithms under

a 7:3 training–testing split, clear differences in classification performance are evident, particularly for

sensitive classes such as reset-both and deny. The DT model demonstrated highly accurate classification

across all classes, with 11,227 out of 11,292 reset-both samples correctly predicted and minimal confusion

across other classes. ET performed comparably well, correctly identifying 11,219 reset-both instances and

misclassifying only 73. In contrast, both RF and AB struggled significantly with the deny and reset-both

categories. For example, RF misclassified 191 deny samples and 626 reset-both samples, indicating poor

discrimination capability between those categories. CatBoost, while not as precise as DT or ET, maintained

competitive accuracy with 11,206 correct predictions for reset-both and low misclassification rates for other

classes. These results suggest that DT and ET offer superior robustness in distinguishing between nuanced

traffic control actions, making them more suitable for detecting abnormal behaviors in server systems.

4.2. Experimental evaluation of real-time

Figure 6 presents a comprehensive real-time summary and prediction report generated by the

proposed intrusion detection system, highlighting its operational effectiveness in a dynamic network

environment. The system continuously aggregates flow-level statistics from multiple source IPs

Int J Elec & Comp Eng ISSN: 2088-8708 

 Anomaly-based intrusion detection leveraging optimized firewall log … (Tran Cong Hung)

4797

(100.70.10.1–100.70.10.5), all targeting the server’s HTTP port (80), each exhibiting identical behavioral

metrics—namely, 192 packets, 7680 bytes of data transferred, and 96 SYN packets per flow. This uniformity

in traffic patterns is indicative of automated or coordinated activities, such as DDoS attacks or systematic

port scanning, which are often challenging for traditional signature-based IDS to promptly

identify. Leveraging machine learning-based classification, the system assigns a DENY label to all detected

flows, as evidenced by the consistent “[Prediction] DENY– Src IP: ... -> Dst Port: 80” output, thereby

demonstrating the model’s ability to accurately recognize and respond to anomalous and potentially

malicious behaviors in real time. These experimental results underscore the robustness of the RT-FLID

algorithm in synthesizing flow features and executing parallel inference, enabling timely and reliable defense

against both known and emerging network threats—a capability that aligns with recent advancements in deep

learning-based intrusion detection systems.

Figure 4. Correlation matrix showing the statistical relationships among 12 attributes in the dataset

Figure 7 presents the system status table containing a list of active nodes in the network, including

IP addresses (e.g., 100.70.10.1, 100.70.10.2, 100.70.10.3, 100.70.10.4, 100.70.10.5), along with information

on devices, users, operating systems, connection status (active, direct), and transmission statistics (tx/rx).

These nodes act as attacking machines, generating abnormal traffic toward the victim machine with IP

address 100.92.72.16 by using the HPing3 tool to simulate various attack patterns. The consistency between

the IP addresses shown in this table and those labeled as DENY in the traffic summary report, see Figure 6,

confirms that the intrusion detection system operates effectively not only on simulated data but also in a real-

world network environment with multiple nodes and concurrent connections. Furthermore, the traffic

statistics per node provide a solid basis for verifying the model's prediction decisions, thereby enhancing the

reliability of the Allow/Deny labels. The combination of evidence from both figures demonstrates that the

proposed RT-FLID algorithm is capable of accurately analyzing and classifying traffic in real time, while

also proving its practical applicability in monitoring and protecting dynamic, multi-device network

environments, including real-world attack scenarios.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4798

Figure 5. Confusion matrices illustrating the performance of five classification algorithms under a 7:3

training–testing split

Figure 6. Real-time summary report and ML-based flow-level prediction results of the proposed

intrusion detection system

4.3. Discussion

This study conducted a comprehensive evaluation of five machine learning algorithms (DT, RF, ET,

CB, AB) across various training/testing data split ratios. The models were assessed using standard

performance metrics such as accuracy, precision, recall, confusion matrix, training time, and prediction time.

Among these, the DT model demonstrated the highest accuracy and stability, achieving a peak test accuracy

of 99.45% at the 7:3 split ratio. Moreover, DT outperformed the others in processing speed, recording the

shortest training time (only 0.20642 seconds at the 7:3 ratio) and rapid prediction times. These results

highlight the model’s strong potential for deployment in low-latency environments and serve as compelling

evidence of DT’s effectiveness and practicality in detecting abnormal traffic in server systems.

Experimental results indicate that a 7:3 training/testing split offers an optimal balance between

providing sufficient training data and ensuring reliable test evaluation. At this ratio, most models—

particularly the DT model—achieved the highest accuracy and recall scores, demonstrating strong

Int J Elec & Comp Eng ISSN: 2088-8708 

 Anomaly-based intrusion detection leveraging optimized firewall log … (Tran Cong Hung)

4799

generalization capabilities. Specifically, DT reached a precision of up to 99.455% and a recall of 93.389%,

significantly outperforming the other algorithms. This analysis provides valuable practical guidance for

determining appropriate data split ratios in real-world network monitoring applications.

The proposed system, named RT-FLID, is a real-time intrusion detection architecture that employs a

multi-threaded mechanism to concurrently process network traffic flows. The architecture integrates three

core components: flow aggregation by session, synchronized multi-threaded processing, and automated

resource management. As a result, the system significantly enhances detection speed, accuracy, and

scalability, making it suitable for dynamic and high-throughput network environments. This represents a

substantial contribution, especially considering the limitations of traditional IDS systems when confronted

with distributed and sophisticated cyberattacks.

Figure 7. Active node and IP status table in the monitored network environment

Another key contribution of this study is the integration of quantitative evaluation with statistical

analysis to enhance the reliability and objectivity of the results. In addition to conventional metrics such as

accuracy, precision, recall, and training/prediction time, the study employs Pearson correlation analysis to

effectively select input features, thereby optimizing model performance and reducing computational cost.

More importantly, the system is validated on firewall log data collected from real-world network

environments, demonstrating its ability to accurately identify abnormal behaviors such as DDoS and port

scanning by correctly labeling suspicious flows (e.g., “DENY”), with the DT model consistently achieving

high accuracy in critical classes like “deny” and “reset-both” as evidenced by the confusion matrix.

Although parallel processing can be resource-intensive and time-consuming in certain contexts, the

application of ThreadPoolExecutor and multithreading in this study significantly reduces latency compared to

sequential processing, while also enhancing the scalability of the system. This design choice represents a

meaningful contribution and can be considered a breakthrough in the field of real-time network intrusion

detection. Exploring this direction further in subsequent projects offers a promising avenue for developing

more efficient and accurate solutions. The proposed approach demonstrates strong potential and is expected

to deliver substantial value to the research community in both academic and practical domains.

5. CONCLUSION

This study thoroughly evaluated five machine learning algorithms—DT, RF, ET, CB, and AB—

across various training/testing data splits. The DT model demonstrated superior performance, achieving a

peak test accuracy of 99.45%, precision of 99.455%, and recall of 93.389% at the optimal 7:3 split ratio. It

also outperformed others in efficiency, with the shortest training time of just 0.20642 seconds and rapid

prediction speed, highlighting its suitability for low-latency environments. The proposed RT-FLID system,

leveraging multi-threaded processing, significantly enhanced detection speed, accuracy, and scalability in

real-time intrusion detection. Moreover, integrating Pearson correlation for feature selection optimized model

performance and reduced computational costs. Validated on real-world firewall logs, the system accurately

identified abnormal activities like DDoS and port scanning, with the DT model maintaining high accuracy in

critical classes such as “deny” and “reset-both,” as confirmed by confusion matrix analysis.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4800

While RT-FLID demonstrates strong real-time performance and scalability, several enhancements

are planned for future research. These include exploring hybrid deep learning models for improved detection

of complex attack patterns, enabling compatibility with encrypted traffic through flow-based behavioral

analysis, and integrating external threat intelligence feeds to enhance anomaly context awareness.

Additionally, extending the system to analyze logs from multiple sources (e.g., IDS, system logs) could

provide a more comprehensive security posture.

ACKNOWLEDGMENTS

The authors sincerely thank the Associate Editor, reviewers, and Editor-in-Chief for their valuable

feedback. As a doctoral student, we appreciate the Posts and Telecommunications Institute of Technology,

Ministry of Information and Communications of Vietnam, for their partial financial support through an

International Scientific Research Grant.

FUNDING INFORMATION

This study was partially supported by the Theme-based Research Grant on International Science

[grant number 999/QĐ-HV] from the Ministry of Information and Communications, Vietnam.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Tran Cong Hung ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dam Minh Linh ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Han Minh Chau ✓ ✓ ✓ ✓ ✓

Ngo Xuan Thoai ✓ ✓ ✓

Thai Duc Phuong ✓

Huynh De Thu ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study have been previously published and are openly

available at GitHub: https://github.com/MinhLinhEdu/Firewall-logs-dataset.

REFERENCES
[1] Cisco Systems Inc., “Cisco’s 2024 cybersecurity readiness index,” Cisco Systems Inc., 2024.

https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2024/m03/cybersecurity-readiness-index-2024.html (accessed Jul. 12, 2024).

[2] “FBI tech tuesday: protecting yourself from spoofing and phishing scams,” Federal Bureau of Investigation, 2020.

https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-protecting-yourself-from-spoofing-and-
phishing-scams (accessed Aug. 15, 2023).

[3] Microsoft, “Microsoft digital defense report 2024,” Microsoft, 2024. https://www.microsoft.com/en-us/security/security-

insider/intelligence-reports/microsoft-digital-defense-report-2024 (accessed Nov. 09, 2024).
[4] H. Dhrir, M. Charfeddine, N. Tarhouni, and H. M. Kammoun, “Machine learning- and deep learning-based anomaly detection in

firewalls: a survey,” Journal of Supercomputing, vol. 81, no. 6, p. 761, 2025, doi: 10.1007/s11227-025-07212-y.

[5] A. Komadina, I. Kovačević, B. Štengl, and S. Groš, “Comparative analysis of anomaly detection approaches in firewall logs:
Integrating light-weight synthesis of security logs and artificially generated attack detection,” Sensors, vol. 24, no. 8, p. 2636,

Apr. 2024, doi: 10.3390/s24082636.

https://github.com/MinhLinhEdu/Firewall-logs-dataset

Int J Elec & Comp Eng ISSN: 2088-8708 

 Anomaly-based intrusion detection leveraging optimized firewall log … (Tran Cong Hung)

4801

[6] J.-K. Lee, T. Hong, and G. Lee, “AI-based approach to firewall rule refinement on high-performance computing service network,”
Applied Sciences, vol. 14, no. 11, p. 4373, May 2024, doi: 10.3390/app14114373.

[7] A. Siddiqui, B. P. Rimal, M. Reisslein, D. Gc, and Y. Wang, “SUTMS: Designing a unified threat management system for home

networks,” IEEE Access, vol. 12, pp. 80930–80949, 2024, doi: 10.1109/ACCESS.2024.3410111.
[8] M. Aljabri, A. A. Alahmadi, R. M. A. Mohammad, M. Aboulnour, D. M. Alomari, and S. H. Almotiri, “Classification of firewall

log data using multiclass machine learning models,” Electronics (Switzerland), vol. 11, no. 12, p. 1851, 2022, doi:

10.3390/electronics11121851.
[9] F. Ertam and M. Kaya, “Classification of firewall log files with multiclass support vector machine,” in 6th International

Symposium on Digital Forensic and Security, ISDFS 2018 - Proceeding, 2018, vol. 2018-Janua, pp. 1–4. doi:

10.1109/ISDFS.2018.8355382.
[10] M. H. Rahman, T. Islam, M. M. Rana, R. Tasnim, T. R. Mona, and M. M. Sakib, “Machine learning approach on multiclass

classification of internet firewall log files,” in Proceedings of International Conference on Computational Intelligence and

Sustainable Engineering Solution, CISES 2023, 2023, pp. 358–364. doi: 10.1109/CISES58720.2023.10183601.
[11] Z. Li, C. Huang, S. Deng, W. Qiu, and X. Gao, “A soft actor-critic reinforcement learning algorithm for network intrusion

detection,” Computers and Security, vol. 135, 2023, doi: 10.1016/j.cose.2023.103502.

[12] S. S. Bamber, A. V. R. Katkuri, S. Sharma, and M. Angurala, “A hybrid CNN-LSTM approach for intelligent cyber intrusion
detection system,” Computers and Security, vol. 148, p. 104146, 2025, doi: 10.1016/j.cose.2024.104146.

[13] P. Artioli, V. Dentamaro, S. Galantucci, A. Magrì, G. Pellegrini, and G. Semeraro, “SIEVE: Generating a cybersecurity log

dataset collection for SIEM event classification,” Computer Networks, vol. 266, p. 111330, 2025, doi:
10.1016/j.comnet.2025.111330.

[14] A. Yichiet, Y. M. J. Khaw, M. L. Gan, and V. Ponnusamy, “A semantic-aware log generation method for network activities,”

International Journal of Information Security, vol. 21, no. 2, pp. 161–177, 2022, doi: 10.1007/s10207-021-00547-6.
[15] A. Andalib and S. M. Babamir, “Anomaly detection of policies in distributed firewalls using data log analysis,” Journal of

Supercomputing, vol. 79, no. 17, pp. 19473–19514, 2023, doi: 10.1007/s11227-023-05417-7.

[16] E. Ucar and E. Ozhan, “The analysis of firewall policy through machine learning and data mining,” Wireless Personal
Communications, vol. 96, no. 2, pp. 2891–2909, 2017, doi: 10.1007/s11277-017-4330-0.

[17] D. Bringhenti and F. Valenza, “GreenShield: Optimizing firewall configuration for sustainable networks,” IEEE Transactions on

Network and Service Management, vol. 21, no. 6, pp. 6909–6923, 2024, doi: 10.1109/TNSM.2024.3452150.
[18] D. Bringhenti, L. Seno, and F. Valenza, “An optimized approach for assisted firewall anomaly resolution,” IEEE Access, vol. 11,

pp. 119693–119710, 2023, doi: 10.1109/ACCESS.2023.3328194.

[19] J. Park, B. Park, and T. S. Kim, “Development of an anomaly classification model and a decision support tool for firewall policy
configuration,” Applied Sciences (Switzerland), vol. 15, no. 6, p. 2979, 2025, doi: 10.3390/app15062979.

[20] S. Alabdulhadi and A. Al-Matouq, “Efficient and standardized alarm rationalization for cybersecurity monitoring,” IEEE Access,

vol. 12, pp. 166936–166944, 2024, doi: 10.1109/ACCESS.2024.3492264.
[21] D. Sharma, V. Wason, and P. Johri, “Optimized classification of firewall log data using heterogeneous ensemble techniques,” in

2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021, 2021, pp.

368–372. doi: 10.1109/ICACITE51222.2021.9404732.
[22] E. Efeoğlu and G. Tuna, “Classification of firewall log files with different algorithms and performance analysis of these

algorithms,” Journal of Web Engineering, vol. 23, no. 4, pp. 561–594, 2024, doi: 10.13052/jwe1540-9589.2344.

[23] M. Mingze, “Research and application of firewall log and intrusion detection log data visualization system,” IET Software, vol.
2024, no. 1, p. 7060298, 2024, doi: 10.1049/2024/7060298.

[24] GitHub, “Firewall-logs-dataset,” GitHub, 2024. https://github.com/MinhLinhEdu/Firewall-logs-dataset (accessed Nov. 23, 2024).

[25] D. M. Linh, H. D. Hung, H. M. Chau, Q. S. Vu, and T. N. Tran, “Real-time phishing detection using deep learning methods by
extensions,” International Journal of Electrical and Computer Engineering (IJECE), vol. 14, no. 3, pp. 3021–3035, 2024, doi:

10.11591/ijece.v14i3.pp3021-3035.

[26] Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “An improved random forest based on the classification accuracy and
correlation measurement of decision trees,” Expert Systems with Applications, vol. 237, p. 121549, 2024, doi:

10.1016/j.eswa.2023.121549.
[27] B. Padmavathi and V. Selvaraj, “Advanced optimization-based weighted features for ensemble deep learning smart occupancy

detection network for road traffic parking,” Journal of Network and Computer Applications, vol. 230, p. 103924, 2024, doi:

10.1016/j.jnca.2024.103924.
[28] K. Pearson, “Mathematical contributions to the theory of evolution,” in Proeedings of the Royal Society, 1896, vol. 60, no. 1834,

pp. 489–498.

[29] P. Chen, F. Li, and C. Wu, “Research on intrusion detection method based on Pearson correlation coefficient feature selection

algorithm,” Journal of Physics: Conference Series, vol. 1757, no. 1, p. 012054, 2021, doi: 10.1088/1742-6596/1757/1/012054.

BIOGRAPHIES OF AUTHORS

Tran Cong Hung was born in Vietnam in 1961. He received his B.E. degree in

electronics and telecommunication engineering with first-class honors from Ho Chi Minh

University of Technology in 1987. He received his B.E. degree in informatics and computer

engineering from Ho Chi Minh University of Technology in 1995. He earned a Master of

Engineering degree in Telecommunications Engineering from the Postgraduate Department of

Hanoi University of Technology in 1998. He received his Ph.D. degree from Hanoi University

of Technology in 2004. His main research areas include B-ISDN performance parameters and

measurement methods, QoS in high-speed networks, cyber threat intelligence, deep learning,

and MPLS. Currently, he is an associate professor at the Department of Computer Science

and Engineering, Saigon International University in Ho Chi Minh City, Vietnam. He can be

reached via email at: tranconghung@siu.edu.vn, and conghung@ptithcm.edu.vn. More

information: https://tranconghung.com.

mailto:tranconghung@siu.edu.vn
https://orcid.org/0009-0001-1698-2673

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4785-4802

4802

Dam Minh Linh was born in 1982 in Tay Ninh Province, Vietnam. He received

his engineering degree in information technology in 2010 and his M.Sc. degree in information

systems in 2016, both from the Posts and Telecommunications Institute of Technology. He is

currently a lecturer at the Faculty of Information Technology and a member of the Information

Security Technology Lab at the Posts and Telecommunications Institute of Technology, Ho

Chi Minh City, Vietnam. His research interests include anti-phishing solutions, cyber threat

intelligence, deep learning with transformer models, natural language processing, and

computer vision. Since 2024, he has been a Ph.D. student in information systems at the Posts

and Telecommunications Institute of Technology, Vietnam. His current research focuses on

applying transformer-based deep learning techniques to combinatorial optimization,

particularly in cybersecurity and network security domains. He can be reached via email at:

linhdm@ptit.edu.vn.

Han Minh Chau was born in Vietnam in 1980. He is currently the head of the

Department of Computer Networks, Faculty of Information Technology, HUTECH University,

Ho Chi Minh City, Vietnam. He received a bachelor’s degree in information technology from

Hanoi University of Science and Technology and a master’s degree in computer science from

the Ho Chi Minh City University of Information Technology, Vietnam National University at

Ho Chi Minh City. His main research interests include network security, machine learning,

computer vision, cloud computing platforms, and artificial intelligence. He can be reached via

email at: hm.chau80@hutech.edu.vn.

Ngo Xuan Thoai was born in Vietnam in 2001. He received his B.Eng. degree in

information security from the Posts and Telecommunications Institute of Technology,

Vietnam, in 2024. He is currently employed as a Software Development and Operations

Engineer (e.g., DevOps Engineer) at FE Credit, a subsidiary of VPBank. His research interests

include machine learning, natural language processing, application development, and computer

vision. He can be reached via email at: thoainx01@gmail.com.

Thai Duc Phuong was born in Vietnam in 1993, has worked in the information

security industry as a design, deployment, and management engineer since 2015. He earned a

bachelor’s degree in computer networking and communications from the University of

Information Technology, VNU-HCM, in 2016 and began a master’s in computer science at

Saigon International University in 2022. He is currently Deputy Technical Director of Services

at Vietsunshine Electronic Solution Joint Stock Company. He can be reached via email at:

phuong.thai@vietsunshine.com.vn.

Huynh De Thu received the Ph.D. degree in computer science from Huazhong

University of Science and Technology, China in 2018. He is working as a lecturer and

researcher in School of Computer Science & Engineering, The Saigon International

University, Ho Chi Minh City, Vietnam. His current research interests were in the areas of

wireless networks, device-to-device communications, IoT, network security and data science.

He can be reached via email at: huynhdethu@siu.edu.vn.

https://orcid.org/0009-0000-9104-5770
https://scholar.google.com/citations?hl=en&user=VOdgxT0AAAAJ
https://www.scopus.com/dashboard.uri?origin=searchauthorfreelookup&zone=TopNavBar
https://www.webofscience.com/wos/author/record/JHS-4028-2023
https://orcid.org/0009-0003-0400-5175
https://scholar.google.com/citations?hl=en&user=ANf6TvMAAAAJ
https://www.scopus.com/dashboard.uri?origin=&zone=TopNavBar
https://www.webofscience.com/wos/author/record/JHS-7124-2023
https://orcid.org/0009-0005-9466-9825
https://orcid.org/0000-0002-1227-0281

