International Journal of Electrical and Computer Engineering (IJECE)
Vol. 15, No. 6, December 2025, pp. 5854~5862
ISSN: 2088-8708, DOI: 10.11591/ijece.v15i6.pp5854-5862 O 5854

Improving electrical load forecasting by integrating a weighted
forecast model with the artificial bee colony algorithm

Ani Shabri!, Ruhaidah Samsudin?
"Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
*Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia

Article Info ABSTRACT

Article history: Nonlinear and seasonal fluctuations present significant challenges in
) predicting electricity load. To address this, a combination weighted forecast

Received May 13, 2025 model (CWFM) based on individual prediction models is proposed. The

Revised Jul 22, 2025 artificial bee colony (ABC) algorithm is used to optimize the weighted

Accepted Sep 14, 2025 coefficients. To evaluate the model’s performance, the novel CWFM and

three benchmark models are applied to forecast electricity load in Malaysia

and Thailand. Performance is assessed using mean absolute percentage error
Keywords: (MAPE) and root mean square error (RMSE). The experimental results
indicate that the proposed combined model outperforms the single models,
demonstrating improved accuracy and better capturing seasonal variations in
. electricity load. The ABC algorithm helps in finding the optimal
moving average combination of weights, ensuring that the model adapts effectively to
Grey model different forecasting scenarios.

Load forecastin
£ This is an open access article under the CC BY-SA license.

Artificial bee colony
Autoregressive integrated

Support vector regression -
Corresponding Author:

©00

Department of Mathematical Science, Faculty of Science, University Teknologi Malaysia
81300 Johor, Malaysia
Email: ani@utm.my

1. INTRODUCTION

Accurate electrical load forecasting is vital for the energy sector, facilitating efficient planning and
operation of power systems. Reliable load predictions enable operators to manage energy storage and
alternative sources more effectively, ensuring a balanced supply. This also enhances the overall reliability of
the electrical grid by allowing for proactive identification and resolution of potential issues such as overloads
or supply shortages [1]. As systems evolve rapidly and are influenced by increasingly complex factors,
achieving accurate forecasts becomes more challenging, particularly due to seasonality and uncertainty.
Seasonal data often display similarities between different cycle periods but also exhibit fluctuations and
randomness, complicating precise predictions.

Currently, methods for predicting seasonal electricity time series in the literature can be broadly
classified into three categories: statistical econometric models, artificial intelligence models, and grey
models. The autoregressive integrated moving average (ARIMA) model, a key statistical econometric tool, is
extensively utilized for simulating and forecasting seasonal electricity time series. Known for its robust
forecasting capabilities, the ARIMA model demonstrates high precision in predicting electricity time series
[2], [3]- It aids in understanding the data dynamics within a specific application [2]. While ARIMA
effectively models linear patterns in time series, it falls short in capturing nonlinear patterns [3]. Regression
models are also commonly employed in time series prediction, particularly for series with clear trends.
However, traditional regression models have limitations, such as fewer variable parameters and difficulty
adapting to time series prediction [2].

Journal homepage: http://ijece.iaescore.com


https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 O 5855

Artificial intelligence prediction models primarily focus on artificial neural networks (ANNs) and
support vector machines (SVMs). Recently, ANNs have been widely adopted in electricity forecasting [2].
ANNSs have a long history in prediction and have made significant contributions to forecasting, particularly in
identifying nonlinear relationships between inputs and outputs, even when there is insufficient information
about their relationship [3]. ANNSs are favored for forecasting complex nonlinear systems and can realize any
complex nonlinear mapping function, as mathematically proven [4]. However, ANNSs are prone to falling into
local minima and often exhibit overfitting [5].

Support vector regression (SVR) has gained considerable attention in the realm of electricity load
forecasting due to its solid theoretical and mathematical underpinnings. SVR performs robust, noise-resistant,
and nonlinear regression based on the principle of structural error minimization [6]. It constructs the
regression model using the training dataset and then predicts outcomes from the test dataset. SVR’s
generalization capability surpasses that of neural networks, and the algorithm ensures global optimality [7].
Additionally, various optimization techniques are often employed to enhance SVR learning. Despite its
ability to produce highly accurate results, SVR has certain limitations. For instance, selecting numerous
parameters through trial and error can be challenging and requires complex calculations to achieve optimal
forecasting accuracy [8].

Grey system theory offers a reliable research method for situations with limited data. Grey models
have been effectively applied in various fields, including natural gas, electricity, nuclear energy, oil, and
overall energy consumption [9]. However, these applications typically involve annual time series with an
upward trend and are less frequently used for monthly or quarterly seasonal data characterized by periodicity.
To address these limitations, Wang [10] proposed a seasonal grey model (SGM(1,1)) that utilizes
accumulation operators generated by seasonal factors to forecast electricity consumption in primary
economic sectors. Numerous updated variants of the SGM(1,1) model, such as SFGM(1,1), DTGM(1,1), and
SNGBM(1,1), have been developed to enhance the ability of grey models to predict seasonal time series
[91-[11].

Each single prediction model has unique informational characteristics and is suitable for specific
conditions. In practice, it is common for one forecasting model to perform well during certain periods, while
others excel at different times. Due to the inherent randomness, seasonality, and trends in electricity load,
predictions from a single model often fail to fully capture the complexity, leading to lower accuracy. It is
difficult to find a forecast model that outperforms all competing models. It was generally concluded that no
single predictors can be appropriate for in all aspects of modelling because of their limitations and there was
no individual intelligent approach appropriate for all specific problems. To fully leverage the strengths and
unique information of each individual forecast model, combination forecasting is an effective approach. This
method has become mainstream in forecasting and is increasingly adopted by scholars [2], [3].

Combination forecasting can achieve higher accuracy and more reliable results. The primary reasons
are twofold: different methods can capture diverse effective information from power load data, and they can
complement each other. It is important to note that while the accuracy of combined forecasting is not always
superior to that of individual models, the results are often more reliable [12], [13].

The benefits of forecast combinations depend not only on the quality of the individual forecasts but
also on the estimation of the combination weights assigned to each forecast. Numerous studies have explored
combination methods, ranging from simple approaches [14]-[16] to more sophisticated techniques [17]-[21].
Despite the complexity of some combination approaches and advanced machine learning algorithms, simple
combinations remain competitive. The recent M4 competition demonstrated that simple combinations
continue to deliver relatively good forecasting performance [22]. This finding aligns with previous research,
which shows that simple combination rules are often preferred by researchers and practitioners and serve as a
benchmark for evaluating new weighted forecast combination algorithms [19], [21]-[24].

Although simple combination schemes are straightforward to implement, their success heavily relies
on the selection of the weighted forecasts to be combined. The critical aspect of an effective combined
method is determining the appropriate weight coefficient. If the weight coefficient is well-chosen, the
combined model can yield better prediction results; otherwise, the results may be suboptimal. There are
relatively few studies on the methods for determining weight coefficients.

This paper explores the potential of combining forecasts using basic methods of weighted
combination forecasting model (WCFM), which effectively harnesses the strengths of each individual model
to improve forecasting accuracy. The success of forecast combinations depends significantly on the
determination of combination weights. To optimize the model’s weights, we employ the ABC algorithm,
which maximizes the unique characteristics of each model. The ABC algorithm, inspired by the foraging
behavior of honey bees, is an optimization technique that has been successfully applied to various practical
problems [24].
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2. METHOD
Four prediction models the ARIMA, SVM, SGM and Weighted combination forecasting models are
discussed in this section. The following is an explanation of each model:

2.1. Autoregressive integrated moving average model

The ARIMA model, introduced by Box and Jenkins in 1970 [25], is a widely adopted method for
forecasting time series data. It operates by using a linear combination of its past values and the lags of
forecast errors (random shocks). The formula for an ARIMA (p,d, q) (P, D, Q) s model is

®p(B*)¢,(B)(1 — B5) (1 = B)?y, = 0,(B)0q(B*)a, )

where y, is the original value, a, are error, ®,(B®) and bp (B) are the seasonal and non-seasonal

autoregressive (AR) polynomials, (1 — B¥)? and (1 — B)? are the seasonal and non-seasonal differencing,

0, (B*) and 6,(B) are the seasonal and non-seasonal moving average (MA) polynomials. The Box-Jenkins

methodology, essential for developing ARIMA models, involves five key steps:

a. Stationarity check: Determine if x; meets the stationary time series condition. If the series is non-
stationary, differentiate the original time series x; to achieve stationarity.

b. Model identification: Use the autocorrelation function (ACF) and partial autocorrelation function (PACF)
of the stationary series to select appropriate ARMA models.

c. Parameter estimation: Estimate the model’s parameters. Exclude lag orders from the model if any
parameters are not significant (significance level less than 5%).

d. Residual diagnostics: Test the model’s residuals to check if they are white noise. Ljung and Box [26]
proposed the Q statistic for this hypothesis test. If the residual sequence is not white noise, the model
needs revision.

e. Model selection: Choose the optimal ARIMA model based on the lowest corrected Akaike information
criterion (AICc).

2.2. Support vector machines model

Support vector machines (SVM) introduced by Vapnik [6], are based on statistical learning theory
and the principle of structural risk minimization. The fundamental principle of SVM for regression involves
transforming the input data into a high-dimensional feature space through nonlinear mapping The regression
function for SVM is expressed as (2):

flx) =X widi(x) + b (@)

The coefficient [w;]}* are determined by solving the following quadratic programming problem:

n

1
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By solving this optimization problem, the estimation function is obtained as (4):

fOoaa”) =Y (a; — a)) (i (x)p(x)) + b = Tz (a; — ai)K(x;, x) + b “4
where [¢;(x)]} are the features, and b is the bias term, &' are slack variables, and C > 0 is a constant that
determines penalties. In the equation, Y7~ (a; —a;) =0,0 < a;,af = C ), and K(x;x) is the kernel

function. Among various kernel functions, the radial basis function (RBF) is the most commonly used,
defined as (5):

2
K(x;,x;) = exp <— 7”“;2]‘” ) 5)

where o is width of the RBF.
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2.2. Seasonal grey model

OO

Support let’s consider the time series x© = { )Xy ,...,x,EO), ...,x,(lo)}. The first-order seasonal

accumulating generation operator (1-SAGO) is denoted as x,(cl)S . Using this operator, a seasonally-affected
original series can be defined as (6) [10]:

X = x©5 = (x5, xMs, ., x5y (©6)
with xS = ¥ x@/f.(D), k = 1,2, ...,n.

where f; (i) is the seasonal factor in the original series occurring at the i point in time. The f;(i) could be
determined via (7),

70
£@0) =2 (7

Ty @

where M is the number of seasons in a year, and N the time point's i year. The JEISJ ) () is the average value of

the series over the seasonal cycle and the and f}fls,(i) is total average value for all seasons or months. The

background value is calculated using (8).

2P U) = 05xP (k) +0.5xP (k — 1), Vk = 2,3, ..., . (8)
The following is the SGM(1,1) equation:

xP00) = xP k- 1) +az (k) = b )

The least-square approach is used to estimate the model's parameters in (12). The parameters of the model
are computed as follows:

[Z] = (XTX)"1XTY

where
x2(2) — x2(1) -zP(@2) 1
Yy = x5 (3) _ x5 (2) and X = —Zs(l‘)(3) 1 (10)
xi(n) - x(n - 1) Dy 1

Equation (10) is solved as (11):

2000 = (/0 —F) e + 2 (an
Using the inverse 1-SAGO, the predicted value of SGM(1,1) can be determined as (12):

2O%) = f,()ERP|) — 2Pk — 1)), k=23, ..,n (12)

2.4. Weighted combination forecasting model

To enhance forecasting quality, this study selected three individual models - ARIMA, SVM, and
SGM(1,1) as base predictors. During the forecasting process, the ARIMA model addresses linear problems,
while SVM and SGM(1,1) handle nonlinear series forecasting. Given that electricity load data exhibits
seasonality and nonlinearity, but sometimes shows linear features, these three models collectively address
both nonlinear and linear forecasting challenges. However, the key to combining forecasting models lies in
optimally choosing the combination weights. In this study, the WCFM is used to integrate all forecasted
components into an ensemble for the final forecast. The weights in WCFM significantly impact the results
and are challenging to determine. Therefore, the weights in WCFM were optimized using the ABC
algorithm, which markedly improved accuracy. Experimental results indicate that the proposed combined
model outperforms individual models and significantly surpasses the basic WCFM.
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Let y{ be the true value of the series at time 7 and y¥ be the forecast made by the A" model at time .
The WCFM is given by (13),

YE = Xjaa Wiyt (13)
w; is the weight coefficient of the ™" model at time ¢, satisfying:
Yigwi=1land0<w; <1,j=12 ..,k (14)

The ABC algorithm is used to find the optimal values for (w) to solve the nonlinear optimization problem.
The sum of squared errors (SSE) is employed as the fitness function for the ABC algorithm. The constrained
optimization problem to obtain the optimal weights w can be described as follows:

min SSE = Yi_,(y§—y,)?, subjectto Yfw; =1 and 0 <w; <1

The ABC algorithm is relatively simple, flexible, reliable, and requires fewer tuning parameters

[24]. The ABC algorithm is composed of four main elements as explained as follows:

a. Initialization: The algorithm starts by randomly generating an initial population of solutions.

b. Employed Bees: These bees explore the vicinity of their current food source (solution) to discover new,
potentially better solutions.

c. Onlooker Bees: These bees assess the quality of the food sources found by the employed bees and select
the best ones based on a probability related to their quality.

d. Scout Bees: When a food source is abandoned (i.e., it no longer yields better solutions), scout bees search
for new random food sources to explore.

This iterative process continues until a termination criterion is met, such as reaching a maximum number of

cycles or achieving a satisfactory solution quality. More details about the entire procedure can be found in [24].

3. EVALUATION METRICS

Evaluation criteria are crucial for assessing the simulation and prediction accuracy of different
models. In this study, the root mean square error (RMSE) and the mean absolute percent error (MAPE) are
employed as standard metrics to evaluate the performance of the proposed model. The RMSE and MAPE are
expressed as follows:

c_
RMSE = |27, (5 ~y:)? and MAPE = zgﬂ@ x 100%
t

The symbols y, is the actual, y{ is predicted values, and n is the number of observations. These metrics
provide a comprehensive evaluation of the model’s accuracy by measuring the average magnitude of the
errors in the predictions. RMSE gives a higher weight to larger errors, making it sensitive to outliers, while
MAPE expresses the error as a percentage, providing a normalized measure of prediction accuracy.

4. RESULTS AND DISCUSSION

In this section, we present two real-world case studies to validate the effectiveness and
generalizability of the newly proposed method. The study utilizes historical monthly electricity load data
from January 2011 to December 2021 for Malaysia and Thailand, as shown in Figure 1. The dataset
comprises 144 time points in total. Both countries’ data display a wave-like pattern with distinct seasonal
variations, making it essential to capture both trend and seasonality for accurate forecasting of complex time
series. To ensure high prediction accuracy, the data were divided into training (simulation) and testing
(prediction) subsets. The monthly load data from January 2011 to December 2020 were used as the training
set, while the final 12 data points from January 2021 to December 2021 served as the test set to evaluate the
model’s prediction performance.

The ARIMA and SVM models utilize actual data values to estimate parameters and generate
forecasts. The SVM model is implemented in R using the e1071 package, while ARIMA is implemented
using the forecast package to predict electricity load. For the SVM model, a grid search is conducted to
optimize hyperparameters, selecting the penalty coefficient y from the set (0.01, 0.1, 1, 10, 100, 1000) and
the gamma value o from the range (103, 10%), applying the Gaussian kernel.
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For the ARIMA model, the forecast package’s auto. ARIMA function is used to find the best
ARIMA model based on the AICc. By default, this package sets the maximum order for d, P, and Q to 2, D
to 1, and p and ¢ to 5. The SARIMA model parameters are estimated using the maximum likelihood estimate
(MLE), and the Ljung-Box (LB) test is used to confirm the model’s suitability for the data. The AIC is used
to choose values for p, P, ¢, and Q, while the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is applied to
choose values for d and D.

Unlike other models, the SGM(1,1) model follows two key steps for parameter estimation: first, the
seasonal factor is derived from the original data, and then the parameters are estimated using the modified
data with seasonality removed. The forecasting models ARIMA, SVM, and SGM(1,1) are chosen for the
combined forecast using WCFM. The MATLAB toolbox is employed to determine the optimal weight
coefficients for WCFM, which are calculated using the ABC algorithm.

Table 1 and Figure 2 display the training and testing outcomes and accuracy levels for Malaysia’s
electricity load. Figure 2 illustrates that the four models can effectively capture seasonal variations and align
with the upward trends of the original data. Visually, as shown in Figure 2, the proposed model’s training and
testing values are closer to the actual data, while other benchmark models exhibit larger deviations,
especially during the testing phase. In terms of accuracy, the WCFM performs exceptionally well, with
MAPE values of 1.67% for training and 2.67% for testing. According to Table 1, based on MAPE and RMSE
during the training and testing phases, the ARIMA model ranks second in accuracy, followed by SVM.
Conversely, the SGM(1,1) model shows the poorest performance, with the highest MAPE and RMSE values
during both phases, indicating weak forecasting ability. Both Figure 2 and Table 1 indicate that the proposed
method provides more precise forecasts than the other models.

Additionally, Table 1 illustrates the accuracy of predicting Thailand’s monthly electricity load using
MAPE and RMSE metrics. The table confirms that the proposed model delivers the best forecasting
performance. The new model has the lowest MAPE and RMSE values during both training and testing
stages, while the SGM model has the highest. The ARIMA model ranks second in accuracy, followed by
SVM, demonstrating its strong forecasting capability.
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Table 1. Malaysia and Thailand's load forecasting evaluation metrics for various forecasting models

Country Metric SGM(1,1) SVM ARIMA WCFM
Malaysia MAPE Training 3.20 2.77 2.80 2.68
Testing 4.14 438 2.90 2.82

RMSE Training 533.98 454.56 494.40 427.05

Testing 778.22 703.16 556.28 482.55

Thailand MAPE Training 2.63% 1.74% 1.77% 1.67%

Testing 5.69% 3.94% 3.21% 2.67%

RMSE Training 499.81 343.44 338.02 312.05

Testing 933.79 783.76 568.92 502.98
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Figure 2. The real value curves and forecasts for Malaysia and Thailand using four different models:
ARIMA, SVM, SGM(1,1), and WCFM

Overall, the WCFM model exhibits superior modelling and forecasting accuracy compared to other
models. By incorporating the weighted coefficients of each model, the optimized WCFM significantly
enhances the forecasting ability of traditional single models, proving its superior adaptability in predicting
monthly electricity load. Figure 2 shows the training and testing values of the four models for monthly
electricity load, with the WCFM values closely matching the actual data in both stages.

These case studies demonstrate that the WCFM achieves higher precision in training and testing
than other models for monthly electricity load forecasting. The ARIMA model ranks second, followed by
SVM and SGM, indicating that the proposed model provides relatively low error and reliable prediction
capability.

5. CONCLUSION

The global development of electrical load is accelerating, prompting extensive research by scholars
into forecasting methods. Widely used models for predicting electrical load data with seasonal and trend
characteristics include statistical models, artificial intelligence, and grey models. This study introduces a
novel combined WCFM for forecasting monthly electrical load data, utilizing the ABC algorithm to optimize
model parameters and enhance forecasting performance.

In our experiments, the innovative WCFM, which integrates three distinct models, effectively
addresses both seasonal and linear trend forecasting challenges. Compared to individual models like ARIMA,
SVM, and SGM(1,1), the combined model demonstrates significant improvements in accuracy, stability, and
trend prediction. Consequently, the WCFM, with its superior accuracy, shows great potential for future
applications. Additionally, this combined model can be applied to various fields, including power load
forecasting, stock price forecasting, and traffic flow forecasting.
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