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Agriculture is the backbone of the Indian economy, with soil quality playing
a crucial role in crop productivity. Farmers often struggle to select the
appropriate crop based on soil type, leading to significant losses in yield and
productivity. To address this challenge, deep learning techniques provide an
efficient solution for automated soil classification. In this study, a dataset of
781 original soil images, including clay soil, alluvial soil, red soil, and black
soil, was collected from Kaggle and augmented to 3,702 images to enhance
model training. Several deep learning models were employed for soil
classification, including pretrained architectures and a proposed model,
SoilNet. Experimental results demonstrated that DenseNet201 achieved 100%
validation accuracy, ResNet50V2 98%, VGG16 99%, MobileNetV2 99%,
and the proposed SoilNet model 97%. The proposed approach outperformed
existing work by surpassing 95% accuracy. Additionally, model
performance was evaluated using precision, recall, and F1-score, ensuring a
comprehensive analysis of classification effectiveness. These findings
highlight the potential of deep learning in improving soil classification
accuracy, aiding farmers in making informed crop selection decisions.
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1. INTRODUCTION

The foundation of worldwide food production is agriculture, and crop yield is heavily influenced by
the quality of the soil. Soil types—Ilike sandy, clayey, loamy, and silt—differ in texture, water retention
capacity, and nutrient availability, which directly affects plant growth. Farmers need to understand soil
properties in order to make informed choices about crop selection, irrigation, and fertilization. Nonetheless,
conventional methods of soil analysis are frequently characterized by high costs and time demands, as well as
a lack of accessibility for numerous farmers—especially those in isolated regions. The progress made in
artificial intelligence (AI) and deep learning has sparked increased curiosity about using technology to

enhance agricultural practices [1].

A significant challenge for contemporary agriculture is that fluctuations in soil and environmental
conditions can lead to unpredictable crop performance. Farmers frequently depend on traditional methods or
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manual testing to evaluate soil suitability, which can result in inefficient resource allocation and reduced
productivity [2]. Furthermore, the decision-making process is made more complex by climate change and
soil degradation, which hinders the attainment of sustainable farming that also yields high production.
Pre-trained deep learning models like VGG and ResNet have proven effective in image classification and
pattern recognition, but their direct use in agriculture necessitates fine-tuning to suit specific soil and crop
conditions [3].

This study aims to meet these challenges by focusing on the fine-tuning of pre-trained deep learning
models for the purpose of accurate crop prediction based on soil conditions [4]. These models can evaluate
soil texture, moisture levels, and nutrient content to suggest the most appropriate crops for a specific area by
using soil images and related data. Al-driven smart agriculture solutions can greatly improve decision-
making, minimize trial-and-error farming methods, and boost overall yield. This research seeks to connect
the fields of deep learning and precision agriculture, offering farmers a trustworthy, data-informed method
for optimizing productivity and sustainability. This research improves precision farming through the use of
DenseNet121 and ResNet50 for accurate crop classification from satellite images, facilitating improved
decision-making and resource management.

Section 2 outlines related work, Section 3 outlines the proposed methodology, including data
acquisition, preprocessing, model fine-tuning, and evaluation. Section 4 discusses the experimental setup,
results, and analysis. Section 5 concludes the study with key findings, limitations, and directions for future
work.

2. RELATED WORK

Jasvanth and Fredrik [5] proposed a convolutional neural network (CNN)-based method for
classifying soil images and recommending crops, thereby improving precision agriculture. Using
preprocessing techniques to standardize input data, the model is trained on analyses dataset of different soil
types [6]. Following classification, the system recommends appropriate crops, offering an automated and
effective means for making informed agricultural decisions. The purpose of research [7] is to help farmers
choose appropriate crops by examining the characteristics of land and soil through geospatial methods. To
assess the appropriateness of crops, elements such as soil texture and moisture levels, nutrient content, and
slope are analyses. A web-based model that processes dynamic data facilitates improved planning and
enhances the yield per hectare.

Reference [8] puts forward a supervised learning model based on decision trees to improve the
accuracy of crop yield predictions using soil moisture parameters and to decrease error rates. It examines
current machine learning (ML) algorithms, elaborates on the proposed approach, evaluates outcomes, and
considers potential enhancements, providing useful perspectives for researchers in agricultural artificial
intelligence (Al). Using deep learning, authors proposed CNN-based method analyses soil characteristics [9]
and forecasts appropriate crops, guaranteeing a solution rooted in data. Through comprehensive testing on
actual datasets, high accuracy and efficiency have been shown, promoting precision agriculture for improved
soil classification and crop forecasting [4]. Ahmed et al. [10] utilizes machine learning to forecast significant
cropping patterns in Bangladesh, drawing on land, soil, and climate data from 52 Upazilas. Models such as k-
nearest neighbors (KNN), decision tree (DT), random forest classifier (RFC), extreme gradient boosting
(XGBoost), and support vector machine (SVM) are capable of managing mixed data and various crop classes
with an accuracy exceeding 95%. Additionally, a system that is easy to use was created for straightforward
prediction deployment. Mittal and Bhanja [11] developed an ML model that recommends optimal crops
based on soil, climate, and resources. Using natural language processing (NLP) to extract insights from crop
data, the model predicts suitable crops and is deployed as a web service for easy access.

Alluvial soil, located in river plains such as those of the Ganges, Brahmaputra, and Indus, is
extremely fertile and mineral-rich, making it perfect for farming. It is conducive to the farming of staple
crops like rice, wheat, sugarcane, pulses, and oilseeds due to its excellent drainage and moisture retention
capabilities. Due to its nutrient-rich composition, it ensures high yields and is among the most productive
soil types for farming [12]. Also referred to as regur soil, black soil is very fertile and ideal for growing
cotton, soybean, sunflower, maize, and pulses. It is mainly located in Maharashtra, Gujarat, and Madhya
Pradesh, and it retains moisture well, making it suitable for dryland agriculture. Black soil, which is abundant
in calcium and magnesium, promotes nutrient uptake and guarantees robust crop growth. Its ability to self-
plow diminishes the necessity for regular tilling, thus boosting agricultural productivity [13]. Red soil,
located in areas such as Tamil Nadu, Karnataka, and Odisha, has good drainage and is high in iron content.
However, its natural fertility is low, necessitating the use of fertilizers for ideal crop development. It is
appropriate for the cultivation of groundnut, millets, pulses, cotton, rice, and various vegetables. With
appropriate soil management and fertilization, red soil can sustain agriculture and improve crop yield [14].
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Water-intensive crops like paddy, wheat, barley, and vegetables thrive in clayey soil that is nutrient-rich and
retains moisture effectively. This soil type, mainly located in areas such as Assam and West Bengal,
facilitates high-yield agriculture but necessitates effective drainage management to avert waterlogging. Due
to its fertile characteristics, it is ideal for sustainable crop production when proper irrigation methods are
applied and soil aeration is sufficient [15].

Groundnut is a vital food and oilseed crop in West Africa, contributing significantly to food and
nutritional security. This study aimed to assess the impact of different soil types on the nutritional quality of
groundnut in Lebda village, Centre-North Burkina Faso. Groundnut seeds (SH 470 P variety) were collected
from fourteen farmers across three soil types, and their macronutrient and mineral contents were analyzed.
Variance analysis revealed significant differences: clay soils yielded seeds with higher fat content (46.6% =+
6.3 g/100 g dry matter), while gravelly soils produced seeds richer in carbohydrates (18.8 + 1.9 g/100 g dry
matter). Iron content ranged from 1.9 £ 0.5 mg/100 g on sandy soils to 2.46 + 0.39 mg/100 g on clay soils [16],
[17]. A two-year field study at Himachal Pradesh Agricultural University, Palampur, assessed the impact of
vermicompost and split-applied nitrogen on pole French bean. Twelve treatment combinations were tested,
varying organic manures, nitrogen levels, and application methods. The combination of vermicompost with
125% recommended nitrogen applied in splits achieved the highest seed yield of 10.43 g/ha and improved
nutrient uptake. Vermicompost with 75% nitrogen also matched full-dose yields, enabling a 25% fertilizer
saving. Split application at 125% nitrogen increased yields by 50% over basal application, highlighting that
integrating vermicompost with split nitrogen application boosts productivity and supports soil health [18].

Field experiments were conducted during the summer, kharif, and rabi seasons of 2016-2017 and
2017-2018 at AC & RI, TNAU, Madurai to assess the impact of nutrient management and soil amendments
on groundnut productivity. The study tested three irrigation levels (I1: 0.8 IW/CPE, 12: 0.6 IW/CPE, 13: 0.6
IW/CPE) and four nutrient management practices (N1-N4) involving varying fertilizer rates, charred rice
husk, and Arbuscular mycorrhizae seed treatments. Results revealed that applying 75% of the recommended
fertilizer along with 5t of charred rice husk and Arbuscular mycorrhizae significantly enhanced plant growth,
dry matter production, leaf area index, SPAD value, nutrient uptake, soil enzyme activity, and yields. The
highest pod yields (1783, 1935, and 1854 kg/ha) and haulm yields (4743, 4272, and 4338 kg/ha) were
achieved during summer, kharif, and rabi 2017, respectively, under this treatment [19]. A 10-year study on
organic, integrated, and inorganic nutrient management systems assessed their impact on soil microbiological
properties. Results showed a C mineralization rate of 6.8 mg/kg soil and a potentially mineralizable nitrogen
level of 41.5 mg/kg soil. Arginine ammonification and nitrification activities measured 0.88 ng NH4"-N/g
soil/h and 56.0 ug NOs™-N/g/day, respectively. Microbial biomass C, N, and P were 320, 40, and 12 mg/kg
soil. The highest activities of alkaline phosphatase, urease, and cellulase were observed with vermicompost
application at 15 t/ha [20].

According to Ghani e al. [21], when it comes to forecasting soil liquefaction, long short-term
memory network (LSTM) outperforms CNN, XGB, and CatB. Its accuracy is 0.96, and its F1-score is 0.95.
Additionally, it shows that the soil with the largest liquefaction risk is SM-SP, providing important
information for geotechnical engineers.

3. THE PROPOSED METHOD
3.1. Dataset used

We have collected dataset from Kaggle, which includes 3,702 enhanced photographs in addition to
781 original dirt photos as shown in Figure 1. Twenty percent of the data is used for testing during training,
and eighty percent is used for training. Four soil groups are represented in the dataset: clay soil (995 photos),
red soil (910 images), black soil (985 images), and alluvial soil (812 images).

3.2. Pre-processing and data augmentation

The preparatory stages in the code include fetching photos from subfolders, using cv2.resize () to
resize them to 224x224 pixels, and using LabelEncoder () to encode class labels before one-hot encoding
with to_categorical (). To increase training stability, images are normalized by scaling pixel values to the
[0, 1] range. To ensure correct model evaluation, train_test_split () divides the dataset into 80% training
and 20% validation. A dropout layer (0.5 probability) is incorporated to avoid overfitting. Although flipping
and rotation are not used explicitly, ImageDataGenerator () can be used to incorporate them.

3.3. Performance metrics

The accuracy, precision, recall, F1-score, and support metrics are used to assess the performance of
deep learning models. While the confusion matrix true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) aid in evaluating the efficacy of classification, support shows the distribution
of classes [22].
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A structured deep learning pipeline is used by the suggested soil categorization model as shown in
Figure 2. To improve model performance, it starts with an input dataset of soil images that is pre-processed
and enhanced. After that, the dataset is divided into 20% testing and 80% training. Using accuracy, precision,
recall, and Fl-score, several deep learning models—SoilNet, VGG16, ResNet50V2, DenseNet201, and
MobileNetV2—are trained and assessed. Alluvial soil, black soil, clay soil, and red soil are distinguished by
the categorization system. In order to maximize model performance and guarantee accurate and reliable soil

categorization, hyper parameter adjustment is included [23].
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Figure 2. Proposed model architecture
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3.5. Feature extraction by SoilNet CNN model

The following is a mathematical representation of the feature extraction procedure for the suggested
SoilNet model:
a. Convolutional layer operations

F1: (&) (W1 * Xl-l +bl) (5)

where F is the feature map at layer 1, Wi and by are the learned filters and biases, Xi.; is the input from the
previous layer, * denotes the convolution operation, ¢ is the activation function (ReLU).
b. Max-pooling for down sampling

P, = max (F)) (6)

P represents the pooled feature map, max () denotes max pooling with a 2x2 filter.
c. Flattening and fully connected layers

Z=Flatten (Py) (7
H=6 (WgZ + bg) (®)

Where Z is the flattened vector, H is the output of the dense layer,W¢ and bg. are the weight matrix and bias
of the dense layer.
d. SoftMax classification

~ e%i

V= Sl )]

¥, is the probability of class i, N is the total number of classes (4 soil types), Z; is the activation output for
class i. Together, these procedures make up the SoilNet models feature extraction pipeline, which allows it to
identify patterns in soil texture for categorization.

4. EXPERIMENTAL RESULTS

The code for all experiments was implemented and executed in Google Colab, using the most recent
versions of Keras and TensorFlow. Table 1 provides a detailed account of the hardware specifications used
during the trials [24].

Table 1. Hardware requirements for experiments

Hardware component Specification
GPU Tesla T4, High RAM
System RAM 50.99 GB
Disk storage 238.68 GB

Trained models’ performance without data augmentation for soil classification is summarized in
Table 2. The highest accuracy (92%) was achieved by DenseNet201, with F1-scores ranging from 0.91 to
0.93. At 91%, ResNet50V2 came in second place, demonstrating exceptional performance in Black Soil
(F1-score: 0.95). Both VGG16 and MobileNetV2 achieved 90%, with MobileNetV2 demonstrating a high
precision of 0.96 for Alluvial Soil. While the SoilNet model reached an accuracy of 83%, it excelled in Red
Soil (Fl-score: 0.99) but had difficulties in Clay Soil (Fl-score: 0.67), highlighting the need for
enhancements.

As per the performance assessment of trained models with augmentation as shown in Table 3,
DenseNet201 reached the highest accuracy (100%), followed by VGG16 and MobileNetV2 (99%) and
ResNet50V2 (98%). The proposed SoilNet model achieved an accuracy of 97%, demonstrating superior
performance in classifying black and clay soils. Although DenseNet201 showed the best classification
results, all models exhibited competitiveness with slight differences in metrics.

The proposed models’ accuracy, loss, and computational performance were examined both with and
without augmentation in Tables 4 and 5. Without augmentation, DenseNet201 and ResNet50V2 attained a
flawless training accuracy of 100%, yet their testing accuracies fell to 91.81% and 90.64%, respectively. The
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training accuracy of VGG16 and MobileNetV2 was somewhat lower, at 92.81% and 100%, respectively,
while the testing accuracy hovered around 90%. The proposed SoilNet model demonstrated a training
accuracy of 95.98%, but it had the lowest testing accuracy (83.83%) and higher testing loss. DenseNet201
achieved a 100% testing accuracy and minimal loss (0.0032) with augmentation, outperforming all models.
With accuracies of 99.46% and 98.79%, VGG16 and MobileNetV2 were not far behind. With accuracies of
97.98% and 97.57%, respectively, ResNet50V2 and the proposed SoilNet model exhibited enhanced
generalization in comparison to training without augmentation. Overall, augmentation considerably improved
model performance, lessening overfitting and increasing testing accuracy.

Table 2. Performance evaluation of trained models without augmentation

Models Classes Precision  Recall Fl-score  Accuracy

DenseNet201 Alluvial soil 0.94 0.88 0.91 92%
Black Soil 0.88 0.95 091
Clay soil 0.95 0.90 0.93
Red soil 0.92 0.94 0.93

ResNet50V2 Alluvial soil 091 0.84 0.88 91%
Black Soil 091 0.98 0.95
Clay soil 0.86 0.86 0.86
Red soil 0.93 0.94 0.93

VGG16 Alluvial soil 0.93 0.86 0.89 90%
Black Soil 091 0.95 0.93
Clay soil 0.90 0.86 0.88
Red soil 0.86 0.92 0.89

MoileNetV2 Alluvial soil 0.96 0.83 0.89 90%
Black Soil 0.89 0.95 0.92
Clay soil 0.86 0.90 0.88
Red soil 0.87 0.94 0.90

Proposed SoilNet Model ~ Alluvial soil 0.83 0.70 0.76 83%
Black Soil 0.97 0.71 0.82
Clay soil 0.51 0.95 0.67
Red soil 0.98 1.00 0.99

Table 3. Performance evaluation of trained models with augmentation

Models Classes Precision  Recall Fl-score  Accuracy

DenseNet201 Alluvial soil 1.00 1.00 1.00 100%
Black Soil 1.00 1.00 1.00
Clay soil 1.00 1.00 1.00
Red soil 1.00 1.00 1.00

ResNet50V2 Alluvial soil 1.00 0.97 0.99 98%
Black Soil 0.96 0.99 0.97
Clay soil 0.96 0.96 0.96
Red soil 1.00 1.00 1.00

VGG16 Alluvial soil 1.00 0.98 0.99 99%
Black Soil 1.00 1.00 1.00
Clay soil 0.99 0.99 0.99
Red soil 0.99 1.00 0.99

MoileNetV2 Alluvial soil 0.99 0.99 0.99 99%
Black Soil 0.98 0.98 0.98
Clay soil 0.98 0.98 0.98
Red soil 1.00 1.00 1.00

Proposed SoilNet Model ~ Alluvial soil 0.93 0.99 0.96 97%
Black Soil 1.00 0.97 0.98
Clay soil 0.97 1.00 0.98
Red soil 0.99 0.92 0.95

Table 4. Accuracy, Loss and time computing of proposed models without augmentation

Pre-Trained Training Training Testing Testing

model Accuracy (%) Loss (%) Accuracy (%) Loss (%)
DenseNet201 100 0.0051 91.81 0.2139
ResNet50V2 100 0.0091 90.64 0.3241
VGGl16 92.81 0.2429 90.06 0.2926
MoileNetV2 100 0.0050 90.06 0.3106
Proposed SoilNet Model 95.98 0.0970 83.83 0.5016
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Table 5. Accuracy, loss and time computing of proposed models with augmentation

Pre-Trained Training Training Testing Testing
model Accuracy (%) Loss (%) Accuracy (%) Loss (%)
DenseNet201 99.98 0.0012 100 0.0032
ResNet50V2 99.93 0.0020 97.98 0.0540
VGG16 99.78 0.0129 99.46 0.0179
MoileNetV2 100 0.0035 98.79 0.0224
Proposed SoilNet Model 99.55 0.0126 97.57 0.1982

All models’ training and validation accuracy/loss curves show a consistent rise in accuracy over
epochs as loss decreases. SoilNet’s exceptional performance in soil classification is confirmed by its near-
perfect accuracy. High accuracy is also demonstrated by ResNetS0V2, VGG16, DenseNet201, and
MobileNetV2, with slight variations in validation loss suggesting some volatility but overall good
generalization. All models operate well, but SoilNet is the most dependable for soil categorization since it
performs better than the others in terms of accuracy and stability. Figure 3 shows training, testing accuracy
and loss curves.

Model Loss

DenseNet201 ResNet50V2

Training & Validation Loss Training & Validation Accuracy Model Accuracy
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Figure 3. Training and testing accuracy and loss analysis

In soil classification, the confusion matrices of different models show how effective they are.
DenseNet201°s robustness is demonstrated by its perfect classification with zero misclassifications across all
four soil types (Alluvial, Black, Clay, and Red). High accuracy is demonstrated by ResNet50V2, which
classifies the majority of samples accurately with few errors. It primarily confuses clay soil with black soil
and alluvial soil with other categories. With a few small misclassifications in clay and alluvial soil but
excellent overall accuracy, VGG16 performs admirably as well. With very few incorrect classifications
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including Clay and Black Soil, MobileNetV2 continues to exhibit strong classification performance.
Although 13 Red Soil samples were incorrectly classified as Alluvial Soil, the suggested SoilNet model
shows remarkable accuracy, especially in Alluvial, Black, and Clay soils. Nevertheless, SoilNet performs
better than other models, making it a very useful soil classification as shown in Figure 4.
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Figure 4. Confusion matrix of proposed models

By graphing the true positive rate (TPR) versus the false positive rate (FPR), the ROC curves assess
deep learning models for multi-class soil classification and demonstrate their capacity for discrimination. The
area under the curve (AUC) is used to evaluate models such as SoilNet, ResNet50V2, VGG16, DenseNet201,
and MobileNetV2. Values near 1.0 indicate good classification performance. Robust generalization is
confirmed by higher AUC across all soil classes; SoilNet most likely achieves the greatest AUC,
demonstrating its improved accuracy. ROC curve comparison aids in identifying the best accurate model for
soil classification as shown in Figure 5. Table 6 proposed model comparison with other studies.
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Figure 5. ROC curves of proposed models

Table 6. Proposed model comparison with other studies

References Year Dataset used Accuracy (%)
Proposed work 2025 Kaggle 97%
[10] 2022 Kaggle 95%

5.  CONCLUSION

In order to facilitate informed crop selection in precision agriculture, this paper offers a thorough
assessment of deep learning methods for soil categorization. The performance of four popular pre-trained
models—DenseNet201, ResNet50V2, VGG16, and MobileNetV2—was compared to the suggested SoilNet
CNN model using a carefully selected dataset of 3,702 soil pictures (original and enhanced). These
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demonstrated the robustness of deep learning in soil-type prediction, with DenseNet201 achieving the
greatest classification accuracy (100%), followed by VGG16 and MobileNetV2 (99%), ResNet50V2 (98%),
and the suggested SoilNet (97%). Our models, especially DenseNet201, showed better generalization and
classification precision than previous studies that indicated a maximum of 95% accuracy, especially after
adding data augmentation. Notably, the SoilNet model demonstrated exceptional class-specific precision,
especially for red and clay soils, highlighting its potential in specialized classification tasks, although
marginally lagging behind in aggregate performance. This study has significant ramifications for smart
agriculture since it can replace labor-intensive manual soil testing with automated soil classification based on
image data, allowing for location-aware crop suggestions in real time. Our results highlight how important it
is to incorporate deep learning into agricultural systems in order to achieve high-yield, sustainable farming.
We intend to build on this research in the future by adding multimodal soil characteristics (such as pH,
moisture, and nutrient content), refining models for mobile real-time applications, and confirming results on
soil samples at the field level. These developments will improve the use of Al-powered precision agriculture
instruments in a variety of environmental settings.
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