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Large language models (LLMs) have demonstrated impressive capabilities
in code generation; however, their high computational demands, privacy
limitations, and challenges in edge deployment restrict their practical use in
domain-specific applications. This study explores the effectiveness of
parameter efficient fine-tuning for small language models (SLMs) with
fewer than 3 billion parameters. We adopt a hybrid approach that combines
low-rank adaptation (LoRA) and 4-bit quantization (QLoRA) to reduce fine-
tuning costs while preserving semantic consistency. Experiments on the
CodeAlpaca-20k dataset reveal that SLMs fine-tuned with this method
outperform larger baseline models, including Phi-3 Mini 4K base, in
ROUGE-L. Notably, applying our approach to the LLaMA 3 3B and
Qwen2.5 3B models yielded performance improvements of 54% and 55%,
respectively, over untuned counterparts. We evaluate models developed by
major artificial intelligence (AI) providers Google (Gemma 2B), Meta

(LLaMA 3 1B/3B), and Alibaba (Qwen2.5 1.5B/3B) and show that
parameter-efficient fine-tuning enables them to serve as cost-effective, high-
performing alternatives to larger LLMs. These findings highlight the potential
of SLMs as scalable solutions for domain-specific software engineering tasks,
supporting broader adoption and democratization of neural code synthesis.
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1. INTRODUCTION

In the era of algorithmic proliferation and increasingly complex software ecosystems, the synthesis
of source code via natural language interfaces has emerged as a critical axis of research at the confluence of
formal language theory, neural representation learning, and automated reasoning [1], [2]. This convergence
has revitalized longstanding questions in computability, expressivity, and syntactic alignment between
human and machine representations of intent [3]. Traditional models of program synthesis, centered on
formal grammars [4], software engineering principles [5], deductive synthesis, or enumerative search, have
proven insufficiently scalable when confronted with the ambiguity and high dimensionality of natural
language [6].

The advent of large-scale transformer-based language models (LLMs) [7], such as models in the
GPT family [8], T5 [9], and code-specific models like CodeT5 [10] and StarCoder [11], has redefined the
paradigm. By embedding symbolic structures into continuous vector spaces amenable to gradient-based
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optimization, these models have achieved remarkable efficacy. However, they are often characterized by
prohibitive parameterization (exceeding tens or hundreds of billions of weights), introducing challenges not
only in terms of computational tractability and carbon footprint [12] but also epistemologically by
obfuscating the interpretability and verifiability of generated code artifacts.

To address these limitations, small language models (SLMs) [13]-[15], typically constrained to sub-
7B parameter regimes, have emerged as promising alternatives. While smaller, SLMs offer potential for
efficient deployment on edge devices and within constrained inference environments. However, leveraging
their full capability for domain-specific tasks like code generation requires effective adaptation. This study
investigates the effectiveness of applying parameter-efficient fine-tuning (PEFT) techniques, specifically
low-rank adaptation (LoRA) [16] and quantized low-rank adaptation (QLORA) [17], to prominent existing
SLMs for code generation.

Our core hypothesis is that with efficient fine-tuning on a domain-specific dataset, these compact
models can achieve performance comparable to, or even surpassing, larger baseline models, while requiring
significantly fewer computational resources for training and deployment. We conduct empirical
investigations on well-known SLMs including LLaMA 3 (1B and 3B variants) [18], Gemma 2B [19], and
Qwen2.5 (1.5B and 3B variants) [20]. We fine-tune these models using LORA/QLORA on the CodeAlpaca-
20k dataset [21], a structured corpus designed for instruction-based code generation. We evaluate
performance using the ROUGE-L metric and analyze the efficiency gains in terms of trainable parameters.

Our contributions are threefold: i) an empirical demonstration of the effectiveness of PEFT
(LoRA/QLORA) for adapting existing SLMs to code generation, ii) a comparative analysis of several
prominent SLMs under these fine-tuning regimes on the CodeAlpaca-20k benchmark, highlighting their
relative strengths and limitations, and iii) evidence that efficiently fine-tuned sub-3B models can outperform
larger baseline models on this task, suggesting the importance of effective adaptation over brute-force
parameter scale. Ultimately, this work contributes to formalizing a scalable methodology for efficient
neural code generation, suitable for both academic replication and real-world software development
workflows.

2. RELATED WORK

Code generation using natural language prompts has evolved significantly with the emergence of
large-scale pretrained models. Early models such as CodeBERT [22] and Code2Seq [23] relied heavily on
syntactic features and were limited in their ability to generalize beyond predefined patterns or abstract syntax
trees (ASTs). These models offered modest success in code retrieval and classification tasks but lacked the
semantic compositionality and contextual understanding essential for realistic code synthesis. The paradigm
shifted with the advent of transformer-based models pretrained on massive code corpora. Models such as
CodeT5 [10], PolyCoder, Phi-3, Phi-3 Meets Law [15], [24], along with instruction-tuned variants like
StarCoder [11] and WizardCoder [25], introduced architectural and objective-function refinements that
greatly enhanced performance. Despite their improvements, these models typically exceed 6 billion
parameters, posing significant challenges for deployment on constrained hardware and increasing
computational costs.

To address these limitations, the research community has pivoted towards SLMs, which offer a
more sustainable and accessible alternative [13], [14], [26]. This trend is exemplified by models like Google's
Gemma 2B [19] and Alibaba's Qwen2.5 series [20], which leverage optimized Transformer architectures to
deliver impressive performance within a sub-3B parameter footprint. These compact models are not only
more efficient but also exhibit strong capabilities in multilingual and specialized tasks, making them
promising candidates for domain-specific applications like code generation. While their potential is clear,
their performance on specialized code generation benchmarks, particularly after targeted adaptation, remains
an area requiring thorough investigation.

A key factor in unlocking the potential of these SLMs is the use of specialized datasets and
instruction-tuning. Datasets like CodeAlpaca-20k [21], which provide a corpus of instruction-code pairs, are
instrumental in teaching models to map natural language intent to syntactically correct and semantically
appropriate code. By fine-tuning on such datasets, models learn to follow complex instructions, thereby
moving beyond simple pattern matching to a more robust form of code synthesis. This methodology has
become a cornerstone for adapting general-purpose language models to the nuanced domain of software
engineering.

However, even for SLMs, full fine-tuning can be computationally prohibitive. This has led to the
widespread adoption of parameter-efficient fine-tuning (PEFT) techniques. Methods like low-rank adaptation
(LoRA) [27], which freezes pretrained model weights and injects trainable low-rank matrices, and quantized
low-rank adaptation (QLORA) [17], which further reduces memory usage by quantizing the base model to
4-bits, have become instrumental. These techniques enable the adaptation of SLMs on consumer-grade
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hardware while preserving or even enhancing performance on downstream tasks. Building on this line of
research, our study evaluates the application of LoRA and QLORA on various SLMs such as Gemma 2B
[19], Qwen2.5 [20], and smaller LLaMA 3 variants [18], focusing on standardized code generation
benchmarks to assess performance and efficiency.

While previous works have explored fine-tuning individual SLMs for code [18], [20], a
comprehensive, side-by-side comparative analysis of the leading SLMs from different major artificial
intelligence (AI) providers (Google, Meta, Alibaba) under a unified PEFT framework is still lacking. Our
work directly addresses this gap by systematically evaluating the performance of these models when fine-
tuned with LoORA/QLORA on the CodeAlpaca-20k benchmark. This approach allows for a direct comparison
of their inherent architectural strengths and their adaptability to the code generation domain, providing
critical insights into the most effective and efficient pathways for democratizing neural code synthesis.

3. METHOD

In constructing a comprehensive experimental framework for evaluating the efficacy of small-scale
transformer-based architectures in the context of source code generation, our methodology is predicated upon
a multi-tiered approach that integrates: i) architectural selection under parameter constraint, ii) dataset
curation and task formalization, iii) implementation of advanced fine-tuning regimes leveraging parameter-
efficient adaptation, and iv) empirical validation via standardized lexical similarity metrics. This
multipronged stratagem ensures both methodological rigor and reproducibility within constrained
computational topologies.

3.1. Model selection under parameterized constraints

Let M denote the hypothesis space of autoregressive language models instantiated over a parameter
domain ©® c R", with n<3 x10°% We select five representative models M; € M, each characterized by
architectural sparsity, multilingual capability, and decoder-only transformer backbones: M;: Llama-3.2-1B-
Instruct — 1B; M,: Llama-3.2-1B-Instruct — 3B; M3: Gemma — 2B; Ma: Qwen2.5 — 1.5B; Ms: Qwen2.5 — 3B.
Each M; is initialized with pretrained weights 6:% and subjected to subsequent adaptation on a task specific
distribution Dcoge.

Llama-3.2-1B-Instruct (M) is a 1B parameter language model from 3.2. It is designed with an
optimized lightweight architecture. This model is well suited for deployment on personal and mobile
devices, enhancing performance across various applications.

Llama-3.2-3B-Instruct (M;) is a 3B-parameter language model from 3.2, designed to support
multiple languages and optimized for tasks such as conversation, information retrieval, and text
summarization. This powerful and flexible model is tailored for personal and mobile devices, delivering
high efficiency in multilingual natural language processing.

Gemma-2-2b-it(M3) is an open-source LLM developed by Google with 2 billion parameters. This
model is designed for natural language processing while being optimized for resource-constrained
environments like personal computers and mobile devices. With a decoder-only Transformer architecture
and enhancements such as sliding window attention and soft cap, Gemma-2-2B-IT outperforms other open
models of similar size. Additionally, it is built for seamless integration into developers’ and researchers’
workflows, supporting popular artificial intelligence (AI) frameworks like Hugging Face Transformers,
JAX, PyTorch, and TensorFlow.

Qwen2.5-1.5B-Instruct (My) is a language model from the Qwen2.5 series, developed by the Qwen
team. With approximately 1.54 billion parameters, it is specifically optimized for instruction-following
tasks. This model supports multiple languages, including Vietnamese, and can process extended contexts of
up to 128,000 tokens, enhancing its effectiveness in text generation, question answering, programming, and
mathematical reasoning. Built on a Transformer architecture, it incorporates advanced techniques such as
RoPE, SwiGLU, and RMSNorm to improve efficiency and accuracy. Qwen2.5-1.5B-Instruct is released
under the Apache 2.0 license, enabling free usage and distribution across various applications.

Qwen2.5-3B-Instruct(Ms) is an advanced language model in the Qwen2.5 series, developed by the
Qwen team. With approximately 3.09 billion parameters, it is fine-tuned specifically for instruction-
following tasks. This model supports multiple languages, including Vietnamese, and can process context
lengths of up to 128,000 tokens, enhancing its capabilities in text generation, question answering,
programming, and mathematical problem solving. Built on a Transformer architecture, it incorporates
optimization techniques such as RoPE, SwiGLU, and RMSNorm to enhance efficiency and accuracy.
Qwen2.5-3B-Instruct is released under the Qwen Research license, permitting its use and distribution in
research projects. With its ability to generate and understand high-quality text, this model serves as a
powerful tool for natural language processing applications across diverse languages and contexts.
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3.2. Dataset, formalization and preprocessing

Large language models (LLMs) excel at many tasks thanks to huge pretrained datasets. For our
experiments, we use the sahil2801/CodeAlpaca-20k dataset [21]. Dataset CodeAlpaca-20k is a data set for
training and evaluating natural language processing (NLP) models in the programming field. CodeAlpaca-
20k is a dataset containing approximately 20,000 programming code samples and related comments. It is
designed to support research and development of Al models capable of understanding and generating
programming code.

The structure of this dataset includes an input data set described in natural language about the
requirements of the programming problem; The output is a piece of programming code that performs the
functions described. CodeAlpaca-20k can contain code from many different programming languages such as
Python, JavaScript, Java, C++, and many others, depending on the goal of using the dataset.

We define a supervised dataset Dgq. = {(x;}, yj)}?’ﬂ, where x; € £ denotes a natural language task
instruction and y; € I'" represents the corresponding source code snippet. This dataset, CodeAlpaca-20k, is a
structured corpus encompassing multi-lingual code representations across diverse programming paradigms
P = {Python,C++Java, ...}. To enforce syntactic uniformity and model compatibility, we implement a
templated serialization thereby constraining tokenization under consistent positional embeddings.

T: (xj,y;) » (< |user| > x; < |end| >< |assistant| > y; < |end| >),

3.3. Constraints fine-tuning paradigms
3.3.1. Supervised fine-tuning (SFT)

Let Lcg(6;x,y) denote the cross-entropy loss function parameterized by model weights 6,
computed over the conditional likelihood Pg(y | x). The supervised fine-tuning objective is defined
as (1):

* i N
6" = arg min ijlLCE(Qij'yf) @

Implementation is realized via the HuggingFace SFTTrainer API, where gradient flow is restricted to
selected.

3.3.2. Low-rank adaptation (LoRA)

To circumvent the infeasibility of full weight updates, we invoke LoRA, which approximates
weight perturbations via a constrained low-rank subspace. Let AW ~ BA, where A € R™*, B € R¥*", and
r K min (d, k). The adapted weights are:

W =W, +a-BA ©)

with @ being a scaling hyperparameter. The fine-tuning is restricted to attention matrices (Gproj, Kproj Vprojs Oproj)
and feed-forward layers (up, down, gate).

3.3.3. Quantized low-rank adaptation (QLoRA)
For further compression, we adopt 4-bit NormalFloat quantization (nf4), integrating it with LoRA
adapters. We define the quantization mapping as (3):

_ W-min(W) b _
Wauant = round (m (27 - 1)) ,b=4 3)

Fine-tuning language models for specialized domains like the code generation tasks requires
significant computational resources. To mitigate this, we employed QLoRA [17], a technique designed to
efficiently fine-tune LLMs while minimizing memory footprint and training time. QLoRA achieves this by
quantizing the pre-trained model weights to a lower precision (4-bit) and then applying low-rank updates
during the fine-tuning process. These low-rank updates are stored with higher precision (fp16), allowing for
effective adaptation while keeping overall memory requirements low. Specifically, we utilized 4-bit
quantization (load — in — 4bit = True) with the NF4 quantization type, striking a balance between model
compression and performance. This configuration enabled us to fully leverage the capabilities of our chosen
models while operating within practical resource constraints. This approach significantly accelerated the
fine-tuning process without compromising the model's performance on the code generation tasks. This
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transformation drastically reduces memory overhead while maintaining functional fidelity via a dequantization
inverse mapping at inference.

3.4. Evaluation metric formalization

The primary quantitative instrument employed is ROUGE-L, a recall-oriented metric derived from
the longest common subsequence (LCS) framework. Given a generated sequence G = {gy, ..., g} and a
reference sequence R = {ry, ..., 1;,} , the LCS is denoted as LCS(G,R) . The corresponding ROUGE-L
precision P , recall R , and F1-score F are computed as:

p= ILCS(G,R)| — ILCS(G,R)I F = 2PR (4)

1GI ’ IR| P+R

This metric is particularly suited for evaluating source code, as it implicitly captures both lexical coherence
and structural adherence without penalizing minor syntactic permutations.

3.5. Experiment setup

All experiments were conducted on a server equipped with 4x NVIDIA RTX A5000 GPUs (24 GB
VRAM each), dual AMD Ryzen Threadripper PRO 5965WX CPUs (48 logical cores), and 256 GB RAM.
We used PyTorch 2.5.1 with CUDA 12.1, Hugging Face Transformers 4.46.3, and PEFT 0.13.2. Models
were fine-tuned on the CodeAlpaca-20k dataset using LoORA and QLoRA. Training employed the AdamW
optimizer with a learning rate of 2 X 10™*, cosine scheduler, and early stopping based on validation loss.
For LoRA, we set rank r = 8, scaling ¢ = 16, and dropout = 0.05. Table 1 summarizes the key training
hyperparameters across different models. Figure 1 shows the computational resources and training
environment.

Table 1. Training hyperparameters across models

Models Params  Batch size  Epochs  Trainable Params  Steps
Llama-3.2-1B 1.0B 160 50 11.3M 750
Llama-3.2-3B 3.2B 64 50 24.3M 1950
Gemma-2-2B 2.0B 128 50 20.8M 950
Qwen2.5-1.5B 1.5B 128 50 18.5M 950
Qwen2.5-3B 3.1B 64 50 29.9M 1950

train_steps._per_second train_samples_per_second train_runtime

train_loss total_flos step

DEE0000{200,A0S000R007R0, 00B00, ASLORONIN, OO0, 000,000,000

Figure 1. Computational resources and training environment

4. RESULTS AND DISCUSSION
To rigorously evaluate the generative efficacy of parameter-efficiently fine-tuned small language
models within the domain of source code synthesis, we operationalize a multifaceted evaluation protocol
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grounded in established textual similarity metrics, comparative benchmarking against relevant baselines and
less-tuned versions of the SLMs, and controlled ablation analysis. As shown in Figure 2, our evaluation
adheres to the principle of model-output congruence, in which the semantic fidelity of generated source code
is quantified against human-curated reference implementations using ROUGE-L. Our experiments focused
on comparing the performance gains achieved through fine-tuning these smaller models and analyzing their
effectiveness relative to each other and to prior work utilizing larger language models. The findings of these
experiments are summarized in Table 2. Prior to fine-tuning, the base models demonstrated limited
proficiency in the domain.

rougel

= Qwen25-1_5B-Instruct = Llama-32-1B-Instruct = gemma-2-2b-it = Qwen25-1_SB-Instruct = Llama-32-3B-Instruct == Llama-32-3B-Instruct = Qwen25-3B-Instruct
= Qwen25-1_5B-Instruct = Llama-32-1B-Instruct

0.4

0.35

Step

0 10 20 30 40 50

Figure 2. ROUGE-L performance of fine-tuned SLMs during training steps

4.1. Comparative performance synthesis
Let M. denote the baseline model ensemble {CodeBERT,Code2seq,Phi-3 Mini 4K} , and let M,

represent the set of fine-tuned small models studied in this work. The empirical results, summarized in
Table 2, reveal a pronounced superiority of our models across all evaluated instances. The empirical results,
summarized in Table 2, reveal a pronounced superiority of our fine-tuned SLMs (M) across all evaluated

instances compared to the M, baselines and generally improved performance compared to M.

Table 2. Model comparison on ROUGE-L score

Model Params Trainable Params Training Steps ROUGE-L
CodeBERT 110M 110M - 0.36
Code2seq 200M 200M - 0.33
Phi-3 Mini 4K base 3.8B 3.8B - 0.17

Our result

Llama-3.2-1B (base) 1B 1B - 0.45
Llama-3.2-1B-Instruct 1B ™ 4K 0.46
Llama-3.2-3B (base) 3.21B 3.21B - 0.49
Llama-3.2-3B-Instruct 321B I5M 4K 0.54
Gemma-2-2b-it (base) 2B 2B - 0.46
Gemma-2-2b-it-Instruct 2B 10M 4K 0.49
Qwen2.5-1.5B (base) 1.5B 1.5B - 0.48
Qwen2.5-1.5B-Instruct 1.5B ™ 4K 0.46
Qwen2.5-3B (base) 3.1B 3.1B - 0.51
Qwen2.5-3B-Instruct 3.1B 15M 4K 0.55

4.2. Ablation and interpretation
A critical juxtaposition is drawn between Phi-3 Mini 4K base (3.8B) and our fine-tuned 3B models
(LLaMA 3 3B, Qwen2.5 3B), wherein the latter demonstrably outperform despite fewer total parameters
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and significantly fewer trainable parameters during fine-tuning (15M vs3.8B). This discrepancy
substantiates the hypothesis that effective parameter-efficient fine-tuning and data alignment can be more
impactful than brute-force base model size or full model fine-tuning for domain-specific tasks. The results
suggest that it is not merely the volumetric size of a model that governs performance, but rather the
synergistic interplay between training objective, data alignment, and efficient adaptation techniques like
LoRA and QLoRA.

Furthermore, the consistent performance across the LLaMA-1B and Qwen-1.5B variants both
yielding ROUGE-L=0.46 implies a potential capacity ceiling when using these fine-tuning techniques at
lower parameter thresholds (1-1.5B), suggesting diminishing marginal returns without alternative adaptation
strategies or potential architectural modifications to better suit the code domain at this size.

4.3. Performance comparison with earlier models: CodeBERT and Code2seq

CodeBERT and Code2seq were key stages in the development of neural code generation, although
they mostly used syntactic representations and had trouble capturing deeper semantic linkages in source
code. Their ROUGE-L scores of 0.36 and 0.33 show how limited they are, especially when it comes to
activities that need strong semantic synthesis and awareness of context. In contrast, our finely tuned small
language models (SLMs) consistently beat these baselines, with ROUGE-L scores as high as 0.55. This
shows that parameter efficient fine-tuning methods not only make models work better but also greatly
improve the quality of code generation.

4.4. Epistemological reflections

Beyond raw metrics, our findings gesture toward a broader epistemological implication: that
effective adaptation and efficient architectures rather than brute-force parameter expansion may define the
next frontier of neuro-symbolic code generation. These results advocate for a paradigm shift toward task-
specific efficient fine-tuning protocols, enabling democratized deployment of capable SLMs without
compromising output fidelity on domain tasks.

4.5. Limitations of the study

The evaluation of code generation models has several limitations: first, it relies solely on the
ROUGE-L metric for lexical similarity, which does not assess functional correctness, such as compilability
or output accuracy, necessitating future incorporation of execution-based benchmarks like HumanEval and
MBPP for a more comprehensive assessment; second, the fine-tuning was limited to the CodeAlpaca-20k
dataset, potentially leading to overfitting to its specific instruction styles and problem distributions, so testing
on diverse datasets is essential for better generalization; third, hyperparameters for PEFT (e.g., LoRA rank
r=8, a=16, learning rate) were selected based on best practices without exhaustive optimization, suggesting
that model-specific tuning via grid search or Bayesian optimization could enhance performance; and fourth,
the evaluation used a static dataset, failing to reflect real-world interactive software development with multi-
turn refinements, thus recommending exploration of conversational Al frameworks for handling follow-ups,
corrections, and iterative improvements.

5.  CONCLUSION AND FUTURE WORK

This paper presents a comparative study on parameter-efficient fine-tuning (PEFT) techniques
specifically LoRA and QLoRA applied to several small language models (SLMs) including LLaMA 3.2,
Qwen2.5, and Gemma. The models are fine-tuned on the CodeAlpaca-20k dataset for the task of code
generation, and evaluated using ROUGE-L as the primary metric. The study demonstrates that fine-tuned
SLMs can outperform much larger baseline models, highlighting their potential for low-resource deployment
in software engineering contexts. The paper is well organized, methodologically sound, and provides clear
empirical evidence supporting the effectiveness of PEFT in enhancing the performance of compact models.
Overall, it is a relevant and timely contribution to the field of efficient neural code generation.

This work substantiates the potential of small, efficiently tuned models as viable, cost-effective, and
sustainable alternatives to large, computationally demanding models for domain-specific software
engineering problems. Their resource efficiency makes them particularly well-suited for deployment on edge
and mobile devices, thus supporting the broader democratization of Al-assisted coding.

Future research directions stem directly from these promising results. We plan to explore the
comparative efficacy of other PEFT methods and refine hyperparameter tuning for optimal performance.
Expanding the training data with richer, interactive code-related conversations could enhance the models'
ability to handle complex requests. Applying these techniques to SLMs for different programming domains,
such as hardware description languages or smart contracts, represents another important avenue.
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Additionally, investigating knowledge distillation from larger models and exploring architectural
modifications specifically designed for code synthesis within the SLM paradigm are crucial steps towards
developing even more capable and efficient neural code generators.
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