
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 16, No. 1, February 2026, pp. 278~287

ISSN: 2088-8708, DOI: 10.11591/ijece.v16i1.pp278-287  278

Journal homepage: http://ijece.iaescore.com

Parameter-efficient fine-tuning of small language models for

code generation: a comparative study of Gemma, Qwen 2.5 and

Llama 3.2

Van-Viet Nguyen1, The-Vinh Nguyen1, Huu-Khanh Nguyen2, Duc-Quang Vu1
1Faculty of Information Technology, Thai Nguyen University of Information and Communication Technology, Thai Nguyen, Vietnam

2University of Information and Communications Technology, Thai Nguyen University, Thai Nguyen, Vietnam

Article Info ABSTRACT

Article history:

Received May 11, 2025

Revised Oct 2, 2025

Accepted Nov 23, 2025

 Large language models (LLMs) have demonstrated impressive capabilities

in code generation; however, their high computational demands, privacy

limitations, and challenges in edge deployment restrict their practical use in

domain-specific applications. This study explores the effectiveness of

parameter efficient fine-tuning for small language models (SLMs) with

fewer than 3 billion parameters. We adopt a hybrid approach that combines

low-rank adaptation (LoRA) and 4-bit quantization (QLoRA) to reduce fine-

tuning costs while preserving semantic consistency. Experiments on the

CodeAlpaca-20k dataset reveal that SLMs fine-tuned with this method

outperform larger baseline models, including Phi-3 Mini 4K base, in

ROUGE-L. Notably, applying our approach to the LLaMA 3 3B and

Qwen2.5 3B models yielded performance improvements of 54% and 55%,

respectively, over untuned counterparts. We evaluate models developed by

major artificial intelligence (AI) providers Google (Gemma 2B), Meta

(LLaMA 3 1B/3B), and Alibaba (Qwen2.5 1.5B/3B) and show that

parameter-efficient fine-tuning enables them to serve as cost-effective, high-

performing alternatives to larger LLMs. These findings highlight the potential

of SLMs as scalable solutions for domain-specific software engineering tasks,

supporting broader adoption and democratization of neural code synthesis.

Keywords:

Fine-tuning

SLMCode

Small device

Small language models

Software engineering

This is an open access article under the CC BY-SA license.

Corresponding Author:

Van-Viet Nguyen

Faculty of Information Technology, Thai Nguyen University of Information and Communication Technology

Z115 Road, Thai Nguyen 250000, Vietnam

Email: nvviet@ictu.edu.vn

1. INTRODUCTION

In the era of algorithmic proliferation and increasingly complex software ecosystems, the synthesis

of source code via natural language interfaces has emerged as a critical axis of research at the confluence of

formal language theory, neural representation learning, and automated reasoning [1], [2]. This convergence

has revitalized longstanding questions in computability, expressivity, and syntactic alignment between

human and machine representations of intent [3]. Traditional models of program synthesis, centered on

formal grammars [4], software engineering principles [5], deductive synthesis, or enumerative search, have

proven insufficiently scalable when confronted with the ambiguity and high dimensionality of natural

language [6].

The advent of large-scale transformer-based language models (LLMs) [7], such as models in the

GPT family [8], T5 [9], and code-specific models like CodeT5 [10] and StarCoder [11], has redefined the

paradigm. By embedding symbolic structures into continuous vector spaces amenable to gradient-based

https://creativecommons.org/licenses/by-sa/4.0/
mailto:nvviet@ictu.edu.vn

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parameter-efficient fine-tuning of small language models for … (Van-Viet Nguyen)

279

optimization, these models have achieved remarkable efficacy. However, they are often characterized by

prohibitive parameterization (exceeding tens or hundreds of billions of weights), introducing challenges not

only in terms of computational tractability and carbon footprint [12] but also epistemologically by

obfuscating the interpretability and verifiability of generated code artifacts.

To address these limitations, small language models (SLMs) [13]–[15], typically constrained to sub-

7B parameter regimes, have emerged as promising alternatives. While smaller, SLMs offer potential for

efficient deployment on edge devices and within constrained inference environments. However, leveraging

their full capability for domain-specific tasks like code generation requires effective adaptation. This study

investigates the effectiveness of applying parameter-efficient fine-tuning (PEFT) techniques, specifically

low-rank adaptation (LoRA) [16] and quantized low-rank adaptation (QLORA) [17], to prominent existing

SLMs for code generation.

Our core hypothesis is that with efficient fine-tuning on a domain-specific dataset, these compact

models can achieve performance comparable to, or even surpassing, larger baseline models, while requiring

significantly fewer computational resources for training and deployment. We conduct empirical

investigations on well-known SLMs including LLaMA 3 (1B and 3B variants) [18], Gemma 2B [19], and

Qwen2.5 (1.5B and 3B variants) [20]. We fine-tune these models using LoRA/QLORA on the CodeAlpaca-

20k dataset [21], a structured corpus designed for instruction-based code generation. We evaluate

performance using the ROUGE-L metric and analyze the efficiency gains in terms of trainable parameters.

Our contributions are threefold: i) an empirical demonstration of the effectiveness of PEFT

(LoRA/QLORA) for adapting existing SLMs to code generation, ii) a comparative analysis of several

prominent SLMs under these fine-tuning regimes on the CodeAlpaca-20k benchmark, highlighting their

relative strengths and limitations, and iii) evidence that efficiently fine-tuned sub-3B models can outperform

larger baseline models on this task, suggesting the importance of effective adaptation over brute-force

parameter scale. Ultimately, this work contributes to formalizing a scalable methodology for efficient

neural code generation, suitable for both academic replication and real-world software development

workflows.

2. RELATED WORK

Code generation using natural language prompts has evolved significantly with the emergence of

large-scale pretrained models. Early models such as CodeBERT [22] and Code2Seq [23] relied heavily on

syntactic features and were limited in their ability to generalize beyond predefined patterns or abstract syntax

trees (ASTs). These models offered modest success in code retrieval and classification tasks but lacked the

semantic compositionality and contextual understanding essential for realistic code synthesis. The paradigm

shifted with the advent of transformer-based models pretrained on massive code corpora. Models such as

CodeT5 [10], PolyCoder, Phi-3, Phi-3 Meets Law [15], [24], along with instruction-tuned variants like

StarCoder [11] and WizardCoder [25], introduced architectural and objective-function refinements that

greatly enhanced performance. Despite their improvements, these models typically exceed 6 billion

parameters, posing significant challenges for deployment on constrained hardware and increasing

computational costs.

To address these limitations, the research community has pivoted towards SLMs, which offer a

more sustainable and accessible alternative [13], [14], [26]. This trend is exemplified by models like Google's

Gemma 2B [19] and Alibaba's Qwen2.5 series [20], which leverage optimized Transformer architectures to

deliver impressive performance within a sub-3B parameter footprint. These compact models are not only

more efficient but also exhibit strong capabilities in multilingual and specialized tasks, making them

promising candidates for domain-specific applications like code generation. While their potential is clear,

their performance on specialized code generation benchmarks, particularly after targeted adaptation, remains

an area requiring thorough investigation.

A key factor in unlocking the potential of these SLMs is the use of specialized datasets and

instruction-tuning. Datasets like CodeAlpaca-20k [21], which provide a corpus of instruction-code pairs, are

instrumental in teaching models to map natural language intent to syntactically correct and semantically

appropriate code. By fine-tuning on such datasets, models learn to follow complex instructions, thereby

moving beyond simple pattern matching to a more robust form of code synthesis. This methodology has

become a cornerstone for adapting general-purpose language models to the nuanced domain of software

engineering.

However, even for SLMs, full fine-tuning can be computationally prohibitive. This has led to the

widespread adoption of parameter-efficient fine-tuning (PEFT) techniques. Methods like low-rank adaptation

(LoRA) [27], which freezes pretrained model weights and injects trainable low-rank matrices, and quantized

low-rank adaptation (QLORA) [17], which further reduces memory usage by quantizing the base model to

4-bits, have become instrumental. These techniques enable the adaptation of SLMs on consumer-grade

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 278-287

280

hardware while preserving or even enhancing performance on downstream tasks. Building on this line of

research, our study evaluates the application of LoRA and QLORA on various SLMs such as Gemma 2B

[19], Qwen2.5 [20], and smaller LLaMA 3 variants [18], focusing on standardized code generation

benchmarks to assess performance and efficiency.

While previous works have explored fine-tuning individual SLMs for code [18], [20], a

comprehensive, side-by-side comparative analysis of the leading SLMs from different major artificial

intelligence (AI) providers (Google, Meta, Alibaba) under a unified PEFT framework is still lacking. Our

work directly addresses this gap by systematically evaluating the performance of these models when fine-

tuned with LoRA/QLORA on the CodeAlpaca-20k benchmark. This approach allows for a direct comparison

of their inherent architectural strengths and their adaptability to the code generation domain, providing

critical insights into the most effective and efficient pathways for democratizing neural code synthesis.

3. METHOD

In constructing a comprehensive experimental framework for evaluating the efficacy of small-scale

transformer-based architectures in the context of source code generation, our methodology is predicated upon

a multi-tiered approach that integrates: i) architectural selection under parameter constraint, ii) dataset

curation and task formalization, iii) implementation of advanced fine-tuning regimes leveraging parameter-

efficient adaptation, and iv) empirical validation via standardized lexical similarity metrics. This

multipronged stratagem ensures both methodological rigor and reproducibility within constrained

computational topologies.

3.1. Model selection under parameterized constraints

Let M denote the hypothesis space of autoregressive language models instantiated over a parameter

domain Θ ⊂ Rn, with n < 3 × 109. We select five representative models Mi ∈ M, each characterized by

architectural sparsity, multilingual capability, and decoder-only transformer backbones: M1: Llama-3.2-1B-

Instruct – 1B; M2: Llama-3.2-1B-Instruct – 3B; M3: Gemma – 2B; M4: Qwen2.5 – 1.5B; M5: Qwen2.5 – 3B.

Each Mi is initialized with pretrained weights θi0 and subjected to subsequent adaptation on a task specific

distribution Dcode.

Llama-3.2-1B-Instruct (M1) is a 1B parameter language model from 3.2. It is designed with an

optimized lightweight architecture. This model is well suited for deployment on personal and mobile

devices, enhancing performance across various applications.

Llama-3.2-3B-Instruct (M2) is a 3B-parameter language model from 3.2, designed to support

multiple languages and optimized for tasks such as conversation, information retrieval, and text

summarization. This powerful and flexible model is tailored for personal and mobile devices, delivering

high efficiency in multilingual natural language processing.

Gemma-2-2b-it(M3) is an open-source LLM developed by Google with 2 billion parameters. This

model is designed for natural language processing while being optimized for resource-constrained

environments like personal computers and mobile devices. With a decoder-only Transformer architecture

and enhancements such as sliding window attention and soft cap, Gemma-2-2B-IT outperforms other open

models of similar size. Additionally, it is built for seamless integration into developers’ and researchers’

workflows, supporting popular artificial intelligence (AI) frameworks like Hugging Face Transformers,

JAX, PyTorch, and TensorFlow.

Qwen2.5-1.5B-Instruct (M4) is a language model from the Qwen2.5 series, developed by the Qwen

team. With approximately 1.54 billion parameters, it is specifically optimized for instruction-following

tasks. This model supports multiple languages, including Vietnamese, and can process extended contexts of

up to 128,000 tokens, enhancing its effectiveness in text generation, question answering, programming, and

mathematical reasoning. Built on a Transformer architecture, it incorporates advanced techniques such as

RoPE, SwiGLU, and RMSNorm to improve efficiency and accuracy. Qwen2.5-1.5B-Instruct is released

under the Apache 2.0 license, enabling free usage and distribution across various applications.

Qwen2.5-3B-Instruct(M5) is an advanced language model in the Qwen2.5 series, developed by the

Qwen team. With approximately 3.09 billion parameters, it is fine-tuned specifically for instruction-

following tasks. This model supports multiple languages, including Vietnamese, and can process context

lengths of up to 128,000 tokens, enhancing its capabilities in text generation, question answering,

programming, and mathematical problem solving. Built on a Transformer architecture, it incorporates

optimization techniques such as RoPE, SwiGLU, and RMSNorm to enhance efficiency and accuracy.

Qwen2.5-3B-Instruct is released under the Qwen Research license, permitting its use and distribution in

research projects. With its ability to generate and understand high-quality text, this model serves as a

powerful tool for natural language processing applications across diverse languages and contexts.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parameter-efficient fine-tuning of small language models for … (Van-Viet Nguyen)

281

3.2. Dataset, formalization and preprocessing

Large language models (LLMs) excel at many tasks thanks to huge pretrained datasets. For our

experiments, we use the sahil2801/CodeAlpaca-20k dataset [21]. Dataset CodeAlpaca-20k is a data set for

training and evaluating natural language processing (NLP) models in the programming field. CodeAlpaca-

20k is a dataset containing approximately 20,000 programming code samples and related comments. It is

designed to support research and development of AI models capable of understanding and generating

programming code.

The structure of this dataset includes an input data set described in natural language about the

requirements of the programming problem; The output is a piece of programming code that performs the

functions described. CodeAlpaca-20k can contain code from many different programming languages such as

Python, JavaScript, Java, C++, and many others, depending on the goal of using the dataset.

We define a supervised dataset Dcode = {(𝑥𝑗 , 𝑦𝑗)}𝑗=1
𝑁 , where 𝑥𝑗 ∈ Σ∗ denotes a natural language task

instruction and 𝑦𝑗 ∈ Γ∗ represents the corresponding source code snippet. This dataset, CodeAlpaca-20k, is a

structured corpus encompassing multi-lingual code representations across diverse programming paradigms

P = {Python,C++,Java, … }. To enforce syntactic uniformity and model compatibility, we implement a

templated serialization thereby constraining tokenization under consistent positional embeddings.

𝑇: (𝑥𝑗 , 𝑦𝑗) ↦ ⟨< |user| >  𝑥𝑗 < |end| >< |assistant| > 𝑦𝑗 < |end| >⟩,

3.3. Constraints fine-tuning paradigms

3.3.1. Supervised fine-tuning (SFT)

Let LCE(𝜃; 𝑥, 𝑦) denote the cross-entropy loss function parameterized by model weights 𝜃,

computed over the conditional likelihood 𝑃𝜃(𝑦 ∣ 𝑥). The supervised fine-tuning objective is defined

as (1):

𝜃∗ = 𝑎𝑟𝑔⁡𝑚𝑖𝑛⁡
𝜃

∑ LCE(𝜃; 𝑥𝑗 , 𝑦𝑗)
𝑁

𝑗=1
 (1)

Implementation is realized via the 𝐻𝑢𝑔𝑔𝑖𝑛𝑔𝐹𝑎𝑐𝑒 𝑆𝐹𝑇𝑇𝑟𝑎𝑖𝑛𝑒𝑟 API, where gradient flow is restricted to

selected.

3.3.2. Low-rank adaptation (LoRA)

To circumvent the infeasibility of full weight updates, we invoke LoRA, which approximates

weight perturbations via a constrained low-rank subspace. Let Δ𝑊 ≈ 𝐵𝐴, where 𝐴 ∈ R𝑟×𝑘, 𝐵 ∈ R𝑑×𝑟, and

𝑟 ≪ 𝑚𝑖𝑛⁡(𝑑, 𝑘). The adapted weights are:

𝑊 = 𝑊0 + 𝛼 ⋅ 𝐵𝐴 (2)

with 𝛼 being a scaling hyperparameter. The fine-tuning is restricted to attention matrices (𝑞proj, 𝑘proj, 𝑣proj, 𝑜proj)

and feed-forward layers (𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑔𝑎𝑡𝑒).

3.3.3. Quantized low-rank adaptation (QLoRA)

For further compression, we adopt 4-bit 𝑁𝑜𝑟𝑚𝑎𝑙𝐹𝑙𝑜𝑎𝑡 quantization (𝑛𝑓4), integrating it with LoRA

adapters. We define the quantization mapping as (3):

𝑊quant = round(
𝑊−min(𝑊)

max(𝑊)−min(𝑊)
⋅ (2𝑏 − 1)) , 𝑏 = 4 (3)

Fine-tuning language models for specialized domains like the code generation tasks requires

significant computational resources. To mitigate this, we employed QLoRA [17], a technique designed to

efficiently fine-tune LLMs while minimizing memory footprint and training time. QLoRA achieves this by

quantizing the pre-trained model weights to a lower precision (4-bit) and then applying low-rank updates

during the fine-tuning process. These low-rank updates are stored with higher precision (fp16), allowing for

effective adaptation while keeping overall memory requirements low. Specifically, we utilized 4-bit

quantization (𝑙𝑜𝑎𝑑 − 𝑖𝑛 − 4𝑏𝑖𝑡 = 𝑇𝑟𝑢𝑒) with the NF4 quantization type, striking a balance between model

compression and performance. This configuration enabled us to fully leverage the capabilities of our chosen

models while operating within practical resource constraints. This approach significantly accelerated the

fine-tuning process without compromising the model's performance on the code generation tasks. This

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 278-287

282

transformation drastically reduces memory overhead while maintaining functional fidelity via a dequantization

inverse mapping at inference.

3.4. Evaluation metric formalization

The primary quantitative instrument employed is ROUGE-L, a recall-oriented metric derived from

the longest common subsequence (LCS) framework. Given a generated sequence 𝐺 = {𝑔1, … , 𝑔𝑚} and a

reference sequence 𝑅 = {𝑟1, … , 𝑟𝑛} , the LCS is denoted as LCS(𝐺, 𝑅) . The corresponding ROUGE-L

precision 𝑃 , recall 𝑅 , and F1-score 𝐹 are computed as:

𝑃 =
∣LCS(𝐺,𝑅)∣

∣𝐺∣
, 𝑅 =

∣LCS(𝐺,𝑅)∣

∣𝑅∣
, 𝐹 =

2𝑃𝑅

𝑃+𝑅
⁡ (4)

This metric is particularly suited for evaluating source code, as it implicitly captures both lexical coherence

and structural adherence without penalizing minor syntactic permutations.

3.5. Experiment setup

All experiments were conducted on a server equipped with 4× NVIDIA RTX A5000 GPUs (24 GB

VRAM each), dual AMD Ryzen Threadripper PRO 5965WX CPUs (48 logical cores), and 256 GB RAM.

We used PyTorch 2.5.1 with CUDA 12.1, Hugging Face Transformers 4.46.3, and PEFT 0.13.2. Models

were fine-tuned on the CodeAlpaca-20k dataset using LoRA and QLoRA. Training employed the AdamW

optimizer with a learning rate of 2 × 10−4, cosine scheduler, and early stopping based on validation loss.

For LoRA, we set rank 𝑟 = 8, scaling 𝛼 = 16, and dropout = 0.05. Table 1 summarizes the key training

hyperparameters across different models. Figure 1 shows the computational resources and training

environment.

Table 1. Training hyperparameters across models
Models Params Batch size Epochs Trainable Params Steps

Llama-3.2-1B 1.0B 160 50 11.3M 750
Llama-3.2-3B 3.2B 64 50 24.3M 1950
Gemma-2-2B 2.0B 128 50 20.8M 950
Qwen2.5-1.5B 1.5B 128 50 18.5M 950
Qwen2.5-3B 3.1B 64 50 29.9M 1950

Figure 1. Computational resources and training environment

4. RESULTS AND DISCUSSION

To rigorously evaluate the generative efficacy of parameter-efficiently fine-tuned small language

models within the domain of source code synthesis, we operationalize a multifaceted evaluation protocol

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parameter-efficient fine-tuning of small language models for … (Van-Viet Nguyen)

283

grounded in established textual similarity metrics, comparative benchmarking against relevant baselines and

less-tuned versions of the SLMs, and controlled ablation analysis. As shown in Figure 2, our evaluation

adheres to the principle of model-output congruence, in which the semantic fidelity of generated source code

is quantified against human-curated reference implementations using ROUGE-L. Our experiments focused

on comparing the performance gains achieved through fine-tuning these smaller models and analyzing their

effectiveness relative to each other and to prior work utilizing larger language models. The findings of these

experiments are summarized in Table 2. Prior to fine-tuning, the base models demonstrated limited

proficiency in the domain.

Figure 2. ROUGE-L performance of fine-tuned SLMs during training steps

4.1. Comparative performance synthesis

Let Mbase denote the baseline model ensemble {CodeBERT,Code2seq,Phi-3 Mini 4K} , and let Mfine

represent the set of fine-tuned small models studied in this work. The empirical results, summarized in

Table 2, reveal a pronounced superiority of our models across all evaluated instances. The empirical results,

summarized in Table 2, reveal a pronounced superiority of our fine-tuned SLMs (Mfine) across all evaluated

instances compared to the Mbase baselines and generally improved performance compared to Mbase.

Table 2. Model comparison on ROUGE-L score
Model Params Trainable Params Training Steps ROUGE-L

CodeBERT 110M 110M - 0.36

Code2seq 200M 200M - 0.33

Phi-3 Mini 4K base 3.8B 3.8B - 0.17
Our result

Llama-3.2-1B (base) 1B 1B - 0.45

Llama-3.2-1B-Instruct 1B 7M 4K 0.46
Llama-3.2-3B (base) 3.21B 3.21B - 0.49

Llama-3.2-3B-Instruct 3.21B 15M 4K 0.54

Gemma-2-2b-it (base) 2B 2B - 0.46
Gemma-2-2b-it-Instruct 2B 10M 4K 0.49

Qwen2.5-1.5B (base) 1.5B 1.5B - 0.48

Qwen2.5-1.5B-Instruct 1.5B 7M 4K 0.46
Qwen2.5-3B (base) 3.1B 3.1B - 0.51

Qwen2.5-3B-Instruct 3.1B 15M 4K 0.55

4.2. Ablation and interpretation

A critical juxtaposition is drawn between Phi-3 Mini 4K base (3.8B) and our fine-tuned 3B models

(LLaMA 3 3B, Qwen2.5 3B), wherein the latter demonstrably outperform despite fewer total parameters

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 278-287

284

and significantly fewer trainable parameters during fine-tuning (15M vs 3.8B). This discrepancy

substantiates the hypothesis that effective parameter-efficient fine-tuning and data alignment can be more

impactful than brute-force base model size or full model fine-tuning for domain-specific tasks. The results

suggest that it is not merely the volumetric size of a model that governs performance, but rather the

synergistic interplay between training objective, data alignment, and efficient adaptation techniques like

LoRA and QLoRA.

Furthermore, the consistent performance across the LLaMA-1B and Qwen-1.5B variants both

yielding ROUGE-L=0.46 implies a potential capacity ceiling when using these fine-tuning techniques at

lower parameter thresholds (1-1.5B), suggesting diminishing marginal returns without alternative adaptation

strategies or potential architectural modifications to better suit the code domain at this size.

4.3. Performance comparison with earlier models: CodeBERT and Code2seq

CodeBERT and Code2seq were key stages in the development of neural code generation, although

they mostly used syntactic representations and had trouble capturing deeper semantic linkages in source

code. Their ROUGE-L scores of 0.36 and 0.33 show how limited they are, especially when it comes to

activities that need strong semantic synthesis and awareness of context. In contrast, our finely tuned small

language models (SLMs) consistently beat these baselines, with ROUGE-L scores as high as 0.55. This

shows that parameter efficient fine-tuning methods not only make models work better but also greatly

improve the quality of code generation.

4.4. Epistemological reflections

Beyond raw metrics, our findings gesture toward a broader epistemological implication: that

effective adaptation and efficient architectures rather than brute-force parameter expansion may define the

next frontier of neuro-symbolic code generation. These results advocate for a paradigm shift toward task-

specific efficient fine-tuning protocols, enabling democratized deployment of capable SLMs without

compromising output fidelity on domain tasks.

4.5. Limitations of the study

The evaluation of code generation models has several limitations: first, it relies solely on the

ROUGE-L metric for lexical similarity, which does not assess functional correctness, such as compilability

or output accuracy, necessitating future incorporation of execution-based benchmarks like HumanEval and

MBPP for a more comprehensive assessment; second, the fine-tuning was limited to the CodeAlpaca-20k

dataset, potentially leading to overfitting to its specific instruction styles and problem distributions, so testing

on diverse datasets is essential for better generalization; third, hyperparameters for PEFT (e.g., LoRA rank

r=8, α=16, learning rate) were selected based on best practices without exhaustive optimization, suggesting

that model-specific tuning via grid search or Bayesian optimization could enhance performance; and fourth,

the evaluation used a static dataset, failing to reflect real-world interactive software development with multi-

turn refinements, thus recommending exploration of conversational AI frameworks for handling follow-ups,

corrections, and iterative improvements.

5. CONCLUSION AND FUTURE WORK

This paper presents a comparative study on parameter-efficient fine-tuning (PEFT) techniques

specifically LoRA and QLoRA applied to several small language models (SLMs) including LLaMA 3.2,

Qwen2.5, and Gemma. The models are fine-tuned on the CodeAlpaca-20k dataset for the task of code

generation, and evaluated using ROUGE-L as the primary metric. The study demonstrates that fine-tuned

SLMs can outperform much larger baseline models, highlighting their potential for low-resource deployment

in software engineering contexts. The paper is well organized, methodologically sound, and provides clear

empirical evidence supporting the effectiveness of PEFT in enhancing the performance of compact models.

Overall, it is a relevant and timely contribution to the field of efficient neural code generation.

This work substantiates the potential of small, efficiently tuned models as viable, cost-effective, and

sustainable alternatives to large, computationally demanding models for domain-specific software

engineering problems. Their resource efficiency makes them particularly well-suited for deployment on edge

and mobile devices, thus supporting the broader democratization of AI-assisted coding.

Future research directions stem directly from these promising results. We plan to explore the

comparative efficacy of other PEFT methods and refine hyperparameter tuning for optimal performance.

Expanding the training data with richer, interactive code-related conversations could enhance the models'

ability to handle complex requests. Applying these techniques to SLMs for different programming domains,

such as hardware description languages or smart contracts, represents another important avenue.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parameter-efficient fine-tuning of small language models for … (Van-Viet Nguyen)

285

Additionally, investigating knowledge distillation from larger models and exploring architectural

modifications specifically designed for code synthesis within the SLM paradigm are crucial steps towards

developing even more capable and efficient neural code generators.

ACKNOWLEDGMENTS

This research was supported by the ĐH2025-TN07-07 project conducted at the Thai Nguyen

University of Information and Communication Technology, Thai Nguyen, Vietnam, with additional support

from the AI in Software Engineering Lab. The authors would like to thank the valuable feedback provided by

the reviewers.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Van-Viet Nguyen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The-Vinh Nguyen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Huu-Khanh Nguyen ✓ ✓ ✓ ✓ ✓ ✓

Duc-Quang Vu ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

The authors state no conflict of interest. The authors have no financial, personal, or professional

relationships that could inappropriately influence the research presented in this paper.

INFORMED CONSENT

We have obtained informed consent from all individuals included in this study.

ETHICAL APPROVAL

This research does not require ethical approval as it does not involve human participants, animal

subjects, or sensitive data.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon

reasonable request.

REFERENCES
[1] E. N. Crothers, N. Japkowicz, and H. L. Viktor, “Machine-generated text: A comprehensive survey of threat models and detection

methods,” IEEE Access, vol. 11, pp. 70977–71002, 2023, doi: 10.1109/ACCESS.2023.3294090.

[2] Q. Zhang et al., “A survey on large language models for software engineering,” arXiv preprint arXiv:2312.15223, 2023.

[3] Y. Jernite et al., “Data governance in the age of large-scale data-driven language technology,” in ACM International Conference
Proceeding Series, 2022, pp. 2206–2222, doi: 10.1145/3531146.3534637.

[4] S. Barke, E. A. Gonzalez, S. R. Kasibatla, T. Berg-Kirkpatrick, and N. Polikarpova, “HYSYNTH: Context-free LLM

approximation for guiding program synthesis,” in Advances in Neural Information Processing Systems, 2024, vol. 37, pp. 15612–
15645.

[5] N. Van Viet and N. T. Vinh, “Large language models in software engineering,” Journal of Education For Sustainable Innovation,

vol. 2, no. 2, pp. 146–156, Dec. 2024, doi: 10.56916/jesi.v2i2.968.
[6] R. G. Dromey, “Formalizing the transition from requirements to design,” in Mathematical Frameworks For Component Software:

Models For Analysis And Synthesis, World Scientific, 2006, pp. 173–205.

[7] A. Vaswani et al., “Attention is all you need,” Advances in neural Information Processing Systems, vol. 30, 2017.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 278-287

286

[8] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised multitask learners,”

OpenAI blog, vol. 1, no. 8, 2019.
[9] C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-text transformer,” Journal of Machine Learning

Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[10] Y. Wang, W. Wang, S. Joty, and S. C. H. Hoi, “Codet5: Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation,” in EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing,

Proceedings, 2021, pp. 8696–8708, doi: 10.18653/v1/2021.emnlp-main.685.

[11] R. Li and others, “StarCoder: May the source be with you!,” arXiv preprint arXiv:2305.06161, 2023.
[12] D. Patterson et al., “Carbon emissions and large neural network training,” arXiv preprint arXiv:2104.10350, 2021.

[13] P. Zhang, G. Zeng, T. Wang, and W. Lu, “TinyLlama: An open-source small language model,” arXiv preprint arXiv:2401.02385.

2024.
[14] H. Wei et al., “Small language model meets with reinforced vision vocabulary,” arXiv preprint arXiv:2401.12503. 2024.

[15] M. Abdin, S. A. Jacobs, Y. Yang, and others, “Phi-3 technical report: A highly capable language model locally on your phone,”

arXiv preprint arXiv:2412.08905. 2024.
[16] E. Hu et al., “Lora: Low-rank adaptation of large language models,” ICLR 2022 - 10th International Conference on Learning

Representations, vol. 1, no. 2, p. 3, 2022.

[17] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLORA: Efficient finetuning of quantized LLMs,” in Advances in
Neural Information Processing Systems, 2023, vol. 36, pp. 10088–10115.

[18] H. Touvron and others, “LLaMA: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[19] T. Lieberum et al., “Gemma Scope: Open sparse autoencoders everywhere all at once on Gemma 2,” in BlackboxNLP 2024 - 7th
BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP - Proceedings of the Workshop, 2024,

pp. 278–300, doi: 10.18653/v1/2024.blackboxnlp-1.19.

[20] I. Ahmed et al., “Qwen 2.5: A comprehensive review of the leading resource-efficient LLM with potential to surpass all competitors,”
Authorea Preprints. 2025, [Online]. Available: https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.174060306.65738406/v1.

[21] S. Chaudhary, “Code alpaca: An instruction-following llama model for code generation,” GitHub repository. 2023.
[22] Z. Feng et al., “CodeBERT: A pre-trained model for programming and natural languages,” in Findings of the Association for

Computational Linguistics Findings of ACL: EMNLP 2020, 2020, pp. 1536–1547, doi: 10.18653/v1/2020.findings-emnlp.139.

[23] U. Alon, O. Levy, S. Brody, and E. Yahav, “Code2Seq: Generating sequences from structured representations of code,” arXiv
preprint arXiv:1808.01400, 2019.

[24] N. H. Khanh, V. N. Van, N. T. Vinh, and N. H. Cong, “Phi-3 meets law: Finetuning mini language models for legal document

understanding,” Research, Development and Application on Information and Communication Technology|ISSN: 1859-3526,
vol. 2024, no. 3, pp. 136–142, 2024.

[25] Z. Luo et al., “Wizardcoder: Empowering code large language models with evol-instruct,” arXiv preprint arXiv:2306.08568,

2024.
[26] Y. Zhu, M. Zhu, N. Liu, Z. Xu, and Y. Peng, “Llava-phi: Efficient multi-modal assistant with small language model,” in EMCLR

2024 - Proceedings of the 1st International Workshop on Efficient Multimedia Computing under Limited Resources, Co-Located

with: MM 2024, 2024, pp. 18–22, doi: 10.1145/3688863.3689575.
[27] Z. Liu, J. Lyn, W. Zhu, and X. Tian, “ALoRA: Allocating low-rank adaptation for fine-tuning large language models,” in

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, 2024, pp. 622–641.

BIOGRAPHIES OF AUTHORS

Van-Viet Nguyen is a researcher and Ph.D. student at the Thai Nguyen

University of Information and Communication Technology, Thai Nguyen, Vietnam. He

received a bachelor’s in information technology at Thai Nguyen University (ICTU), Vietnam

in 2009. He got a master’s degree on Information Technology at Manuel S. Enverga

University, Philippines in 2012. He researches interests include artificial intelligence, machine

learning, and generative AI. He can be contacted at email: nvviet@ictu.edu.vn.

The-Vinh Nguyen is currently a senior lecturer at the Faculty of Information

Technology, University of Information and Communication Technology. He graduated with a

master’s degree in information systems management from Oklahoma State University, USA

(under scholarship 322). He completed his Ph.D. program under Project 911 in 2020 at Texas

Tech University, USA. His main research interests are computer vision, computer

visualization, and computer in human behavior. He has authored or coauthored more than 50

publications with 16 H-index and more than 850 citations. He can be contacted at email:

vinhnt@ictu.edu.vn

mailto:nvviet@ictu.edu.vn
mailto:vinhnt@ictu.edu.vn
https://orcid.org/0009-0007-5854-5504
https://scholar.google.com/citations?user=fslP5EEAAAAJ&hl=vi
https://www.scopus.com/authid/detail.uri?authorId=57222054782
https://www.webofscience.com/wos/author/record/KYR-5341-2024
https://orcid.org/0000-0002-1300-3943
https://scholar.google.com/citations?user=6rZWCbcAAAAJ&hl=vi
https://www.scopus.com/authid/detail.uri?authorId=57210589113
https://www.webofscience.com/wos/author/record/IVH-4684-2023

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parameter-efficient fine-tuning of small language models for … (Van-Viet Nguyen)

287

Huu-Khanh Nguyen has graduated with a master’s degree in computer science

from the University of Information and Communications Technology - Thai Nguyen

University since 2022 and is currently a PhD student here since 2023. His main research

interests are computer science, natural language processing, generative AI and computer

vision. He can be contacted at email: khanhnh@tnu.edu.vn

Duc-Quang Vu was born in Nam Dinh, Vietnam in 1991. He received a B.S.

degree in education in information technology from the Thai Nguyen University of Education,

Vietnam, in 2013 and an M.S. degree in information systems, from the University of

Engineering and Technology (UET), Vietnam National University, Hanoi (VNU) in 2016. He

received the Ph.D. degree in the Department of Computer Science and Information

Engineering, National Central University, Taiwan in 2022 and a postdoc in 2023. His research

interests include machine learning, deep learning, computer vision, speech processing, and

bioinformatics. He can be contacted at email: vdquang@ictu.edu.vn.

mailto:khanhnh@tnu.edu.vn
https://orcid.org/0009-0009-0505-6904
https://scholar.google.com/citations?user=u9EL5V4AAAAJ&hl=vi
https://www.scopus.com/authid/detail.uri?authorId=60168254300
https://www.webofscience.com/wos/author/record/NWH-6212-2025
https://orcid.org/0000-0001-5458-3713
https://www.scopus.com/authid/detail.uri?authorId=57193082389

