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 Stability issues in cyber-physical systems (CPS) arise from the challenging 

effects of nonlinear dynamics relation to multi-input, multi-output systems. 

This research proposed a robust control framework that combines Jacobian 

linearization, Lyapunov stability analysis, and linear quadratic regulator 

(LQR) control via linear matrix inequalities (LMIs). The robust 

methodology does the following: it applies linearization on the dynamics of 

the CPS; it establishes the stability of the system using Lyapunov functions 

and LMIs; and it designs an LQR controller. The proposed framework was 

validated through a comparison between the behavior of a linearized and 

nonlinear model. The autonomous vehicle application showed: a settling 

time of 20 seconds; an overshoot of 3.8187%; and a steady-state error of 

2.688×10⁻⁷. The proposed framework is robustly demonstrated and has 

applications to areas in automation and smart infrastructure. Future work 

includes optimizing the design of weighting matrices and developing 

adaptive control features. 
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1. INTRODUCTION 

Cyber-physical systems (CPS) combine complex physical processes with computation and 

networked control, enabling applications such as autonomous vehicles, smart grids, and industrial automation 

[1]–[3]. CPS blend complex dynamics with real-time feedback that call for rigorous stability analysis and 

control synthesis to ensure performance [4], [5]. Control theory advancements such as Lyapunov-based 

approaches and the use of linear matrix inequalities (LMIs) in recent years have increased stability 

guarantees under nonlinearities and uncertainty in CPS [6]–[10]. The multi-input, multi-output (MIMO) 

nature of CPS requires more advanced and sophisticated mathematical tools to control [11]–[13]. 

When there are nonlinear dynamics, external disturbances, and parameter uncertainties, it is difficult 

to keep CPS stable, particularly when we are dealing with MIMO systems [1], [4]. Classical linearization 

often cannot take into account the complex behaviors [6], whilst the network itself is likely to involve delays 

or vulnerabilities [3], [14]. The biggest challenge is designing controllers that can achieve both stabilization 

and performance at the same time [6], [15]. These challenges are of particular consequence in applications 

like autonomous vehicles where precision control matters [16]. The purpose of this research is to create a 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Stability analysis and robust control of cyber-physical systems: integrating … (Rachid Boutssaid) 

5277 

strong control framework for CPS by using Jacobian linearization, Lyapunov stability analysis, and LQR 

control consistently using the LMI approaches, illustrated via an autonomous vehicle case study. 

This work introduces a novel framework that unifies Jacobian linearization to represent nonlinear 

CPS dynamics, Lyapunov functions to ensure stability, and an LQR control approach based on LMIs to 

ensure optimal performance. While other works have used similar techniques, ours is providing a unified 

method for dealing with MIMO system, and demonstratively through an autonomous vehicle model. 

Furthermore, we provided numerical analyses and found better stability and performance while proposing a 

method that can be helpful to scaling in CPS applications. Finally, the flexibility of the proposed framework 

allows extensions to other domains including smart infrastructure. 

This paper is organized in the following way: related work in section 2; methodology in section 3; 

results in section 4; discussion of findings and limitations in section 5; and then recommendations for future 

work in section 6. 

 

 

2. LITERATURE REVIEW 

Recent work concerning cyber-physical systems (CPS), on topics of stability and control of CPS for 

purposes like autonomous vehicle and smart grid systems (2022-2025), continues to develop.  

Rubio-Hernan et al. [17] applied Lyapunov methods for stability of CPS with regards to delays, and Chesi 

[18] applied them CAD on thresholds to recover from actuator faults [1], [5]. Jouybary et al. [19] applied the 

Jacobian method through linearization to robotic CPS's linearized dynamics while Sheikhsamad and Puig 

[20] extended feedback linearization to UAVs, but both groups found it difficult to represent CPS 

performances, which lay in a set of complex nonlinearities [4], [9]. Phan et al. [21] proposed that adaptive 

linearization can be used to deal with these issues [12]. 

Tran et al. [22] applied LQR control to autonomous vehicles for better operation, while Aouani and 

Olalla [23] associated LQR with machine learning as a smart infrastructure control method [6], [10].  

Jiang et al. [24] and Song et al. [25] used LMI-based LQR guarantees to protect CPS against cyber-attacks, 

and to develop multi-objective control, respectively [7], [16]. Yang et al. [26] incorporated LMIs with robust 

control for the case of MIMO CPS [27]. Zhao et al. [28] and Yang et al. [26] reported adaptive control and 

secure estimation for CPS security [2], [3]. Alcala et al. [29], Tran and Vu [30] used LQR and Lyapunov 

methods to control autonomous vehicles [6], [31]. 

Review analysis: Many recent works advance CPS stability and control based primarily on 

Lyapunov, linearization, LQR, and LMIs. Despite these advances, studies have not yet created a unified 

frameworks for nonlinear MIMO systems. This paper combines Jacobian linearization, Lyapunov stability, 

and LMI based LQR in the context of a case study with an autonomous vehicle; addressing the noted gaps for 

scalable CPS applications. 

 

 

3. METHOD  

This study creates and demonstrates a control framework for cyber-physical systems (CPS) using 

the following three methods: Jacobian linearization, Lyapunov stability analysis, and linear quadratic 

regulator (LQR) control via linear matrix inequalities (LMI) in the context of an autonomous vehicle case 

study. The study involves three components: system linearization, stability analysis and controller synthesis, 

and the case study to demonstrate suitability. 

 

3.1.  System linearization 

To enable linear control techniques, nonlinear CPS dynamics are linearized using the Jacobian 

matrix method. The nonlinear system is given in state-space form: 

  

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑡), 𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑡)    (1) 

 

where: 

− 𝑥(𝑡) ∈ ℝ𝑛 is the state vector, 

− 𝑓(𝑥(𝑡), 𝑡) ∈ ℝ𝑛 represents the nonlinear system dynamics, 

− 𝑦(𝑡) ∈ ℝ𝑚 is the output vector, and 

− ℎ(𝑥(𝑡), 𝑡) ∈ ℝ𝑚 is the nonlinear output function. 

The Jacobian linearization approximates the system around an equilibrium point (𝑥0, 𝑢0) using a 

firstorder Taylor expansion. This linearization process yields the following: 
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𝑓(𝑥(𝑡), 𝑢(𝑡)) ≈ 𝑓(𝑥0, 𝑢0) +
𝜕𝑓

𝜕𝑥
|
(𝑥0,𝑢0)

(𝑥(𝑡) − 𝑥0) +
𝜕𝑓

𝜕𝑢
|
(𝑥0,𝑢0)

(𝑢(𝑡) − 𝑢0)

ℎ(𝑥(𝑡), 𝑢(𝑡)) ≈ ℎ(𝑥0, 𝑢0) +
𝜕ℎ

𝜕𝑥
|
(𝑥0,𝑢0)

(𝑥(𝑡) − 𝑥0) +
𝜕ℎ

𝜕𝑢
|
(𝑥0,𝑢0)

(𝑢(𝑡) − 𝑢0)
     (2) 

 

The resulting Jacobian matrices are: 

 

 𝐴 =
𝜕𝑓

𝜕𝑥
|
(𝑥0,𝑢0)

, 𝐵 =
𝜕𝑓

𝜕𝑢
|
(𝑥0,𝑢0)

   (3) 

 

At the equilibrium point, we have 𝑓(𝑥0, 𝑢0) = 0 and ℎ(𝑥0, 𝑢0) = 𝑦0, leading to the linearized system: 

 

Δ𝑥(𝑡) = 𝐴Δ𝑥(𝑡) + 𝐵Δ𝑢(𝑡), Δ𝑦(𝑡) = 𝐶Δ𝑥(𝑡) + 𝐷Δ𝑢(𝑡) (4) 

 

where: 

− Δ𝑥(𝑡) = 𝑥(𝑡) − 𝑥0, 

− Δ𝑢(𝑡) = 𝑢(𝑡) − 𝑢0, 

− Matrices 𝐶 and 𝐷 are derived similarly [12], [13]. 

 

3.2.  Stability analysis and controller design 

Stability is ensured using a Lyapunov function, and an optimal LQR controller is synthesized using 

LMIs. For the linearized system: 

 

Δ𝑥 = 𝐴 ⋅ Δ𝑥 + 𝐵 ⋅ Δ𝑢   (5) 

 

A Lyapunov function is defined as: 

 

𝑉(Δ𝑥) = Δ𝑥⊤𝑃Δ𝑥    (6) 

 

where 𝑃 is a symmetric positive definite matrix satisfying: 

 

𝑉(Δ𝑥) > 0  for all  Δ𝑥 ≠ 0, 𝑉(0) = 0 

 

The time derivative along the system trajectories is: 

 

𝑉̇(Δ𝑥) = Δ𝑥⊤(𝐴⊤𝑃 + 𝑃𝐴)Δ𝑥 + 2Δ𝑥⊤𝑃𝐵Δ𝑢      (7) 

 

Substituting the LQR control law Δ𝑢 = −𝐾Δ𝑥 : 

 

𝑉̇(Δ𝑥) = Δ𝑥⊤(𝐴⊤𝑃 + 𝑃𝐴 − 2𝑃𝐵𝐾)Δ𝑥   (8) 

 

For asymptotic stability, we require 𝑉̇(Δ𝑥) < 0 for all Δ𝑥 ≠ 0. The LQR controller minimizes the quadratic 

cost function: 

 

𝐽 = ∫  
∞

0
(Δ𝑥⊤𝑄Δ𝑥 + Δ𝑢⊤𝑅Δ𝑢)𝑑𝑡   (9) 

 

where 𝑄 is symmetric positive semi-definite ( 𝑄 ≥ 0 ) and 𝑅 is symmetric positive definite ( 𝑅 > 0 ). 

The optimal control law is given by: 

 

Δ𝑢 = −𝐾Δ𝑥 (10) 

 

with gain 𝐾 given by: 

 

𝐾 = 𝑅−1𝐵⊤𝑃  (11) 

 

where 𝑃 solves the Algebraic Riccati equation (ARE): 

 

𝐴⊤𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵⊤𝑃 + 𝑄 = 0    (12) 
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Substituting 𝐾 into the Lyapunov derivative: 

 

𝑉̇(Δ𝑥) = Δ𝑥⊤(−𝑄 − 𝑃𝐵𝑅−1𝐵⊤𝑃)Δ𝑥     (13) 

 

Since 𝑄 ≥ 0 and 𝑅 > 0, we conclude that 𝑉̇(Δ𝑥) ≤ 0, and if 𝑄 > 0, we achieve asymptotic stability. 

LMIs are used to formulate the controller design as a convex optimization problem. The stability 

condition is: 

 

Δ𝑥⊤(𝐴⊤𝑃 + 𝑃𝐴 − 2𝑃𝐵𝐾)Δ𝑥 < 0       (14) 

 

Define 𝑌 = 𝐾𝑃, so 𝐾 = 𝑌𝑃−1. The LMI becomes: 

 

𝐴⊤𝑃 + 𝑃𝐴 − 𝐵𝑌 − 𝑌⊤𝐵⊤ < 0       (15) 

 

Incorporating performance, the LMI becomes: 

 

𝐴⊤𝑃 + 𝑃𝐴 − 𝐵𝑌 − 𝑌⊤𝐵⊤ + 𝑄 < 0       (16) 

 

with constraints 𝑃 > 0. The control gain is recovered as: 

 

𝐾 = 𝑌𝑃−1            (17) 

 

This LMI is solved using numerical tools like MATLAB's CVX solver [7], [18]. 

 

3.3.  Case study setup: autonomous vehicle model 

The framework is applied to an autonomous vehicle, modeled dynamically to account for tire-slip 

using Pacejka’s tire model [24]. The dynamic model, derived from Newton’s second law, is given by: 

 

{
 
 

 
 𝑣𝑥̇ =

− 𝐹𝑦𝑓.sin(𝛿)− 𝜇.𝑚.𝑔

𝑚
+ 𝑤. 𝑣𝑦 + 𝑎

  𝑣𝑦̇ =
 𝐹𝑦𝑓.cos(𝛿)+ 𝐹𝑦𝑟

𝑚
− 𝑤. 𝑣𝑥                 

𝑤̇ =
 𝐹𝑦𝑓.𝑙𝑓.cos(𝛿)−𝐹𝑦𝑟.𝑙𝑟

𝐼
                        

       (18) 

 

In these equations, longitudinal, lateral, and rotational velocities in the vehicle’s frame are represented, 

respectively, by the variables 𝑣𝑥, 𝑣𝑦, and 𝑤 in these formulas. The control inputs are δ and a, which stand for 

the front tire’s steering angle and longitudinal acceleration, respectively. 𝐼, 𝑚, 𝑙𝑓, and 𝑙𝑟 stand for the 

vehicle’s mass, inertia, and the separation between the front and rear wheel axis from the center of gravity, 

respectively. 𝐹𝑦𝑓 and 𝐹𝑦𝑟 indicate the lateral forces acting on the front and rear tires. Moreover, g stands for 

the gravitational acceleration constant, and µ for the friction coefficient. 

𝐹𝑦𝑓 and 𝐹𝑦𝑟 can be modeled using Pacejka’s tire model [31] as follows: 

 

{
𝐹𝑦𝑓 = 𝐶3. sin (𝐶2. 𝑡𝑎𝑛

−1(𝐶1. 𝛼𝑓)) ; 𝛼𝑓 =  𝛿 − 𝑡𝑎𝑛
−1(

𝑣𝑦

𝑣𝑥
+

𝑙𝑓.𝑤

𝑣𝑥
)

𝐹𝑦𝑟 = 𝐶3. sin(𝐶2. 𝑡𝑎𝑛
−1(𝐶1. 𝛼𝑟)) ;  𝛼𝑟 = −𝑡𝑎𝑛

−1(
𝑣𝑦

𝑣𝑥
+

𝑙𝑟.𝑤

𝑣𝑥
)

      (19) 

 

In this case, the constants 𝐶1, 𝐶2, and 𝐶3 must be ascertained empirically. The tire model shows that 𝐹𝑦𝑟 and 

𝐹𝑦𝑟 vary nonlinear with α, or the slip angle. On the other hand, the equations can be made simpler by 

assuming tiny α, the equations can be reduced to: 

 

{
𝐹𝑦𝑓 = 𝐶𝑓 . (𝛿 −

𝑣𝑦

𝑣𝑥
−

𝑙𝑓.𝑤

𝑣𝑥
)

𝐹𝑦𝑟 = 𝐶𝑟 . (−
𝑣𝑦

𝑣𝑥
+

𝑙𝑟.𝑤

𝑣𝑥
)   

    (20) 

 

where 𝐶𝑓 and 𝐶𝑟 represent the stiffness of the front and rear wheel tires, respectively. 

Table 1 displays the details of the racing vehicle and the route that were employed in this project [6]. 

The system is linearized at an operating point 𝑥𝑜𝑝 = [𝑣𝑥0, 𝑣𝑦0, 𝑤0] and 𝑢𝑜𝑝 = [𝛿0, 𝑎0], yielding matrices 𝐴 

and 𝐵 : 
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𝐴 =
𝜕𝑓

𝜕𝑥
|
𝑜𝑝
, 𝐵 =

𝜕𝑓

𝜕𝑢
|
𝑜𝑝

        (21) 

 

The linearized state-space representation is: 

 
Δ𝑥 = 𝐴 ⋅ Δ𝑥 + 𝐵 ⋅ Δ𝑢
Δ𝑦 = 𝐶 ⋅ Δ𝑥

     (22) 

 

where: Δ𝑥 = [Δ𝑣𝑥Δ𝑣𝑦Δ𝑤]
⊤

 and Δ𝑢 = [Δ𝛿 Δ𝑎]⊤. 

 

 

Table 1. The details of the racing vehicle 
Variable Value Unit 

If 0.902 m 

Ir 0.638 m 

m 196 Kg 

I 93 Kg.m2 

Cf 17974 N/rad 
Cr 24181 N/rad 

µ 0.5 -------- 

g 9.81 m/s2 

 

 

3.4.  Simulation setup 

The simulation environment for the autonomous vehicle model was realized in MATLAB 2016. The 

CVX solver was utilized in solving the linear matrix inequalities (LMI) for designing the linear quadratic 

regulator (LQR) controller to guarantee stability and optimum system performance. The vehicle dynamics 

were represented with nonlinear and linearized systems, where the linearized system was obtained about an 

operating point. 

a. Simulation duration: The simulation was carried out on a time horizon of 20 seconds, with a time step of 

0.01 seconds in order to strike a balance between computational speed and accuracy of the numerical 

solution. 

b. Control inputs: The vehicle system was perturbed with step inputs for steering angle (δ) and longitudinal 

acceleration (a) introduced at specific time intervals to simulate real-world control disturbances. 

c. Numerical integration: The trajectory of the nonlinear system state was integrated numerically by 

MATLAB's ode45 solver, which is suitable for integrating stiff differential equations. The solver 

calculated the trajectory of the vehicle states (𝑣𝑥 , 𝑣𝑦 , 𝑤) based on the control inputs and vehicle 

dynamics. 

d. Control design: The LQR controller was designed by minimizing a quadratic cost function, using LMI to 

enforce stability constraints. The control gain matrix K was computed to regulate the system’s response 

and stabilize the vehicle’s motion based on the linearized system. 

The performance of the controller was evaluated based on various metrics, which include the 

tracking error (the difference between the target and actual vehicle states), control input efforts (the steering 

and acceleration), and closed-loop performance (such as settling time, overshoot, and steady-stated error). 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Results 

Before the numerical results, it is worth mentioning that we applied the robust control framework to 

the case study of an autonomous vehicle that was described in (18). The LQR controller was formulated  

with LMI and subsequently solved with MATLAB using the semi-definite programming (SDP) solver for 

stability and performance within an optimal sense for the linearized cyber-physical systems (CPS). This 

section describes the numerical results derived from our simulations. The linearized model's validity was 

assessed by comparing its behavior to the nonlinear vehicle dynamics at the operating point 𝑥0 = [10,0,0],  
𝑢0 = [0,4.905]. The system matrices were: 

 

𝐴 = [
0 0 0
0 −21.5077 −10.4005
0 −0.8442 −26.308

] , 𝐵 = [
0 1

91.7041 0
174.3285 0

]            (23) 
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The linear and nonlinear model comparisons show close agreement among the state variables. In the 

case of the longitudinal velocity deviation Δ𝑣𝑥, the linear model tracks the nonlinear model very well for 

most of the simulation, except for a slight divergence later in time. This divergence is attributed to inherent 

nonlinearities. This suggests that the linear model gives an accurate enough approximation for most of the 

simulation. 

The lateral velocity deviation Δ𝑣𝑦  exhibits a significant transient response for both models; 

however, convergence is quickly achieved, demonstrating that the linear model represents the lateral 

dynamics well, at least for small deviations beyond the transient phase. Similarly, there is no practical 

difference in the yaw rate deviation Δ𝑤 for both models during the entire cimulation, indicating that the 

linear model provides a good representation of yaw rate dynamics with low divergence. 

Overall, the differences between the nonlinear and linear models are minor, with the most notable 

difference being the lateral velocity error, which reduces with time. Accounting for such small errors leads to 

the conclusion that, generally, the linear model is an excellent approximation of the nonlinear dynamics, at 

least around the operating point for small perturbations. 

The LQR controller minimizes the quadratic cost function with the following weighting matrices: 

 

𝑄 = [
200 0 0
0 200 0
0 0 200

]
 : 𝑅 = [

1 0
0 1

] (24) 

The LMI optimization problem yielded the positive definite Lyapunov matrix 𝑃 : 

 

𝑃 = [
4.3531 × 100 −8.4472 × 10−11 4.2932 × 10−11

−8.4472 × 10−11 6.1357 × 100 −1.2299 × 100

4.2932 × 10−11 −1.2299 × 100 5.0797 × 100
] (25) 

 

The resulting state-feedback gain matrix 𝐾 was: 

 

𝐾 = [−1.6687 × 10
−11 −5.7163 × 10−3 1.0018 × 10−2

3.0464 × 101 2.3603 × 10−9 2.7028 × 10−9
]  (26) 

 

Numerical simulations of the closed-loop system achieved the following performance metrics:  

− Settling time: 20 seconds,  

− Overshoot: 3.8187%, and  

− Steady-state error: 2.688 × 10−7. 

These results indicate robust stability and precise trajectory tracking for the autonomous vehicle. 

These results confirm the effectiveness of the proposed framework in achieving stable and optimal control 

for the CPS application. 

 

4.2.  Discussion 

The proposed framework includes Jacobian linearization, Lyapunov stability analysis, LQR control 

using LMI, demonstrating stability and optimality for CPS in an autonomous vehicle case study. The results 

(shown in Section 4) state a settling time of 20 seconds, an overshoot of 3.8187%, and a steady-state error of 

2.688 × 10−7, thus verifying the proposed framework can achieve stability over more complex (MIMO 

systems [6]. 

The implication of these results is the capacity of the framework for tackling the intrinsic 

nonlinearity and uncertainty underlying CPS dynamics, especially for autonomous cars. Application of 

Jacobian linearization around the operating point 𝑥0 = [10,0,0], 𝑢0 = [0,4.905], resulted in a linearized 

model that represented the nonlinear dynamics satisfactorily, as can be seen from the negligible deviation in 

state trajectories in Figure 1. This enabled the application of linear control techniques, e.g., LQR, for 

minimizing the quadratic cost function with weighting matrices in (24). 

The resulting Lyapunov matrix P and state-feedback gain K in (25) an (26), ensured asymptotic 

stability, as P is positive definite and satisfies the LMI condition 𝐴𝑇𝑃 + 𝑃𝐴 − 𝐵𝑌 − 𝑌𝑇𝐵𝑇 + 𝑄 < 0. The low 

steady-state error (2.688 × 10−7) and bounded control inputs as shown in Figure2 demonstrates the 

performance and resilience of the controller, even when compared to traditional feedback linearization schemes 

that deal poorly with uncertainties [4]. Relative to previous efforts by authors like Olalla et al. [1] who had 

higher overshoot ( ∼ 5% ) in the PWM converters, we present a better transient response for CPS applications. 

In particular, the approach follows from the Lyapunov function and provides a theoretical guarantee 

of stability, which is in compliance with Almutairi's notion of stability [5]. The LMI form which is solved 

using MATLAB's CVX solver, makes the nonconvex Algebraic Riccati Example problem can be reduced to 
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a convex optimization problem for improved computation time [7]. This is especially beneficial in real-time 

CPS applications with quick convergence (20 seconds settling time), as seen in the trajectory tracking of 

autonomous vehicles. 

However, the framework has limitations. The arbitrary selection of Qand R, while effective, may not 

be optimal for all CPS dynamics. As mentioned in Jiang et al. [24], further tuning of Q and R with respect to 

the system can further decrease overshoot and energy consumption. Additionally, Jacobian linearization is 

valid only for small perturbations about the operating point and so it is only useful in highly nonlinear 

situations in very small neighborhood about the operating point [13]. The autonomous vehicle model, based 

on Pacejka's tire model [31], assumes small slip angles, which cannot be assumed during aggressive 

maneuvers. 

The conclusions of this study generalize not only to autonomous vehicles but also to other CPS 

domains—such as industrial automation or smart infrastructure—where MIMO systems encounter the same 

stability issues [2]. Because of its general framework, we used LMIs and could quickly apply it to other 

applications just by modifying the system matrices and performance requirements. For example, applying 

adaptive control methods, as proposed by Lu and Yang [3], may improve resilience against cyber-attacks 

within networked CPS. 

 

 

 
 

Figure 1. Comparison of linearized and nonlinear vehicle dynamics: longitudinal velocity, lateral velocity, 

and yaw rate deviations 

 

 

 
 

Figure 2. State trajectories, control inputs, and tracking error for the LQR-controlled system 
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Future work will examine developing optimal Q and R matrices based on the specifics of a given 

system, potentially using iterative algorithms [24]. Similarly, adaptive or nonlinear control approaches could 

be considered for managing substantially high perturbations for enhancing robustness, particularly for 

vehicles with high-speed travel [25]. Finally, the actual physical CPS platforms should run the framework 

given that implementation will allow for testing the implementation practicality and address some of the real-

time constraints and hardware limitations that emerge in a CPS. In summary, this study unifies Jacobian 

linearization, Lyapunov methods, and LMI-based LQR control to provide a robust and efficient framework 

for CPS stability and performance. The results underscore its potential for autonomous vehicles and broader 

CPS applications, while highlighting areas for further refinement. 

 

 

5. CONCLUSION  

This study functioned as a rigorously developed control framework for CPS that successfully 

utilized Jacobian linearization, Lyapunov stability, and LQR control by using LMI. In the application of the 

autonomous vehicle case study, this control framework yielded a settling time of 20 seconds, an overshoot of 

3.8187%, and a steady-state error of 2.688 × 10−7 demonstrating good tracking of trajectory and robust 

stability. 

The approach was designed to overcome the challenges of nonlinear MIMO systems, and still 

converge optimally to the desired trajectory with small perturbation. The results exhibited provide the intent 

of developing the framework for autonomous vehicles and perhaps other CPS applications, such as industrial 

automation and smart infrastructure, although, there was some arbitrariness of Q and R matrices; thus, system 

specific tuning would need to take place to enhance optimization. 

Future work should explore methods to optimize the matrices to improve performance for different 

CPS dynamics, as well as methods for adaptive control which might provide larger resilience to uncertainty 

through real-time adapting. This framework establishes a safeguarded basis for enhancement in CPS control, 

and offers new avenues for implementation and applied work. 
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