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This study focuses on developing an intelligent radiation monitoring system
capable of operating on a low-power single-board computer (Raspberry Pi)
for deployment in remote monitoring stations within nuclear facility
environments. The proposed system utilizes a radionuclide identification
method based on tiny machine learning (TinyML) with a convolutional
neural network (CNN) architecture. The radionuclide dataset was acquired
through measurements of standard radiation sources, with variations in
distance, exposure time, and combinations of multiple sources-including
Cs-137, Co-60, Cs-134, and Eu-152. The radiation intensity data from
detector measurements were structured into a response matrix and
subsequently converted into a grayscale image dataset for model training.
Keras is used to design and train machine learning models, while Tensor
Flow Lite is used to model size reduction. Experimental results demonstrate
that the developed model achieves an accuracy of 99.338% for Keras model

trained on computer and 84.568% after deployment on the Raspberry Pi.
Furthermore, this study successfully designed and embedded the TinyML
model into an environment radiation monitoring system at the PUSPIPTEK
nuclear installation.
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1. INTRODUCTION

The utilization and development of artificial intelligence (Al), for instance machine learning (ML)
and deep learning (DL), have advanced significantly in recent years, revolutionizing data analysis and
computational tasks by enabling applications to operate intelligently [1]. Real-time monitoring of
environmental radiation is an important requirement in nuclear safety and risk mitigation systems [2].
However, a frequent challenge is the efficiency of data transmission from the field to the control center,
especially when the system monitors the radiation spectrum continuously [3]. Tiny machine learning
(TinyML) provides an innovative approach by deploying ML models on low-power, resource-constrained
edge devices, enabling real-time on-device inference [4], [5]. This system supports real-time analytics, which
enhances decision-making speed and improves the overall responsiveness [6]. Such capabilities are
particularly critical for time-sensitive applications, including autonomous vehicles [7], healthcare monitoring
[8], [9], and early warning systems [10], where processing delays could lead to severe consequences.
Therefore, in the context of environmental radiation monitoring, the implementation of TinyML can serve as
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both an early detection system and a decision-support tool, effectively mitigating the potential impacts of
radiation incidents [11].

Numerous prior studies have utilized simulated data generated through Monte Carlo [12]-[14] and
Geant4 applications [15]-[17]. As demonstrated in the study by Altayeb et al. the majority of existing
research leveraging gamma-ray spectrum for radionuclide identification and utilizing silicon photomultiplier
(SiPM) [5] for the sensor or scintillation detector [2]. Additionally, various machine learning (ML)
techniques [18], [19], including artificial neural network (ANN) [20]-[22] and the convolutional neural
network (CNN) [23]-[25], have been explored for developing automated models. However, limited research
has focused on implementing the trained models within TinyML systems for radionuclide classification.

The use of TinyML aims to overcome problems related to high data rate transmission and limited
resources at monitoring stations. With local data processing capabilities, TinyML can reduce the need for
data transmission, and efficiently, quickly, and portably identify radionuclides [26]. In this study, an
intelligent system-based radiation monitoring station was developed to identify radionuclides directly in the
field. With this identification capability, the system can selectively transmit data only when spectrum
irregularities or abnormalities are detected, thereby reducing transmission load and improving data
communication efficiency. To support intelligence on edge devices, a TinyML approach was implemented to
enable localized spectrum analysis with minimal resource consumption. The first contribution of this paper is
building a dataset based on real experiment including the background environment in nuclear installation
which comes from the gamma spectrum energy converted to a grayscale image. The second is designing a
model with high accuracy and embedding it in a low power consumption device to apply TinyML to
recognize the types of radionuclides released in the environment. A performance evaluation was tested to
compare the efficiency of the system before and after conversion to TinyML, including aspects of model size
reduction, inference speed, and impact on identification quality. Discussions also focused on the causes of
data load reduction and its implications for system reliability. As a continuation, long-term integration of
TinyML into the monitoring station will be carried out to test the stability and adaptivity of the system in
more complex field conditions.

2. METHOD

The methodology implemented in this study commenced with the acquisition of gamma-ray spectral
data from a radiation detection system, shown in Figure 1. These spectral datasets were subsequently
transformed into grayscale image representations, serving as input features for training a CNN. This approach
lies in the CNN's proven capability to extract spatial patterns and features from two-dimensional image
inputs, making it suitable for recognizing spectral signatures associated with different radionuclides. The
training process was initially conducted on a personal computer (PC) to optimize the model parameters and
evaluate its learning performance. Once a satisfactory level of classification accuracy and model
generalization was achieved, the trained CNN model was converted and deployed onto a Raspberry Pi, a
low-power edge computing device which represent the hardware configuration of an intelligent radiation
monitoring station. The embedded model was then subjected to a series of field trials designed to simulate
realistic environmental conditions. These field evaluations aimed to verify the inference accuracy and
robustness of the CNN when operating in situ, as well as to assess the feasibility of real-time spectral
classification on resource-constrained hardware. Validation is crucial in ensuring the reliability and
responsiveness of intelligent monitoring systems in practical applications.
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Figure 1. Workflow diagram of PC and Raspberry Pi process
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2.1. Grayscale image conversion and dataset construction

The experiments were conducted by varying several parameters, including the type of radionuclide,
measurement duration, and the distance between the source and the detector. These variations were intended
to generate diverse background data that closely reflect actual environmental conditions. Radiation signals
were acquired using a scintillation detector, producing intensity data that were plotted into a response matrix.
Based on the characteristic energy peaks of each radionuclide, labelling was applied to the resulting spectral
data. Subsequently, the labelled spectra were converted and mapped into grayscale images (feature transfer),
then arranged into a dataset that suitable for application supervised learning algorithms in computer. Figure 2
explains the conversion of gamma spectrum to grayscale image using the z curve method [11].
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Figure 2. Grayscale image conversion [13]

2.2. Design and deploy the TinyML model

Figure 3 shows the model architecture starting with an input layer that receives a 32x32x1 grayscale
image. First, it applies a Conv2D layer with 32 filters and rectified linear unit (ReLU) activation to extract
basic features like edges, followed by a MaxPooling2D layer to down sample the feature maps. Next, a
Conv2D layer with 128 filters and ReLU activation captures more complex patterns, again followed by a
MaxPooling2D layer to reduce the spatial size. The third step involves a flatten layer to convert the feature
map that received from the max-pooling layer into a format that the dense layers can understand. Finally, the
model ends with a dense layer with a few neurons equal to the number of classes, using SoftMax activation to
output class probabilities, in this case there are four classes, Cs-137, Co-60, Cs-134, and Eu-152.
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Figure 3. Model architecture to identify radionuclide
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After the model is designed, tested and validated, it is then embedded in the hardware system with
the help of TensorFlow Lite (TFLite). TFLite is used to convert ML models that initially have large memory
and are heavy to run, into smaller, faster, and more efficient versions so that they can be run on devices that
have limited resources. The model is converted into TFLite format for optimization, so the model size can be
smaller to be deployed to Raspberry Pi. After the model is embedded in the hardware, testing is done again
using radionuclides as shown in Figure 4. Implementation of model testing using a Nal(Tl) detector and a
standard radiation source. Data collection for 30 seconds with a distance of 50 cm from the source to the
detector. Each test was carried out 20 times. The position of the detector and standard source was placed
parallel as when the dataset was taken and was also kept away from walls or objects that could cause
backscattering that interfered with the identification results.

Radionuclide
Detector Source

Figure 4. Testing of TinyML models embedded in system hardware using radionuclide standard

3. RESULTS AND DISCUSSION
3.1. Feature extraction and transfer to image

The transformation of radionuclide spectra into an image dataset is illustrated in Figure 5. This
figure presents examples of the transformation results for Cs-137, Co-60, Cs-134, and Eu-152, obtained
with a source-to-detector distance of 20 cm and a measurement time of 60 seconds. Figure 5(a) shows the
transformation of the gamma spectrum of Co-60 into a grayscale image, displaying two distinct energy
peaks. Figure 5(b) depicts the transformation for Cs-137, which exhibits a single peak. Figure 5(c)
corresponds to Cs-134, and Figure 5(d) to Eu-152, both of which contain multiple peaks. The gamma
spectrum images represent the original spectra of each radionuclide, including their characteristic energy
peaks. These original spectra were then converted into normalized one-dimensional spectra after
background correction, before being transformed into grayscale images. Using grayscale images (1-channel)
instead of RGB (3-channel) for training classification models reduces computational complexity and
memory usage, making them more efficient for deployment. Since grayscale images have only one intensity
channel, they require less storage, faster processing, and smaller model sizes, which is beneficial for
TinyML applications.

These grayscale images are both the dataset and the input for the CNN model identification process.
The color gradation for each pixel of the image carries information about the value of radiation intensity at
certain channel positions that represent the characteristics of certain types of radionuclides. These grayscale
images were trained using Keras in computer, tested and validated with a data ratio of 70:20:10. The
radionuclide identification model obtained from the initial training could not be directly embedded into a
TinyML environment. In TinyML, Keras is used to design and train machine learning models on powerful
systems, while TFLite optimizes these models for deployment on resource-constrained edge devices.
Converting a Keras model to TFLite reduces memory usage and speeds up inference, making it feasible for
limited random-access memory (RAM). Despite the model may slightly reduce accuracy, it is necessary to fit
models into tiny devices, ensuring efficient, low-power execution without requiring cloud dependency. Thus,
TFLite support TinyML to be applicable on environment monitoring device in remote area.

Tiny machine learning with convolutional neural network for intelligent ... (Istofa)
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Figure 5. Feature transfer from spectrum vector to image (a) Co-60, (b) Cs-137, (c) Cs-134, and (d) Eu-152

3.2. System prediction accuracy

In the context of TinyML, machine learning models which deployed on Raspberry must combine
the function of Keras and TensorFlow Lite (TFLite) to provide an efficient framework. Keras excels in model
construction and training, while TFLite provides the necessary optimizations for real-time, on-device
inference. Keras is widely used for model design and training, while TFLite is a lightweight inference engine
which enables model execution on edge devices. It allows models trained with Keras to be converted into an
efficient TFLite format, significantly reducing file size and computational requirements through optimizations
such as quantization and operator fusion.

At the conversion from Keras to TFLite format, default setting is implemented. This means that
optimization and quantization process is not utilized to obtain efficient and smaller file size model. However,
even though the conversion process does not conduct optimization and quantization, the TFLite model which
resulted is still smaller than Keras unto its half-size. Half-size result is achieved from conversion process
because at this process, data pruning and implicit compression are utilized. When converted into TFLite, the
unemployed parts at inference are discarded, including node Graf training. Through implicit compression, the
flat buffer structure stores information into very compact form without Python framework overhead. Other
parameters such as metadata, checkpoint, graph ops, signature and training information in Keras model, are
also abandoned during the conversion process. The remaining information is then become structured and
serialized. Therefore, the half-size compression model is not processed by quantization from float32 to others
format such as int8, int16, but rather through data pruning and compression processes.

The confusion matrix results explained in Figure 6 shows that the model performs very well, since
most predictions fall along the diagonal (correct classifications). From the confusion matrix results, we can
calculate the accuracy, precision, recall and f1 score for each class, as presented in Table 1. The results show
in a very good value, especially in the Cs-134 class which gets the highest accuracy result of 99.890%, seen
in Figure 6(a). Overall accuracy for the four classes was 99.338%. For information, the size of the storage
memory of the model that has been trained using Keras is 8§ MB, while the size of the memory after being
transformed in TFLite is 2MB, reduced by approximately one quarter time.

Figure 6(b) presents the confusion matrix results of the TFLite model with a lower memory size
tested on a Raspberry device. The results indicate a lower accuracy for each class compared to previous tests.
The highest accuracy is achieved for the Co-60 class at 94.665%, while the Cs-134 class records the lowest
accuracy at 88.029%, as shown in Table 1. The overall model accuracy is 84.568%. This decrease in
performance may be attributed, in part, to the Raspberry's relatively limited processing capabilities compared

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 404-413



Int J Elec & Comp Eng ISSN: 2088-8708 a 409

to a standard computer. Nevertheless, for environmental monitoring station applications, this level of accuracy
remains acceptable, although further improvements are planned to enhance the model’s performance.

3.3. Evaluation of the TinyML model embedded in hardware

The most accurate architectural model was integrated into the Raspberry Pi hardware system and
evaluated through direct testing with radionuclides, as illustrated in Figure 4. The experimental procedure
involved partitioning the data according to radionuclide type. Table 2 displays the test results, which reveal
variations in accuracy across different classes. The accuracy results of the CNN model test in TinyML using
direct measurement data from the detector are lower compared to the training dataset. This difference is
caused by several factors related to data characteristics, the real environment, and the limitations of the
TinyML platform. Direct measurement data usually has higher variability due to noise from the sensor,
environmental fluctuations, or hardware inconsistencies. If the training dataset does not include these
variations, the model has difficulty recognizing patterns in real data.

In addition, training datasets are often taken from controlled conditions, and therefore less
representative of the actual conditions under which direct measurements are made. For example, variations in
radionuclide activity, environmental interference, or different detector characteristics are not always
represented in the training dataset. If the dataset lacks these variations, the CNN model tends to simply
memorize patterns from the training data without being able to generalize to new data. This can also be
exacerbated if the model suffers from overfitting, where the model focuses too much on specific patterns in
the training dataset and is unable to handle variations in the direct measurement data.
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Figure 6. Confusion matrix (a) using “Keras” model and (b) using “TFLite” model

Table 1. Model performance based on Keras training vs TFLite training

Matrix evaluation Model trained using Keras Model trained using TFLite
Co-60 Cs-137 Cs-134  Eu-152 Co-60 Cs-137  Cs-134  Eu-152
Accuracy 99.559  99.405  99.890  99.824 94.665 92.615 88.029  93.827
Precision 99.467  98.595  99.648  99.647 100.000  77.879  71.776  100.000
Recall 98.765 99.030 99912  99.647 78.660 98.413  85.891  75.309
F1 score 99.115 98.812  99.780  99.647 88.055 86.950 78202  85.915
Macro-precision 99.339 87.414
Macro-recall 99.338 84.568
Macro-F1 99.337 84.781
Overall Accuracy 99.338 84.568

In addition, training datasets are often taken from controlled conditions, and therefore less
representative of the actual conditions under which direct measurements are made. For example, variations in
radionuclide activity, environmental interference, or different detector characteristics are not always
represented in the training dataset. If the dataset lacks these variations, the CNN model tends to simply
memorize patterns from the training data without being able to generalize to new data. This can also be
exacerbated if the model suffers from overfitting, where the model focuses too much on specific patterns in
the training dataset and is unable to handle variations in the direct measurement data.

Tiny machine learning with convolutional neural network for intelligent ... (Istofa)



410 a ISSN: 2088-8708

Table 2. Results of testing model-4 on Raspberry with detector measurement data
Dataset  Number of Tests  True Prediction  False Prediction  Accuracy (%)

Co-60 20 14 6 70
Cs-137 20 17 3 85
Cs-134 20 16 4 80
Eu-152 20 17 3 85

According to Table 2, it can be analyzed that the high accuracy of Cs-134 is most likely due to its
spectral characteristics that resemble the background, making it easier for the model to recognize the pattern
compared to other more complex radionuclides. In addition, bias in the training dataset, such as the
dominance of data that resembles the background or simple patterns, can improve the prediction of Cs-134.
When Cs-134 appears in combination with other radionuclides, its stable contribution helps the model
recognize the overall pattern better. However, differences in accuracy between radionuclides can also be
influenced by noise, data imbalance, or lack of variation in the training dataset, which require improvements
to improve model generalization.

Environmental factors also play a significant role in reducing accuracy. Real-world direct
measurements are often affected by conditions such as temperature, humidity, or electromagnetic
interference. These conditions are not always captured in the training dataset, so the model cannot adapt well.
The signal variations produced by the radiation detector in direct measurements can also differ significantly
from the training data, making the model's predictions less accurate.

The tested TinyML system, implemented on a Raspberry Pi, has been integrated with additional
microcontroller components within an environmental monitoring station, as illustrated in Figure 7. This
station encompasses not only a model for monitoring radionuclide releases but also sensors for collecting
meteorological and humidity data. To support energy autonomy in remote or off-grid locations, the system is
equipped with solar panels. In the future, this station is intended to be deployed in isolated areas to monitor
radionuclide dispersion carried by wind from various sources.

Figure 7. Raspberry pi hardware integrated into environmental monitoring station

4. CONCLUSION

This study demonstrates the successful implementation of a TinyML model for real-time
classification of radionuclides in an embedded environmental monitoring system. Keras and TensorFlow Lite
serve complementary roles in the development and deployment of TinyML models on devices like the
Raspberry Pi. The optimized model based on result achieved high accuracy of 99.338% trained using Keras,
and 84.568% trained using TFLite. For the real measurement using the hardware, the highest accuracy
obtained 85% for Eu-152 class. This integrated system not only monitors radioactive releases but also
tracks weather and humidity data, enhancing environmental surveillance capabilities. With solar-powered
energy autonomy, the solution is suitable for remote deployments, enabling early detection of radionuclide
dispersion via wind currents. Future work will focus on scaling the system for wider geographic coverage,
improving model robustness with additional data, and integrating wireless sensor networks for real-time data
transmission.
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