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 Nonlinear and seasonal fluctuations present significant challenges in 

predicting electricity load. To address this, a combination weighted forecast 

model (CWFM) based on individual prediction models is proposed. The 

artificial bee colony (ABC) algorithm is used to optimize the weighted 

coefficients. To evaluate the model’s performance, the novel CWFM and 

three benchmark models are applied to forecast electricity load in Malaysia 

and Thailand. Performance is assessed using mean absolute percentage error 

(MAPE) and root mean square error (RMSE). The experimental results 

indicate that the proposed combined model outperforms the single models, 

demonstrating improved accuracy and better capturing seasonal variations in 

electricity load. The ABC algorithm helps in finding the optimal 

combination of weights, ensuring that the model adapts effectively to 

different forecasting scenarios. 
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1. INTRODUCTION 

Accurate electrical load forecasting is vital for the energy sector, facilitating efficient planning and 

operation of power systems. Reliable load predictions enable operators to manage energy storage and 

alternative sources more effectively, ensuring a balanced supply. This also enhances the overall reliability of 

the electrical grid by allowing for proactive identification and resolution of potential issues such as overloads 

or supply shortages [1]. As systems evolve rapidly and are influenced by increasingly complex factors, 

achieving accurate forecasts becomes more challenging, particularly due to seasonality and uncertainty. 

Seasonal data often display similarities between different cycle periods but also exhibit fluctuations and 

randomness, complicating precise predictions.  

Currently, methods for predicting seasonal electricity time series in the literature can be broadly 

classified into three categories: statistical econometric models, artificial intelligence models, and grey 

models. The autoregressive integrated moving average (ARIMA) model, a key statistical econometric tool, is 

extensively utilized for simulating and forecasting seasonal electricity time series. Known for its robust 

forecasting capabilities, the ARIMA model demonstrates high precision in predicting electricity time series 

[2], [3]. It aids in understanding the data dynamics within a specific application [2]. While ARIMA 

effectively models linear patterns in time series, it falls short in capturing nonlinear patterns [3]. Regression 

models are also commonly employed in time series prediction, particularly for series with clear trends. 

However, traditional regression models have limitations, such as fewer variable parameters and difficulty 

adapting to time series prediction [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Artificial intelligence prediction models primarily focus on artificial neural networks (ANNs) and 

support vector machines (SVMs). Recently, ANNs have been widely adopted in electricity forecasting [2]. 

ANNs have a long history in prediction and have made significant contributions to forecasting, particularly in 

identifying nonlinear relationships between inputs and outputs, even when there is insufficient information 

about their relationship [3]. ANNs are favored for forecasting complex nonlinear systems and can realize any 

complex nonlinear mapping function, as mathematically proven [4]. However, ANNs are prone to falling into 

local minima and often exhibit overfitting [5]. 

Support vector regression (SVR) has gained considerable attention in the realm of electricity load 

forecasting due to its solid theoretical and mathematical underpinnings. SVR performs robust, noise-resistant, 

and nonlinear regression based on the principle of structural error minimization [6]. It constructs the 

regression model using the training dataset and then predicts outcomes from the test dataset. SVR’s 

generalization capability surpasses that of neural networks, and the algorithm ensures global optimality [7]. 

Additionally, various optimization techniques are often employed to enhance SVR learning. Despite its 

ability to produce highly accurate results, SVR has certain limitations. For instance, selecting numerous 

parameters through trial and error can be challenging and requires complex calculations to achieve optimal 

forecasting accuracy [8]. 

Grey system theory offers a reliable research method for situations with limited data. Grey models 

have been effectively applied in various fields, including natural gas, electricity, nuclear energy, oil, and 

overall energy consumption [9]. However, these applications typically involve annual time series with an 

upward trend and are less frequently used for monthly or quarterly seasonal data characterized by periodicity. 

To address these limitations, Wang [10] proposed a seasonal grey model (SGM(1,1)) that utilizes 

accumulation operators generated by seasonal factors to forecast electricity consumption in primary 

economic sectors. Numerous updated variants of the SGM(1,1) model, such as SFGM(1,1), DTGM(1,1), and 

SNGBM(1,1), have been developed to enhance the ability of grey models to predict seasonal time series  

[9]–[11]. 

Each single prediction model has unique informational characteristics and is suitable for specific 

conditions. In practice, it is common for one forecasting model to perform well during certain periods, while 

others excel at different times. Due to the inherent randomness, seasonality, and trends in electricity load, 

predictions from a single model often fail to fully capture the complexity, leading to lower accuracy. It is 

difficult to find a forecast model that outperforms all competing models. It was generally concluded that no 

single predictors can be appropriate for in all aspects of modelling because of their limitations and there was 

no individual intelligent approach appropriate for all specific problems. To fully leverage the strengths and 

unique information of each individual forecast model, combination forecasting is an effective approach. This 

method has become mainstream in forecasting and is increasingly adopted by scholars [2], [3].  

Combination forecasting can achieve higher accuracy and more reliable results. The primary reasons 

are twofold: different methods can capture diverse effective information from power load data, and they can 

complement each other. It is important to note that while the accuracy of combined forecasting is not always 

superior to that of individual models, the results are often more reliable [12], [13]. 

The benefits of forecast combinations depend not only on the quality of the individual forecasts but 

also on the estimation of the combination weights assigned to each forecast. Numerous studies have explored 

combination methods, ranging from simple approaches [14]–[16] to more sophisticated techniques [17]–[21]. 

Despite the complexity of some combination approaches and advanced machine learning algorithms, simple 

combinations remain competitive. The recent M4 competition demonstrated that simple combinations 

continue to deliver relatively good forecasting performance [22]. This finding aligns with previous research, 

which shows that simple combination rules are often preferred by researchers and practitioners and serve as a 

benchmark for evaluating new weighted forecast combination algorithms [19], [21]–[24]. 

Although simple combination schemes are straightforward to implement, their success heavily relies 

on the selection of the weighted forecasts to be combined. The critical aspect of an effective combined 

method is determining the appropriate weight coefficient. If the weight coefficient is well-chosen, the 

combined model can yield better prediction results; otherwise, the results may be suboptimal. There are 

relatively few studies on the methods for determining weight coefficients. 

This paper explores the potential of combining forecasts using basic methods of weighted 

combination forecasting model (WCFM), which effectively harnesses the strengths of each individual model 

to improve forecasting accuracy. The success of forecast combinations depends significantly on the 

determination of combination weights. To optimize the model’s weights, we employ the ABC algorithm, 

which maximizes the unique characteristics of each model. The ABC algorithm, inspired by the foraging 

behavior of honey bees, is an optimization technique that has been successfully applied to various practical 

problems [24]. 
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2. METHOD 

Four prediction models the ARIMA, SVM, SGM and Weighted combination forecasting models are 

discussed in this section. The following is an explanation of each model: 

 

2.1.  Autoregressive integrated moving average model 

The ARIMA model, introduced by Box and Jenkins in 1970 [25], is a widely adopted method for 

forecasting time series data. It operates by using a linear combination of its past values and the lags of 

forecast errors (random shocks). The formula for an ARIMA (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄) s model is 

 

Φ𝑃(𝐵
𝑠)𝜙𝑝(𝐵)(1 − 𝐵

𝑠)𝐷(1 − 𝐵)𝑑𝑦𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵
𝑠)𝑎𝑡  (1) 

 

where 𝑦𝑡 is the original value, 𝑎𝑡 are error, Φ𝑃(𝐵
𝑠) and 𝜙𝑝(𝐵) are the seasonal and non-seasonal 

autoregressive (AR) polynomials, (1 − 𝐵𝑠)𝐷 and (1 − 𝐵)𝑑  are the seasonal and non-seasonal differencing, 

Θ𝑄(𝐵
𝑠) and 𝜃𝑞(𝐵) are the seasonal and non-seasonal moving average (MA) polynomials. The Box-Jenkins 

methodology, essential for developing ARIMA models, involves five key steps: 

a. Stationarity check: Determine if 𝑥𝑡 meets the stationary time series condition. If the series is non-

stationary, differentiate the original time series 𝑥𝑡 to achieve stationarity. 

b. Model identification: Use the autocorrelation function (ACF) and partial autocorrelation function (PACF) 

of the stationary series to select appropriate ARMA models. 

c. Parameter estimation: Estimate the model’s parameters. Exclude lag orders from the model if any 

parameters are not significant (significance level less than 5%). 

d. Residual diagnostics: Test the model’s residuals to check if they are white noise. Ljung and Box [26] 

proposed the Q statistic for this hypothesis test. If the residual sequence is not white noise, the model 

needs revision. 

e. Model selection: Choose the optimal ARIMA model based on the lowest corrected Akaike information 

criterion (AICc).  

 

2.2.  Support vector machines model 

Support vector machines (SVM) introduced by Vapnik [6], are based on statistical learning theory 

and the principle of structural risk minimization. The fundamental principle of SVM for regression involves 

transforming the input data into a high-dimensional feature space through nonlinear mapping The regression 

function for SVM is expressed as (2): 

 

𝑓(𝑥) = ∑ 𝑤𝑖𝜙𝑖(𝑥) + 𝑏
𝑛
𝑖=1   (2) 

 

The coefficient [𝑤𝑖]𝑖
𝑛 are determined by solving the following quadratic programming problem: 

 

min
𝑤,𝑏,𝜉,𝜉∗

1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

𝑠. 𝑡 {

𝑦𝑖 −−𝑏 ≤ 𝜀 + 𝜉𝑖
〈𝑤𝑖 , 𝜙𝑖(𝑥)〉 − 𝑦𝑖 + 𝑏 ≤ 𝜀 + 𝜉𝑖

∗

𝜁𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛 

  (3) 

 

By solving this optimization problem, the estimation function is obtained as (4): 

 

𝑓(𝑥, 𝛼, 𝛼∗) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)〈𝜙𝑖(𝑥)𝜙(𝑥)〉 + 𝑏

𝑛
𝑖=1 = ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏
𝑛
𝑖=1  (4) 

 

where [𝜙𝑖(𝑥)]𝑖
𝑛 are the features, and 𝑏 is the bias term, 𝜉𝑖

∗ are slack variables, and 𝐶 > 0 is a constant that 

determines penalties. In the equation, ∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0,𝑛

𝑖=1 0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≥ 𝐶 ), and 𝐾(𝑥𝑖 , 𝑥) is the kernel 

function. Among various kernel functions, the radial basis function (RBF) is the most commonly used, 

defined as (5): 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2
)   (5) 

 

where 𝜎 is width of the RBF.  
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2.2.  Seasonal grey model 

Support let’s consider the time series 𝑥(0) = {𝑥1
(0)
, 𝑥2
(0)
, … , 𝑥𝑘

(0)
, … , 𝑥𝑛

(0)
}. The first-order seasonal 

accumulating generation operator (1-SAGO) is denoted as 𝑥𝑘
(1)𝑆. Using this operator, a seasonally-affected 

original series can be defined as (6) [10]: 

 

𝑋𝑠
(1)
= 𝑥(0)𝑆 = {𝑥1

(1)𝑆, 𝑥2
(1)𝑆, … , 𝑥𝑛

(1)𝑆} (6) 

with 𝑥𝑘
(1)𝑆 = ∑ 𝑥𝑖

(0)/𝑓𝑠(𝑖)
𝑘
𝑖=1 , 𝑘 = 1,2, … , 𝑛. 

 

where 𝑓𝑠(𝑖) is the seasonal factor in the original series occurring at the ith point in time. The 𝑓𝑠(𝑖) could be 

determined via (7), 
 

𝑓𝑠(𝑖) =
𝑥̅𝑀
(0)(𝑖)

𝑥̅𝑀𝑁
(0) (𝑖)

 (7) 

 

where M is the number of seasons in a year, and N the time point's ith year. The 𝑥̅𝑀
(0)(𝑖) is the average value of 

the series over the seasonal cycle and the and 𝑥̅𝑀𝑁
(0) (𝑖) is total average value for all seasons or months. The 

background value is calculated using (8). 

 

𝑧𝑠
(1)(𝑘) = 0.5𝑥𝑠

(1)(𝑘) + 0.5𝑥𝑠
(1)(𝑘 − 1), ∀𝑘 = 2, 3, … , 𝑛. (8) 

 

The following is the SGM(1,1) equation: 

 

𝑥𝑠
(1)(𝑘) − 𝑥𝑠

(1)(𝑘 − 1) + 𝑎𝑧𝑠
(1)(𝑘) = 𝑏 (9) 

 

The least-square approach is used to estimate the model's parameters in (12). The parameters of the model 

are computed as follows:  

 

[
𝑎
𝑏
] = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

 

where 
 

𝑌 = (

𝑥𝑠
1(2) − 𝑥𝑠

1(1)

𝑥𝑠
1(3) − 𝑥𝑠

1(2)
⋮

𝑥𝑠
1(𝑛) − 𝑥𝑠

1(𝑛 − 1)

) and 𝑋 =

(

 
 
−𝑧𝑠

(1)(2) 1

−𝑧𝑠
(1)(3) 1
⋮ ⋮

−𝑧𝑠
(1)(𝑛) 1)

 
 

 (10) 

 

Equation (10) is solved as (11): 

 

𝑥̂𝑠
(1)(𝑘) = (𝑥1

(0)
/𝑓𝑠(1) −

𝑏

𝑎
) 𝑒−𝑎𝑘 +

𝑏

𝑎
  (11) 

 

Using the inverse 1-SAGO, the predicted value of SGM(1,1) can be determined as (12): 

 

𝑥̂(0)(𝑘) = 𝑓𝑠(𝑘)(𝑥̂𝑠
(1)(𝑘) − 𝑥̂𝑠

(1)(𝑘 − 1)), 𝑘 = 2,3, … , 𝑛 (12) 

 

2.4.  Weighted combination forecasting model 

To enhance forecasting quality, this study selected three individual models - ARIMA, SVM, and 

SGM(1,1) as base predictors. During the forecasting process, the ARIMA model addresses linear problems, 

while SVM and SGM(1,1) handle nonlinear series forecasting. Given that electricity load data exhibits 

seasonality and nonlinearity, but sometimes shows linear features, these three models collectively address 

both nonlinear and linear forecasting challenges. However, the key to combining forecasting models lies in 

optimally choosing the combination weights. In this study, the WCFM is used to integrate all forecasted 

components into an ensemble for the final forecast. The weights in WCFM significantly impact the results 

and are challenging to determine. Therefore, the weights in WCFM were optimized using the ABC 

algorithm, which markedly improved accuracy. Experimental results indicate that the proposed combined 

model outperforms individual models and significantly surpasses the basic WCFM.  
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Let 𝑦𝑡
𝑐  be the true value of the series at time t and 𝑦𝑡

𝑘  be the forecast made by the k-th model at time t. 

The WCFM is given by (13), 

 

𝑦𝑡
𝑐 = ∑ 𝑤𝑗𝑦𝑡

𝑗𝑘
𝑗=1   (13) 

 

𝑤𝑖  is the weight coefficient of the k-th model at time t, satisfying: 

 

∑ 𝑤𝑗
𝑘
𝑗=1 = 1 and 0 ≤ 𝑤𝑖 ≤ 1 , 𝑗 = 1,2, … , 𝑘. (14) 

 

The ABC algorithm is used to find the optimal values for (w) to solve the nonlinear optimization problem. 

The sum of squared errors (SSE) is employed as the fitness function for the ABC algorithm. The constrained 

optimization problem to obtain the optimal weights 𝑤 can be described as follows: 

 

min 𝑆𝑆𝐸 = ∑ (𝑦𝑡
𝑐−𝑦𝑡)

2𝑛
𝑘=1 ,  subject to ∑ 𝑤𝑗 = 1

𝑘
𝑗   and  0 ≤ 𝑤𝑗 ≤ 1 

 

The ABC algorithm is relatively simple, flexible, reliable, and requires fewer tuning parameters 

[24]. The ABC algorithm is composed of four main elements as explained as follows: 

a. Initialization: The algorithm starts by randomly generating an initial population of solutions. 

b. Employed Bees: These bees explore the vicinity of their current food source (solution) to discover new, 

potentially better solutions. 

c. Onlooker Bees: These bees assess the quality of the food sources found by the employed bees and select 

the best ones based on a probability related to their quality. 

d. Scout Bees: When a food source is abandoned (i.e., it no longer yields better solutions), scout bees search 

for new random food sources to explore. 

This iterative process continues until a termination criterion is met, such as reaching a maximum number of 

cycles or achieving a satisfactory solution quality. More details about the entire procedure can be found in [24]. 

 

 

3. EVALUATION METRICS 

Evaluation criteria are crucial for assessing the simulation and prediction accuracy of different 

models. In this study, the root mean square error (RMSE) and the mean absolute percent error (MAPE) are 

employed as standard metrics to evaluate the performance of the proposed model. The RMSE and MAPE are 

expressed as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡

𝑐−𝑦𝑡)
2𝑛

𝑘=1  and 𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑡
𝑐−𝑦𝑡|

𝑦𝑡
× 100%𝑛

𝑘=1  

 

The symbols 𝑦𝑡  is the actual, 𝑦𝑡
𝑐  is predicted values, and n is the number of observations. These metrics 

provide a comprehensive evaluation of the model’s accuracy by measuring the average magnitude of the 

errors in the predictions. RMSE gives a higher weight to larger errors, making it sensitive to outliers, while 

MAPE expresses the error as a percentage, providing a normalized measure of prediction accuracy. 

 

 

4. RESULTS AND DISCUSSION  

In this section, we present two real-world case studies to validate the effectiveness and 

generalizability of the newly proposed method. The study utilizes historical monthly electricity load data 

from January 2011 to December 2021 for Malaysia and Thailand, as shown in Figure 1. The dataset 

comprises 144 time points in total. Both countries’ data display a wave-like pattern with distinct seasonal 

variations, making it essential to capture both trend and seasonality for accurate forecasting of complex time 

series. To ensure high prediction accuracy, the data were divided into training (simulation) and testing 

(prediction) subsets. The monthly load data from January 2011 to December 2020 were used as the training 

set, while the final 12 data points from January 2021 to December 2021 served as the test set to evaluate the 

model’s prediction performance. 

The ARIMA and SVM models utilize actual data values to estimate parameters and generate 

forecasts. The SVM model is implemented in R using the e1071 package, while ARIMA is implemented 

using the forecast package to predict electricity load. For the SVM model, a grid search is conducted to 

optimize hyperparameters, selecting the penalty coefficient γ from the set (0.01, 0.1, 1, 10, 100, 1000) and 

the gamma value σ from the range (10-3, 104), applying the Gaussian kernel.  
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For the ARIMA model, the forecast package’s auto. ARIMA function is used to find the best 

ARIMA model based on the AICc. By default, this package sets the maximum order for d, P, and Q to 2, D 

to 1, and p and q to 5. The SARIMA model parameters are estimated using the maximum likelihood estimate 

(MLE), and the Ljung-Box (LB) test is used to confirm the model’s suitability for the data. The AIC is used 

to choose values for p, P, q, and Q, while the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is applied to 

choose values for d and D. 

Unlike other models, the SGM(1,1) model follows two key steps for parameter estimation: first, the 

seasonal factor is derived from the original data, and then the parameters are estimated using the modified 

data with seasonality removed. The forecasting models ARIMA, SVM, and SGM(1,1) are chosen for the 

combined forecast using WCFM. The MATLAB toolbox is employed to determine the optimal weight 

coefficients for WCFM, which are calculated using the ABC algorithm.  

Table 1 and Figure 2 display the training and testing outcomes and accuracy levels for Malaysia’s 

electricity load. Figure 2 illustrates that the four models can effectively capture seasonal variations and align 

with the upward trends of the original data. Visually, as shown in Figure 2, the proposed model’s training and 

testing values are closer to the actual data, while other benchmark models exhibit larger deviations, 

especially during the testing phase. In terms of accuracy, the WCFM performs exceptionally well, with 

MAPE values of 1.67% for training and 2.67% for testing. According to Table 1, based on MAPE and RMSE 

during the training and testing phases, the ARIMA model ranks second in accuracy, followed by SVM. 

Conversely, the SGM(1,1) model shows the poorest performance, with the highest MAPE and RMSE values 

during both phases, indicating weak forecasting ability. Both Figure 2 and Table 1 indicate that the proposed 

method provides more precise forecasts than the other models. 

Additionally, Table 1 illustrates the accuracy of predicting Thailand’s monthly electricity load using 

MAPE and RMSE metrics. The table confirms that the proposed model delivers the best forecasting 

performance. The new model has the lowest MAPE and RMSE values during both training and testing 

stages, while the SGM model has the highest. The ARIMA model ranks second in accuracy, followed by 

SVM, demonstrating its strong forecasting capability. 

 

 

 
 

Figure 1. The data restart process 

 

 

Table 1. Malaysia and Thailand's load forecasting evaluation metrics for various forecasting models 
Country Metric SGM(1,1) SVM ARIMA WCFM 

Malaysia MAPE Training 3.20 2.77 2.80 2.68 

  Testing 4.14 4.38 2.90 2.82 

 RMSE Training 533.98 454.56 494.40 427.05 

  Testing 778.22 703.16 556.28 482.55 

Thailand MAPE Training 2.63% 1.74% 1.77% 1.67% 

  Testing 5.69% 3.94% 3.21% 2.67% 

 RMSE Training 499.81 343.44 338.02 312.05 

  Testing 933.79 783.76 568.92 502.98 
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Figure 2. The real value curves and forecasts for Malaysia and Thailand using four different models: 

ARIMA, SVM, SGM(1,1), and WCFM 

 

 

Overall, the WCFM model exhibits superior modelling and forecasting accuracy compared to other 

models. By incorporating the weighted coefficients of each model, the optimized WCFM significantly 

enhances the forecasting ability of traditional single models, proving its superior adaptability in predicting 

monthly electricity load. Figure 2 shows the training and testing values of the four models for monthly 

electricity load, with the WCFM values closely matching the actual data in both stages. 

These case studies demonstrate that the WCFM achieves higher precision in training and testing 

than other models for monthly electricity load forecasting. The ARIMA model ranks second, followed by 

SVM and SGM, indicating that the proposed model provides relatively low error and reliable prediction 

capability. 

 

 

5. CONCLUSION  

The global development of electrical load is accelerating, prompting extensive research by scholars 

into forecasting methods. Widely used models for predicting electrical load data with seasonal and trend 

characteristics include statistical models, artificial intelligence, and grey models. This study introduces a 

novel combined WCFM for forecasting monthly electrical load data, utilizing the ABC algorithm to optimize 

model parameters and enhance forecasting performance. 

In our experiments, the innovative WCFM, which integrates three distinct models, effectively 

addresses both seasonal and linear trend forecasting challenges. Compared to individual models like ARIMA, 

SVM, and SGM(1,1), the combined model demonstrates significant improvements in accuracy, stability, and 

trend prediction. Consequently, the WCFM, with its superior accuracy, shows great potential for future 

applications. Additionally, this combined model can be applied to various fields, including power load 

forecasting, stock price forecasting, and traffic flow forecasting. 
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