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 Large language models (LLMs) have demonstrated impressive capabilities 

in code generation; however, their high computational demands, privacy 

limitations, and challenges in edge deployment restrict their practical use in 

domain-specific applications. This study explores the effectiveness of 

parameter efficient fine-tuning for small language models (SLMs) with 

fewer than 3 billion parameters. We adopt a hybrid approach that combines 

low-rank adaptation (LoRA) and 4-bit quantization (QLoRA) to reduce fine-

tuning costs while preserving semantic consistency. Experiments on the 

CodeAlpaca-20k dataset reveal that SLMs fine-tuned with this method 

outperform larger baseline models, including Phi-3 Mini 4K base, in 

ROUGE-L. Notably, applying our approach to the LLaMA 3 3B and 

Qwen2.5 3B models yielded performance improvements of 54% and 55%, 

respectively, over untuned counterparts. We evaluate models developed by 

major artificial intelligence (AI) providers Google (Gemma 2B), Meta 

(LLaMA 3 1B/3B), and Alibaba (Qwen2.5 1.5B/3B) and show that 

parameter-efficient fine-tuning enables them to serve as cost-effective, high-

performing alternatives to larger LLMs. These findings highlight the potential 

of SLMs as scalable solutions for domain-specific software engineering tasks, 

supporting broader adoption and democratization of neural code synthesis. 
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1. INTRODUCTION 

In the era of algorithmic proliferation and increasingly complex software ecosystems, the synthesis 

of source code via natural language interfaces has emerged as a critical axis of research at the confluence of 

formal language theory, neural representation learning, and automated reasoning [1], [2]. This convergence 

has revitalized longstanding questions in computability, expressivity, and syntactic alignment between 

human and machine representations of intent [3]. Traditional models of program synthesis, centered on 

formal grammars [4], software engineering principles [5], deductive synthesis, or enumerative search, have 

proven insufficiently scalable when confronted with the ambiguity and high dimensionality of natural 

language [6]. 

The advent of large-scale transformer-based language models (LLMs) [7], such as models in the 

GPT family [8], T5 [9], and code-specific models like CodeT5 [10] and StarCoder [11], has redefined the 

paradigm. By embedding symbolic structures into continuous vector spaces amenable to gradient-based 
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optimization, these models have achieved remarkable efficacy. However, they are often characterized by 

prohibitive parameterization (exceeding tens or hundreds of billions of weights), introducing challenges not 

only in terms of computational tractability and carbon footprint [12] but also epistemologically by 

obfuscating the interpretability and verifiability of generated code artifacts. 

To address these limitations, small language models (SLMs) [13]–[15], typically constrained to sub-

7B parameter regimes, have emerged as promising alternatives. While smaller, SLMs offer potential for 

efficient deployment on edge devices and within constrained inference environments. However, leveraging 

their full capability for domain-specific tasks like code generation requires effective adaptation. This study 

investigates the effectiveness of applying parameter-efficient fine-tuning (PEFT) techniques, specifically 

low-rank adaptation (LoRA) [16] and quantized low-rank adaptation (QLORA) [17], to prominent existing 

SLMs for code generation. 

Our core hypothesis is that with efficient fine-tuning on a domain-specific dataset, these compact 

models can achieve performance comparable to, or even surpassing, larger baseline models, while requiring 

significantly fewer computational resources for training and deployment. We conduct empirical 

investigations on well-known SLMs including LLaMA 3 (1B and 3B variants) [18], Gemma 2B [19], and 

Qwen2.5 (1.5B and 3B variants) [20]. We fine-tune these models using LoRA/QLORA on the CodeAlpaca-

20k dataset [21], a structured corpus designed for instruction-based code generation. We evaluate 

performance using the ROUGE-L metric and analyze the efficiency gains in terms of trainable parameters. 

Our contributions are threefold: i) an empirical demonstration of the effectiveness of PEFT 

(LoRA/QLORA) for adapting existing SLMs to code generation, ii) a comparative analysis of several 

prominent SLMs under these fine-tuning regimes on the CodeAlpaca-20k benchmark, highlighting their 

relative strengths and limitations, and iii) evidence that efficiently fine-tuned sub-3B models can outperform 

larger baseline models on this task, suggesting the importance of effective adaptation over brute-force 

parameter scale. Ultimately, this work contributes to formalizing a scalable methodology for efficient  

neural code generation, suitable for both academic replication and real-world software development 

workflows. 

 

 

2. RELATED WORK 

Code generation using natural language prompts has evolved significantly with the emergence of 

large-scale pretrained models. Early models such as CodeBERT [22] and Code2Seq [23] relied heavily on 

syntactic features and were limited in their ability to generalize beyond predefined patterns or abstract syntax 

trees (ASTs). These models offered modest success in code retrieval and classification tasks but lacked the 

semantic compositionality and contextual understanding essential for realistic code synthesis. The paradigm 

shifted with the advent of transformer-based models pretrained on massive code corpora. Models such as 

CodeT5 [10], PolyCoder, Phi-3, Phi-3 Meets Law [15], [24], along with instruction-tuned variants like 

StarCoder [11] and WizardCoder [25], introduced architectural and objective-function refinements that 

greatly enhanced performance. Despite their improvements, these models typically exceed 6 billion 

parameters, posing significant challenges for deployment on constrained hardware and increasing 

computational costs. 

To address these limitations, the research community has pivoted towards SLMs, which offer a 

more sustainable and accessible alternative [13], [14], [26]. This trend is exemplified by models like Google's 

Gemma 2B [19] and Alibaba's Qwen2.5 series [20], which leverage optimized Transformer architectures to 

deliver impressive performance within a sub-3B parameter footprint. These compact models are not only 

more efficient but also exhibit strong capabilities in multilingual and specialized tasks, making them 

promising candidates for domain-specific applications like code generation. While their potential is clear, 

their performance on specialized code generation benchmarks, particularly after targeted adaptation, remains 

an area requiring thorough investigation. 

A key factor in unlocking the potential of these SLMs is the use of specialized datasets and 

instruction-tuning. Datasets like CodeAlpaca-20k [21], which provide a corpus of instruction-code pairs, are 

instrumental in teaching models to map natural language intent to syntactically correct and semantically 

appropriate code. By fine-tuning on such datasets, models learn to follow complex instructions, thereby 

moving beyond simple pattern matching to a more robust form of code synthesis. This methodology has 

become a cornerstone for adapting general-purpose language models to the nuanced domain of software 

engineering. 

However, even for SLMs, full fine-tuning can be computationally prohibitive. This has led to the 

widespread adoption of parameter-efficient fine-tuning (PEFT) techniques. Methods like low-rank adaptation 

(LoRA) [27], which freezes pretrained model weights and injects trainable low-rank matrices, and quantized 

low-rank adaptation (QLORA) [17], which further reduces memory usage by quantizing the base model to  

4-bits, have become instrumental. These techniques enable the adaptation of SLMs on consumer-grade 
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hardware while preserving or even enhancing performance on downstream tasks. Building on this line of 

research, our study evaluates the application of LoRA and QLORA on various SLMs such as Gemma 2B 

[19], Qwen2.5 [20], and smaller LLaMA 3 variants [18], focusing on standardized code generation 

benchmarks to assess performance and efficiency. 

While previous works have explored fine-tuning individual SLMs for code [18], [20], a 

comprehensive, side-by-side comparative analysis of the leading SLMs from different major artificial 

intelligence (AI) providers (Google, Meta, Alibaba) under a unified PEFT framework is still lacking. Our 

work directly addresses this gap by systematically evaluating the performance of these models when fine-

tuned with LoRA/QLORA on the CodeAlpaca-20k benchmark. This approach allows for a direct comparison 

of their inherent architectural strengths and their adaptability to the code generation domain, providing 

critical insights into the most effective and efficient pathways for democratizing neural code synthesis. 

 

 

3. METHOD 

In constructing a comprehensive experimental framework for evaluating the efficacy of small-scale 

transformer-based architectures in the context of source code generation, our methodology is predicated upon 

a multi-tiered approach that integrates: i) architectural selection under parameter constraint, ii) dataset 

curation and task formalization, iii) implementation of advanced fine-tuning regimes leveraging parameter-

efficient adaptation, and iv) empirical validation via standardized lexical similarity metrics. This 

multipronged stratagem ensures both methodological rigor and reproducibility within constrained 

computational topologies. 

 

3.1.  Model selection under parameterized constraints 

Let M denote the hypothesis space of autoregressive language models instantiated over a parameter 

domain Θ ⊂ Rn, with n < 3 × 109. We select five representative models Mi ∈ M, each characterized by 

architectural sparsity, multilingual capability, and decoder-only transformer backbones: M1: Llama-3.2-1B-

Instruct – 1B; M2: Llama-3.2-1B-Instruct – 3B; M3: Gemma – 2B; M4: Qwen2.5 – 1.5B; M5: Qwen2.5 – 3B. 

Each Mi is initialized with pretrained weights θi0 and subjected to subsequent adaptation on a task specific 

distribution Dcode.  

Llama-3.2-1B-Instruct (M1) is a 1B parameter language model from 3.2. It is designed with an 

optimized lightweight architecture. This model is well suited for deployment on personal and mobile 

devices, enhancing performance across various applications.  

Llama-3.2-3B-Instruct (M2) is a 3B-parameter language model from 3.2, designed to support 

multiple languages and optimized for tasks such as conversation, information retrieval, and text 

summarization. This powerful and flexible model is tailored for personal and mobile devices, delivering 

high efficiency in multilingual natural language processing.  

Gemma-2-2b-it(M3) is an open-source LLM developed by Google with 2 billion parameters. This 

model is designed for natural language processing while being optimized for resource-constrained 

environments like personal computers and mobile devices. With a decoder-only Transformer architecture 

and enhancements such as sliding window attention and soft cap, Gemma-2-2B-IT outperforms other open 

models of similar size. Additionally, it is built for seamless integration into developers’ and researchers’ 

workflows, supporting popular artificial intelligence (AI) frameworks like Hugging Face Transformers, 

JAX, PyTorch, and TensorFlow.  

Qwen2.5-1.5B-Instruct (M4) is a language model from the Qwen2.5 series, developed by the Qwen 

team. With approximately 1.54 billion parameters, it is specifically optimized for instruction-following 

tasks. This model supports multiple languages, including Vietnamese, and can process extended contexts of 

up to 128,000 tokens, enhancing its effectiveness in text generation, question answering, programming, and 

mathematical reasoning. Built on a Transformer architecture, it incorporates advanced techniques such as 

RoPE, SwiGLU, and RMSNorm to improve efficiency and accuracy. Qwen2.5-1.5B-Instruct is released 

under the Apache 2.0 license, enabling free usage and distribution across various applications.  

Qwen2.5-3B-Instruct(M5) is an advanced language model in the Qwen2.5 series, developed by the 

Qwen team. With approximately 3.09 billion parameters, it is fine-tuned specifically for instruction-

following tasks. This model supports multiple languages, including Vietnamese, and can process context 

lengths of up to 128,000 tokens, enhancing its capabilities in text generation, question answering, 

programming, and mathematical problem solving. Built on a Transformer architecture, it incorporates 

optimization techniques such as RoPE, SwiGLU, and RMSNorm to enhance efficiency and accuracy. 

Qwen2.5-3B-Instruct is released under the Qwen Research license, permitting its use and distribution in 

research projects. With its ability to generate and understand high-quality text, this model serves as a 

powerful tool for natural language processing applications across diverse languages and contexts.  
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3.2.  Dataset, formalization and preprocessing 

Large language models (LLMs) excel at many tasks thanks to huge pretrained datasets. For our 

experiments, we use the sahil2801/CodeAlpaca-20k dataset [21]. Dataset CodeAlpaca-20k is a data set for 

training and evaluating natural language processing (NLP) models in the programming field. CodeAlpaca-

20k is a dataset containing approximately 20,000 programming code samples and related comments. It is 

designed to support research and development of AI models capable of understanding and generating 

programming code. 

The structure of this dataset includes an input data set described in natural language about the 

requirements of the programming problem; The output is a piece of programming code that performs the 

functions described. CodeAlpaca-20k can contain code from many different programming languages such as 

Python, JavaScript, Java, C++, and many others, depending on the goal of using the dataset. 

We define a supervised dataset Dcode = {(𝑥𝑗 , 𝑦𝑗)}𝑗=1
𝑁 , where 𝑥𝑗 ∈ Σ∗ denotes a natural language task 

instruction and 𝑦𝑗 ∈ Γ∗ represents the corresponding source code snippet. This dataset, CodeAlpaca-20k, is a 

structured corpus encompassing multi-lingual code representations across diverse programming paradigms 

P = {Python,C++,Java, … }. To enforce syntactic uniformity and model compatibility, we implement a 

templated serialization thereby constraining tokenization under consistent positional embeddings. 

 

𝑇: (𝑥𝑗 , 𝑦𝑗) ↦ ⟨< |user| >  𝑥𝑗 < |end| >< |assistant| > 𝑦𝑗 < |end| >⟩, 

 

3.3.  Constraints fine-tuning paradigms 

3.3.1.  Supervised fine-tuning (SFT) 

Let LCE(𝜃; 𝑥, 𝑦) denote the cross-entropy loss function parameterized by model weights 𝜃, 

computed over the conditional likelihood 𝑃𝜃(𝑦 ∣ 𝑥). The supervised fine-tuning objective is defined  

as (1): 

 

𝜃∗ = 𝑎𝑟𝑔⁡𝑚𝑖𝑛⁡
𝜃

∑ LCE(𝜃; 𝑥𝑗 , 𝑦𝑗)
𝑁

𝑗=1
 (1) 

 

Implementation is realized via the 𝐻𝑢𝑔𝑔𝑖𝑛𝑔𝐹𝑎𝑐𝑒 𝑆𝐹𝑇𝑇𝑟𝑎𝑖𝑛𝑒𝑟 API, where gradient flow is restricted to 

selected. 

 

3.3.2.  Low-rank adaptation (LoRA) 

To circumvent the infeasibility of full weight updates, we invoke LoRA, which approximates  

weight perturbations via a constrained low-rank subspace. Let Δ𝑊 ≈ 𝐵𝐴, where 𝐴 ∈ R𝑟×𝑘, 𝐵 ∈ R𝑑×𝑟, and 

𝑟 ≪ 𝑚𝑖𝑛⁡(𝑑, 𝑘). The adapted weights are: 

 

𝑊 = 𝑊0 + 𝛼 ⋅ 𝐵𝐴 (2) 

 

with 𝛼 being a scaling hyperparameter. The fine-tuning is restricted to attention matrices (𝑞proj, 𝑘proj, 𝑣proj, 𝑜proj) 

and feed-forward layers (𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑔𝑎𝑡𝑒). 
 

3.3.3.  Quantized low-rank adaptation (QLoRA) 

For further compression, we adopt 4-bit 𝑁𝑜𝑟𝑚𝑎𝑙𝐹𝑙𝑜𝑎𝑡 quantization (𝑛𝑓4), integrating it with LoRA 

adapters. We define the quantization mapping as (3): 

 

𝑊quant = round(
𝑊−min(𝑊)

max(𝑊)−min(𝑊)
⋅ (2𝑏 − 1)) , 𝑏 = 4 (3) 

 

Fine-tuning language models for specialized domains like the code generation tasks requires 

significant computational resources. To mitigate this, we employed QLoRA [17], a technique designed to 

efficiently fine-tune LLMs while minimizing memory footprint and training time. QLoRA achieves this by 

quantizing the pre-trained model weights to a lower precision (4-bit) and then applying low-rank updates 

during the fine-tuning process. These low-rank updates are stored with higher precision (fp16), allowing for 

effective adaptation while keeping overall memory requirements low. Specifically, we utilized 4-bit 

quantization (𝑙𝑜𝑎𝑑 − 𝑖𝑛 − 4𝑏𝑖𝑡 = 𝑇𝑟𝑢𝑒) with the NF4 quantization type, striking a balance between model 

compression and performance. This configuration enabled us to fully leverage the capabilities of our chosen 

models while operating within practical resource constraints. This approach significantly accelerated the  

fine-tuning process without compromising the model's performance on the code generation tasks. This 
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transformation drastically reduces memory overhead while maintaining functional fidelity via a dequantization 

inverse mapping at inference. 

 

3.4.  Evaluation metric formalization 

The primary quantitative instrument employed is ROUGE-L, a recall-oriented metric derived from 

the longest common subsequence (LCS) framework. Given a generated sequence 𝐺 = {𝑔1, … , 𝑔𝑚} and a 

reference sequence 𝑅 = {𝑟1, … , 𝑟𝑛} , the LCS is denoted as LCS(𝐺, 𝑅) . The corresponding ROUGE-L 

precision 𝑃 , recall 𝑅 , and F1-score 𝐹 are computed as: 

 

𝑃 =
∣LCS(𝐺,𝑅)∣

∣𝐺∣
, 𝑅 =

∣LCS(𝐺,𝑅)∣

∣𝑅∣
, 𝐹 =

2𝑃𝑅

𝑃+𝑅
⁡  (4) 

 

This metric is particularly suited for evaluating source code, as it implicitly captures both lexical coherence 

and structural adherence without penalizing minor syntactic permutations. 

 

3.5.  Experiment setup 

All experiments were conducted on a server equipped with 4× NVIDIA RTX A5000 GPUs (24 GB 

VRAM each), dual AMD Ryzen Threadripper PRO 5965WX CPUs (48 logical cores), and 256 GB RAM. 

We used PyTorch 2.5.1 with CUDA 12.1, Hugging Face Transformers 4.46.3, and PEFT 0.13.2. Models 

were fine-tuned on the CodeAlpaca-20k dataset using LoRA and QLoRA. Training employed the AdamW 

optimizer with a learning rate of 2 × 10−4, cosine scheduler, and early stopping based on validation loss.  

For LoRA, we set rank 𝑟 = 8, scaling 𝛼 = 16, and dropout = 0.05. Table 1 summarizes the key training 

hyperparameters across different models. Figure 1 shows the computational resources and training 

environment. 

 

 

Table 1. Training hyperparameters across models 
Models Params Batch size Epochs Trainable Params Steps 

Llama-3.2-1B 1.0B 160 50 11.3M 750 
Llama-3.2-3B 3.2B 64 50 24.3M 1950 
Gemma-2-2B 2.0B 128 50 20.8M 950 
Qwen2.5-1.5B 1.5B 128 50 18.5M 950 
Qwen2.5-3B 3.1B 64 50 29.9M 1950 

 

 

 
 

Figure 1. Computational resources and training environment 

 

 

4. RESULTS AND DISCUSSION  

To rigorously evaluate the generative efficacy of parameter-efficiently fine-tuned small language 

models within the domain of source code synthesis, we operationalize a multifaceted evaluation protocol 
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grounded in established textual similarity metrics, comparative benchmarking against relevant baselines and 

less-tuned versions of the SLMs, and controlled ablation analysis. As shown in Figure 2, our evaluation 

adheres to the principle of model-output congruence, in which the semantic fidelity of generated source code 

is quantified against human-curated reference implementations using ROUGE-L. Our experiments focused 

on comparing the performance gains achieved through fine-tuning these smaller models and analyzing their 

effectiveness relative to each other and to prior work utilizing larger language models. The findings of these 

experiments are summarized in Table 2. Prior to fine-tuning, the base models demonstrated limited 

proficiency in the domain. 

 

 

 
 

Figure 2. ROUGE-L performance of fine-tuned SLMs during training steps 

 

 

4.1.  Comparative performance synthesis 

Let Mbase denote the baseline model ensemble {CodeBERT,Code2seq,Phi-3 Mini 4K} , and let Mfine 

represent the set of fine-tuned small models studied in this work. The empirical results, summarized in 

Table 2, reveal a pronounced superiority of our models across all evaluated instances. The empirical results, 

summarized in Table 2, reveal a pronounced superiority of our fine-tuned SLMs (Mfine) across all evaluated 

instances compared to the Mbase baselines and generally improved performance compared to Mbase. 

 

 

Table 2. Model comparison on ROUGE-L score 
Model Params Trainable Params Training Steps ROUGE-L 

CodeBERT 110M 110M - 0.36 

Code2seq 200M 200M - 0.33 

Phi-3 Mini 4K base 3.8B 3.8B - 0.17 
Our result     

Llama-3.2-1B (base) 1B 1B - 0.45 

Llama-3.2-1B-Instruct 1B 7M 4K 0.46 
Llama-3.2-3B (base) 3.21B 3.21B - 0.49 

Llama-3.2-3B-Instruct 3.21B 15M 4K 0.54 

Gemma-2-2b-it (base) 2B 2B - 0.46 
Gemma-2-2b-it-Instruct 2B 10M 4K 0.49 

Qwen2.5-1.5B (base) 1.5B 1.5B - 0.48 

Qwen2.5-1.5B-Instruct 1.5B 7M 4K 0.46 
Qwen2.5-3B (base) 3.1B 3.1B - 0.51 

Qwen2.5-3B-Instruct 3.1B 15M 4K 0.55 

 

 

4.2.  Ablation and interpretation 

A critical juxtaposition is drawn between Phi-3 Mini 4K base (3.8B) and our fine-tuned 3B models 

(LLaMA 3 3B, Qwen2.5 3B), wherein the latter demonstrably outperform despite fewer total parameters 
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and significantly fewer trainable parameters during fine-tuning (15M vs 3.8B). This discrepancy 

substantiates the hypothesis that effective parameter-efficient fine-tuning and data alignment can be more 

impactful than brute-force base model size or full model fine-tuning for domain-specific tasks. The results 

suggest that it is not merely the volumetric size of a model that governs performance, but rather the 

synergistic interplay between training objective, data alignment, and efficient adaptation techniques like 

LoRA and QLoRA. 

Furthermore, the consistent performance across the LLaMA-1B and Qwen-1.5B variants both 

yielding ROUGE-L=0.46 implies a potential capacity ceiling when using these fine-tuning techniques at 

lower parameter thresholds (1-1.5B), suggesting diminishing marginal returns without alternative adaptation 

strategies or potential architectural modifications to better suit the code domain at this size. 

 

4.3.  Performance comparison with earlier models: CodeBERT and Code2seq 

CodeBERT and Code2seq were key stages in the development of neural code generation, although 

they mostly used syntactic representations and had trouble capturing deeper semantic linkages in source 

code. Their ROUGE-L scores of 0.36 and 0.33 show how limited they are, especially when it comes to 

activities that need strong semantic synthesis and awareness of context. In contrast, our finely tuned small 

language models (SLMs) consistently beat these baselines, with ROUGE-L scores as high as 0.55. This 

shows that parameter efficient fine-tuning methods not only make models work better but also greatly 

improve the quality of code generation. 

 

4.4.  Epistemological reflections 

Beyond raw metrics, our findings gesture toward a broader epistemological implication: that 

effective adaptation and efficient architectures rather than brute-force parameter expansion may define the 

next frontier of neuro-symbolic code generation. These results advocate for a paradigm shift toward task-

specific efficient fine-tuning protocols, enabling democratized deployment of capable SLMs without 

compromising output fidelity on domain tasks. 

 

4.5.  Limitations of the study 

The evaluation of code generation models has several limitations: first, it relies solely on the 

ROUGE-L metric for lexical similarity, which does not assess functional correctness, such as compilability 

or output accuracy, necessitating future incorporation of execution-based benchmarks like HumanEval and 

MBPP for a more comprehensive assessment; second, the fine-tuning was limited to the CodeAlpaca-20k 

dataset, potentially leading to overfitting to its specific instruction styles and problem distributions, so testing 

on diverse datasets is essential for better generalization; third, hyperparameters for PEFT (e.g., LoRA rank 

r=8, α=16, learning rate) were selected based on best practices without exhaustive optimization, suggesting 

that model-specific tuning via grid search or Bayesian optimization could enhance performance; and fourth, 

the evaluation used a static dataset, failing to reflect real-world interactive software development with multi-

turn refinements, thus recommending exploration of conversational AI frameworks for handling follow-ups, 

corrections, and iterative improvements. 

 

 

5. CONCLUSION AND FUTURE WORK 

This paper presents a comparative study on parameter-efficient fine-tuning (PEFT) techniques 

specifically LoRA and QLoRA applied to several small language models (SLMs) including LLaMA 3.2, 

Qwen2.5, and Gemma. The models are fine-tuned on the CodeAlpaca-20k dataset for the task of code 

generation, and evaluated using ROUGE-L as the primary metric. The study demonstrates that fine-tuned 

SLMs can outperform much larger baseline models, highlighting their potential for low-resource deployment 

in software engineering contexts. The paper is well organized, methodologically sound, and provides clear 

empirical evidence supporting the effectiveness of PEFT in enhancing the performance of compact models. 

Overall, it is a relevant and timely contribution to the field of efficient neural code generation. 

This work substantiates the potential of small, efficiently tuned models as viable, cost-effective, and 

sustainable alternatives to large, computationally demanding models for domain-specific software 

engineering problems. Their resource efficiency makes them particularly well-suited for deployment on edge 

and mobile devices, thus supporting the broader democratization of AI-assisted coding. 

Future research directions stem directly from these promising results. We plan to explore the 

comparative efficacy of other PEFT methods and refine hyperparameter tuning for optimal performance. 

Expanding the training data with richer, interactive code-related conversations could enhance the models' 

ability to handle complex requests. Applying these techniques to SLMs for different programming domains, 

such as hardware description languages or smart contracts, represents another important avenue. 
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Additionally, investigating knowledge distillation from larger models and exploring architectural 

modifications specifically designed for code synthesis within the SLM paradigm are crucial steps towards 

developing even more capable and efficient neural code generators. 
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