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 Accurate detection of islanding remains to be a challenge for grid connected 

microgrid system. An effective method to identify the islanding of microgrid 

has been presented which uses only the voltage at point of common coupling 

(PCC). Accurate islanding detection is necessary to impose appropriate 

control for the microgrid operation. Following the islanding of microgrid the 

intrinsic mode functions (IMF’s) of voltage at PCC obtained by empirical 

mode decomposition (EMD) will be analyzed by support vector machine 

(SVM) model which identifies the islanding of the microgrid. SVM model 

learns through the training data set. As many as 150 simulated cases have 

been used to train the SVM. A practical microgrid system has been 

simulated for various operating conditions and the data generation has been 

carried out by series of simulations for various islanding and non-islanding 

events using MATLAB Simulink. The proposed method gives optimistic 

results with high accuracy, zero non detection zone (NDZ) and detection 

time as low as 63.11 ms. Accurate islanding detection leads to smooth 

transition of microgrid control essential for operators. 
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1. INTRODUCTION 

The primary objective of the energy sector is sustainability. Limited availability of natural fuel, 

increase in demand, potential of renewable energy sources, advancement in the technology to integrate 

generators at load centers are the reasons microgrids and distributed generators are realized and are in use. 

However, there are issues to be addressed w.r.t grid connected microgrid operation. The islanding occurs 

when the main power grid fails or undertaken for maintenance, but distributed energy resources (DERs) like 

solar panels or wind turbines continue supplying electricity [1]–[3]. This may result in safety hazards, 

equipment damage, and disrupt microgrid operations. To prevent this, it is crucial to detect islanding events 

quickly and adopting necessary controls and the detection should happen within 2 seconds according to the 

standards namely IEC 62116, IEEE 1547-2018 and UL 1741. Rapid detection ensures the reliability, safety 

and smooth operation of the system [4].  

Islanding detection methods are categorized into remote and local methods. Remote methods, offer 

reliability and quick response but they are costly since communication infrastructure is required [5]. The 

local schemes are classified into passive, active, and hybrid methods. point of common coupling (PCC) 

variables like frequency, harmonics, impedance, and power. are continuously monitored and it is expected 

that these variables shifts to a new level based on the active/reactive power fed into/received from the utility 
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during islanding [6]. Researchers have comprehensively studied and evaluated these detection methods to 

enhance the reliability.  

The renewable-based subsystems can be utilized optimally in island mode to meet local demand 

during emergencies adopting grid-forming capabilities [7]. The increase of distributed generation (DG) is 

found advantageous reducing transmission and distribution losses and investments for such infrastructures. 

Grid-connected photovoltaic (PV) generators are preferred due to adequate availability of solar energy, silent 

operation, and low maintenance. However, such integration is challenging w.r.t islanding issues. Sensitive 

equipment in the islanded area may be damaged by overcurrent or overvoltage during unsynchronized 

reclosing. While passive islanding detection methods are simple and cost-effective, they may fail to detect 

islanding in scenarios with minimum power mismatch within microgrid called as non-detection zone (NDZ). 

In active methods an intentional disturbance will be injected in controller of DG such a way that these 

disturbances do not affect the PCC parameter under any of the non-islanding events and importantly they 

increase the deviation only during islanding, based on which the islanding detection results. The injection of 

disturbances causes power quality degradation. Hybrid method is a combination of both passive and active 

methods, the threshold based parameter is continuously observed if it exceeds a minimum threshold but do 

not reach to the maximum only during such suspicious occasions of islanding disturbance signal is 

introduced at PCC and its impact is observed for detection, which reduces the possibilities of power quality 

degradation [8].  

Passive methods, based on voltage information at PCC are simple and faster but results in to larger 

NDZ. Signal decomposition techniques, combined with intelligent classifiers, offer a solution to overcome 

these limitations. These approaches involve extracting suitable features from the signal to classify the event. 

Pattern recognition techniques (PRTs) like decision tree (DT), random forest (RF), SVM help classify 

islanding and non-islanding events accurately, enhancing the reliability and effectiveness of islanding 

detection methods. 

 

 

2. LITERATURE REVIEW 

Many have tried different methods for islanding detection of microgrid. The studies have been 

focused on passive, active and hybrid methods of detection, however signal processing and artificial 

intelligence techniques are investigated recently. The rate of change of power factor angle has been 

considered as threshold parameter to distinguish the islanding with non-islanding events. Importantly with 

changing load condition the threshold parameter has been made adaptive which results in improved accuracy. 

It has been observed that NDZ is reduced compare to methods based on df/dq [1]. Study [2] introduces a 

technique based on the rate of change of power (ROCOP) using terminal voltage (TV) of the photovoltaic  

inverter and detection accuracy has been found better than few of the other passive methods, but fails to 

detect islanding in power matching condition. Detection using rate of change of power angle deviation 

(ROCOPAD) has been evaluated on MATLAB to demonstrate its effectiveness in terms of detection 

accuracy and detection time for DG’s [3]. Phase angle of positive sequence voltage at PCC has been found to 

dominate island detection compare to other conventionally used parameters like frequency, voltage, active 

power, reactive power, power factor and total harmonic distortion (THD) [4]. These passive methods are 

simple however results in larger NDZ.   

The perturbation in the inverter’s output current causes voltage variations, which has been observed 

as an impedance formulated as dv/di. Islanding is detected when impedance surpasses threshold impedance 

value. The method results in small NDZ with 0.77-0.95 seconds detection time in single-DG systems. 

However, the detection accuracy drops in multi-inverter systems [5]. The Sandia voltage shift method 

introduces a positive feedback mechanism to perturb the voltage amplitude at the PCC by injecting reactive 

power. Under grid connected events minimal impact has been observed on the PCC voltage, but under 

islanding conditions it is significant for detection [6]. Most of the active methods results in reduced NDZ 

compare to passive method, but due to injection of disturbance signal causes power quality issues.    

Hybrid islanding detection method for grid-connected photovoltaic systems has been discussed in 

reference [7]. In the first step it detects a potential islanding event when the absolute deviation of the PCC 

voltage exceeds a threshold and in second step after a defined delay a transient disturbance is injected into the 

inverter’s d-axis reference current which reduces the active power output causing the PCC voltage to drop only 

during islanding. Study [8] proposes a method for inverter-based DGs. Bidirectional reactive power variation is 

triggered only when voltage unbalance (VU)/THD suspects islanding, this method has negligible effects on 

power factor. A hybrid technique with fuzzy system has been proposed aiming zero NDZ [9]. Reactive power 

injection as a disturbance will be done for island detection, the THD due to injection remains below IEEE 

standards under normal condition. In hybrid methods the introduction of perturbation only during suspicious 

conditions reduces power quality impacts compare to active methods, keeping the advantage of reduced NDZ.  
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Artificial neurological network (ANN) method of DT characteristics has been used for islanding 

detection, an accuracy of 99.1% has been observed, but results in more computation time [10]. In the paper 

[11] it is proposed a method for island detection based on genetic programing named as advanced islanding 

detection multi-gene genetic programming, it shows the performance better than ANN based methods, 

however the data set used is not uniform and dominance of non-islanding data is observed. The reference 

[12] proposes a method based on deep convolutional neural networks where in the signals are converted to 

2D images using constant Q transform followed by hierarchical features extraction from the images for PV 

integrated microgrids. 

The intrinsic mode functions (IMF’s) of the voltage obtained by empirical mode decomposition 

(EMD) have been used for detection and the method is tested for microgrids with inverter and direct fed 

types of distributed generations [13]. Sliding window discrete Fourier transform and EMD techniques are 

used to decompose current and voltage signal into IMFs, which have been used for event identification. High 

classification accuracy of 98.4%, detection time of 66.94 ms and reduced NDZ has been claimed in the paper 

[14]. The voltage signal at PCC has been decomposed by variational mode decomposition (VMD) to obtain 

the IMF’s. It has been shown that the variation in energy of IMF2 is very low for non-islanding compare to 

islanding events, and therefore used as a threshold parameter. The NDZ has resulted in less than 1%, but only 

active power matching conditions have been considered [15]. An island detection method for photovoltaic 

systems where VMD processes voltage and power signal has been proposed, ensemble bagged-trees method 

detects islanding events effectively during power mismatch events with detection time of 4.8 milliseconds 

and results in a NDZ of less than 4% [16].  

The study carried out in [17] proposes an islanding detection approach based on discrete Fourier 

transform and DT which has been tested on a microgrid equipped with synchronous generator. The detection 

results within three cycles of the signal. Islanding detection in multiple DG microgrid using discrete wavelet 

transform for extracting unbalanced voltage characteristics has been discussed. RF approach is used for 

classification, importantly diverse operating conditions are considered for performance testing and found 

effective [18]. A method based on RF approach with effective utilization of histogram of oriented gradients 

(HOG) features for pattern recognition is proposed in [19] and an accuracy of 98.75% has been claimed with 

192 ms of detection time. Fast discrete S-transform (FDST) and bidirectional extreme learning machine 

(BELM) has been used on negative sequence voltage and current signals at the DG end for detection. The 

features such as energy, standard deviation of the signal has been selected for classification. The accuracy has 

been found to be 91.5% with noise of 20 dB, however training data set has been found biased [20]. The 

features of voltage, current and frequency at PCC have been extracted using wavelet transform for analysis 

and have been used with machine learning (ML), an accuracy of 97.9% on trained data has been observed 

with training time of 16.9 seconds [21]. The study focuses on detecting unintentional islanding using 

machine learning for a grid-connected PV system. The use of phasor measurement units (PMU) for recording 

big data has been useful for islanding detection [22]. The discussion of pre-processing steps in artificial 

neural networks for classification related to islanding such as loading data from a CSV file, handling missing 

values, feature scaling, and encoding categorical features, description of the modeling process using the RF, 

including dataset splitting, and DT construction. has been done [23]. RF approach for islanding detection in 

DC microgrid has been proposed in [24]. Extracting indexes, like current, voltage, output power, and their 

first-order backward difference to effectively distinguish islanding from non-islanding conditions by 

processing large datasets.  

Standardized test procedures and guidelines for evaluating island detection methods would enhance 

the comparability and reliability of future studies in this area [25]. The standard test procedure for island 

detection is different for various countries, however in most of the approaches to have generosity R-L-C 

parallel combination has been considered as load since island detection is challenging under such conditions. 

The potential integration of ML, artificial intelligence (AI) technologies has also been underlined [26]. Study 

[27] summarizes islanding detection standards in various countries.  

Researchers have investigated passive, active and hybrid methods of detection and finds the scope 

for improvement. The literature review carried out underlines the possibilities of enhancement using advance 

signal processing techniques and various AI methods. The paper is organized in the following manner 

Section 3 briefs motivation and problem definition, section 4 details the proposed method with sub sections 

covering the data generation, signal decomposition, feature extraction, and event detection by SVM. Section 

5 deals with for results in terms of accuracy, prediction time and NDZ. Section 6 concludes the paper.  

 

 

3. MOTIVATION AND PROBLEM DEFINATION 

Most of the grid connected microgrid/DG systems are underutilized due to the need of imposing P-Q 

control in grid connected mode and f-V control in islanded mode. The primary requirement for assigning 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Detection of islanding using empirical mode decomposition and … (Balwant Patil) 

13 

these controls is accurate detection of islanding i.e. the resulted event is a non-islanding event like internal 

faults or islanding i.e. the separation of the microgrid from the main grid. The operating conditions of 

microgrid for which the existing methods fail to detect the islanding called as NDZ or false identification of 

the event happens. If islanding event is wrongly identified as non-islanding and if P-Q control is assigned 

then issues like voltage drift, unstable frequency, power imbalance, load sharing issues and system collapse 

as well may result, on the other hand if f-V control is applied during grid connected mode it may result in to 

destabilization of PCC, inappropriate P-Q injection, overloading, under loading or even system failure due to 

frequency conflict. Ultimately to ensure safe, stable and economic operation of grid connected microgrid 

precise detection of the islanding and non-islanding events and associated controls are necessary. The study 

undertaken addresses accurate detection of the islanding and non-islanding events which is the primary and 

crucial requirement of the microgrid control operation. 

 

 

4. PROPOSED METHOD 

Simplicity of passive methods, the advanced signal processing tools, AI-ML techniques, IC 

technology with better computation possibilities encourages to carry out the research studies for the 

enhancement of passive methods. The 3-phase voltage signal extracted from the PCC experiences variations 

during islanding, faults, and load switching. Signal decomposition further details even the minute variations 

and ML being the best tool to differentiate these variations, it has been used to classify the events.  

The high inertia offered by synchronous generator of the microgrid causes minimal variations in the 

threshold parameters referred for islanding detection resulting in to NDZ. Therefore, it is important to 

consider a microgrid consists of synchronous generator along with PV generator for the study, so that the 

proficiency of the detection method can be underlined. The system under study consists of 10 MVA, 33 kV 

grid, synchronous generator of 0.750 MW, PV generator of 0.250 MW and loads, the single line diagram is 

shown in Figure 1 and specifications in Table 1. The system is simulated on MATLAB R2024a platform for 

diverse dataset generation.  

 

 

 
 

Figure 1. System under study 

 

 

Table 1. Specifications for the System under study 
Equipment Specifications 

Grid 33 kV, 50 Hz, 10 MVA 
Transformer T1: 3 MVA, T2: 3 MVA, T3: 2 MVA, T4: 3 MVA, 

T1:33/11 kv, T2–T4:11kV/0.44 kV 

Line impedance Positive sequence impedance = 0.0127 + j0.2933 Ω/km, zero sequence impedance= 0.38+ j1.29 Ω/km 
 

Variable Load 

L1: 0.2 MW+j0.115 MVAR, L2: 0.5 MW + j0.215 MVAR, 

L3:0.2 MW+j0.115 MVAR, L4: 0.100 MW+j0.04843 MVAR 
Synchronous Generator DG1: 0.75 MW (at distance of 1 km from PCC) 

P-V Plant DG3: 0.25 MW (at distance of 1 km from PCC) 

 

 

Threshold based passive methods though simple they are found not to be consistent for precise 

detection [1], [2]. Frequency variations of the PCC voltage are found similar for islanding and non-islanding 
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events and are not always sufficient enough to distinguish them. Also, it is expected that it remains crossing 

the threshold at least for 40 ms for detection. Figure 2 shows frequency variations during islanding and  

Figure 3 shows frequency variations for L-G fault at the microgrid load.  

 

 

 

 

 
   

Figure 2. Change in frequency of PCC voltage  

during islanding 

 Figure 3. Change in frequency of PCC voltage  

during fault (non-islanding) 

 

 

4.1. Data generation 

The phase voltages namely VA, VB, and VC at PCC is the primary data set generated and recorded as 

time series data for various events under diverse operating conditions. The system under study has been 

simulated for islanding at different active and reactive power situations within microgrid and for non-

islanding events under different fault conditions at various locations and fault impedance. The 3-phase 

voltages at PCC as shown in Figure 4 have been recorded by conducting simulations with active power 

variations ranging from 100% to 70% matching condition, by opening the main circuit breaker at 50 th 

millisecond to realize islanding events. The voltage signal data extracted for the timeframe such a way that it 

accommodates the transition i.e. switching from grid connected to islanded mode. The non-islanding events 

namely Line-to-line (LL), Line-to-ground (LG), and Line-to-line-to-line-to-ground (LLLG) faults in 

microgrid are introduced at 50th millisecond keeping circuit breaker closed. Fault resistance was varied across 

a wide range as mention in Table 2. The data set has been generated for in total 500 events, comprises of 250 

islanding and 250 non-islanding events. 

 

 

 
 

Figure 4. Three phase voltages at PCC 
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Table 2. Non-islanding events 
Event Dynamics/Specifications Category Number of cases 

L-G Fault (Rf →1 to 5Ω) Non-Islanding 92 
LLL-G Fault (Rf →1 to 5Ω) Non-Islanding 66 

LL Fault (Rf →1 to 5Ω) Non-Islanding 92 

PCC CB Open Pg, Qg, PL, QL (70% to 100% Matching) Islanding 250 

 

 

The choice of a 100ms time frame with event introduction at 50th ms has been significant for several 

reasons, particularly in the context of analyzing power system dynamics during events like islanding or faults. 

a. Capturing pre-event conditions (0–50 ms): The first 50ms of the simulation represents the system 

operating under normal conditions. This allows the system to learn and identify steady state behavior. 

This enables algorithms to learn normal behavior, improving detection accuracy. 

b. Capturing event transition (50–100 ms): This part captures the system's dynamic response to the events 

i.e. the variations in instantaneous values of 3-phase voltage. The 3-phase voltage is a key parameter that 

reflects the system's operational state. During islanding, voltage magnitude variations occur due to the 

loss of grid support, while internal faults cause voltage drops and phase imbalances. Both islanding and 

faults exhibit transient behaviors.  

The simulation has been carried out on a system with Intel(R) Core (TM) i5-3230M processor  

@ 2.60 GHz, 64-bit operating system and 8.00 GB RAM.  

a. Non-stationary behavior of voltage signal: During islanding, the local energy resources cause voltage 

signal to behave non-stationary due to load-generation imbalance, with sudden deviations in voltage, 

frequency and power. Also, the internal fault event causes non-stationary behavior with sharp spikes and 

high-frequency components. Basically, a non-stationary signal is one whose statistical properties like 

mean, variance, and frequency. changes over time, therefore the study has been carried out considering 

such features. Tools like wavelet transforms, short-time Fourier transforms, Hilbert-Huang transforms are 

better platforms to analyze non-stationary signals and extract meaningful features for classification.  

b. Sampling frequency: To capture the most possible details of a continuous signal, the sampling frequency 

must be high enough. In the work carried out 5000 samples are captured for 100 ms length of the signal 

which represents 5 cycles of 50 Hz signal. Time per sample given (Ts) and Sampling frequency (fs) are 

mentioned in (1) and (2) respectively.  
 

𝑇𝑠 =
𝑇𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

100𝑚𝑠

5000
= 20 𝜇𝑠/𝑠𝑎𝑚𝑝𝑙𝑒   (1) 

 

𝑓𝑠 =
1

𝑇𝑠
=

1

20𝜇𝑠
= 50 𝑘𝐻𝑧   (2) 

 

4.2.  Signal decomposition 

The voltage signal at PCC during islanding and faults behaves non-linear and non-stationary. The 

decomposition of such a signal using Fourier transform (FT) assumes the signal stationary, Wavelet 

transforms dose fairly good job but has fixed scale. EMD decompose the signal into a set of IMFs 

corresponding to different frequency bands, allowing the separation of high-frequency from low-frequency 

trends containing information suitable for event identification. EMD can uncover hidden periodic and 

transient behaviors which might not be readable from the original signal. Dynamic frequency tracking is the 

feature of EMD which provides a time-frequency representation of the signal, i.e. changing frequency 

content of non-stationary signals. EMD helps identify irregular voltage fluctuations or transients in electrical 

signals. The EMD flow chart is shown in Figure 5 and the algorithm has been described below further.  

IMF1 represents the highest frequency content in the signal which indicates sudden changes, 

transients and sometimes high frequency noise. High frequency components are prone during islanding, 

whereas IMF2 reflects relatively lower frequency and sustained changes in voltage which may result due to 

faults at far end from PCC. Therefore, the information obtained from both IMF’s is useful, however IMF1 has 

been used in the work carried out. The IMF’s plot for one of the events has been shown in Figure 6. 
 

Algorithm 1. EMD algorithm 
Step 1: The sampled time series data of all phases is treated as signal 𝑥(𝑡).  

Step 2: Determine all the local maxima and minima of 𝑥(𝑡). 

Step 3: Interpolate maxima and minima to form upper and lower envelopes 𝑒𝑚𝑎𝑥(𝑡) and 𝑒min(t) and compute 

the mean, 𝑚(𝑡) = (𝑒𝑚𝑎𝑥(𝑡) + 𝑒min(t))/2. 

Step 4: Subtract 𝑚(𝑡) from the original signal: ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡). If ℎ(𝑡) satisfies the conditions i.e. it is 

mean value is close to zero then ℎ(𝑡) is considered as IMF1. Else, repeat steps 1-4 considering ℎ(𝑡) as 

x(t).  
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Step 5: Once an 𝐼𝑀𝐹𝑖 is identified, subtract it from the signal: 𝑟(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹𝑖  

Step 6: If 𝑟(𝑡) is monotone then end the process, else treat 𝑟(𝑡) as 𝑥(𝑡) and process it again until 𝑟(𝑡) results 

in monotone. 

  

 

 
 

Figure 5. EMD flow chart 

 

 

 

 

Number of cycles in IMF1: 690 

Frequency of IMF1: 13871.3146 Hz 

Number of cycles in IMF2: 39 

Frequency of IMF2: 853.1041 Hz 

Max Time taken to extract IMF1: 0.061871 

seconds (varies from 30 to 61.87 ms) 

 

 

Figure 6. Resulting IMF’s using EMD 
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4.3.  Feature selection 

Appropriate statistical feature selection in classification problem is important. In the work carried 

out nine prominent features applicable for time series data have been considered and discussed below. 

− Mean (M) is one of the basic features which is computed as the average value of a signal 𝑥(𝑡) formulated 

as given in (3). It reduces data complexity keeping important information of the signal useful for 

classification.  

 

𝑀 =
1

𝑛
∑ 𝑥(𝑡)𝑛

𝑡=1   (3)  

 

where 𝑛 is the number of data points in the dataset. 

− Standard deviation (𝜎) represented in (4) is considered as second feature. A low value 𝜎 for voltage at 

PCC indicates stable grid operation, whereas higher values are indicative of events like islanding or 

faults. 

 

𝜎 = √
1

𝑛
∑ (𝑥(𝑡) − 𝑀)𝑛

𝑡=1
2 

 (4) 

 

− Skewness (S) is a measure to quantify the degree of asymmetry in the signal, formulated as given in (5). 

Positive S indicates imbalances or transients whereas negative S reflects variations like voltage sags. 

 

𝑆 =
𝑛

(𝑛−1)(𝑛−2)
∑ (

(𝑥(𝑡)−𝑀)

𝜎
)3𝑛

𝑡=1   (5)  

 

− Kurtosis (K) reflects the outliers, such data may be found useful for detecting switching events like 

islanding and faults, and it is expressed in (6). 

 

𝐾 =
𝑛(𝑛+1)

(𝑛−1)(𝑛−2)(𝑛−3)
∑ ( 𝑛

𝑡=1 (𝑥(𝑡) − 𝑀/𝜎)4 − 3(𝑛 − 1)2/(𝑛 − 2)(𝑛 − 3))   (6)  

 

− Harmonic distortions are measured by total harmonic distortion (THD) given in (7), THD gets influenced 

largely during islanding and fault events.  

 

𝑇𝐻𝐷 =
√𝐻22+𝐻32+𝐻42+⋯+𝐻𝑛2

𝐻1
   (7)  

 

𝐻1: Amplitude of the fundamental frequency, 𝐻2, 𝐻3, … , 𝐻𝑛: Amplitudes of the higher order harmonics. 

Sudden variations in signal energy (E) reflects uncommon patterns in voltage signal indicates 

happening of the events. It is formulated as given in (8). 

 

𝐸 = ∑ 𝑥(𝑛)2𝑁−1
𝑛=0    (8)  

 

The peak-to-peak value of the signal given in (9), represents the range of variations. The power quality 

events impact on such variations.  

 

𝑉(𝑃 − 𝑃) = max {𝑥(𝑡)} − min{𝑥(𝑡)} , 𝑡 ∈ 𝑇   (9) 

 

Where T: 20 ms time window is considered. 

Root mean square (RMS) value of voltage signal is another measure of the magnitude variation and 

found useful for electrical system behavior analysis [28]. RMS is given in (10). 

 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥(𝑡)𝑁

𝑡=1
2   (10) 

 

Mean absolute deviation (MAD) assess the variability of the voltage signal helpful for event detection. MAD 

is formulated in (11). 

 

𝑀𝐴𝐷 =
1

𝑁
∑ |𝑥(𝑡) − 𝑀|𝑁

𝑡=1   (11) 
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4.4.  Classification by support vector machine 

Support vector machine (SVM) is a powerful machine learning model used for classification. SVM 

works by finding the optimal hyperplane that best separates data into different classes. To reduce the need of 

large data sets SVM has been preferred over ANN and DL, reduced computation time and clearly visible 

decision boundaries are the added advantages of SVM.  

In the context of islanding detection, SVM is trained on features extracted from voltage data. The 

weights (w) of each feature contribute in determining the decision boundaries which are learned by machine 

during training to maximize distance between the hyperplane and support vectors. The bias (b) positions the 

hyperplane optimally, in case data is not centered on origin. The decision function is defined as in (12) where 

‘x’ is the feature value.  

 

𝑓(𝑥) = 𝑑𝑜𝑡(𝑤, 𝑥) + 𝑏  (12) 

 

The SVM classifies the events as islanding if 𝑓(𝑥) ≥ 0 and as non islanding if 𝑓(𝑥) < 0.  

Following are the steps involved in SVM algorithm. 

Step 1: Feature vector initialization 𝑥𝑖 = [𝑥1, 𝑥2 , . . . , 𝑥𝑁] and Labels 𝑦𝑖 = [𝑦1, 𝑦2] have been set as 1 and -1 

indicating the class, suffix ‘𝑖’ refers to sample number. The hyperplane is formulated as in (13). 

 

𝑤𝑇𝑥 + 𝑏 = 0   (13) 

 

Step 2: Margin maximization is achieved by (14), margin 𝑖. 𝑒. the distance between the two class boundaries 

is defined in (15)   

 

𝑦ᵢ (w𝑇xᵢ + 𝑏) ≥ 1   (14) 

 

Margin =
2

||w||
   (15) 

 

Step 3: Optimal values of 𝑤 and 𝑏 are obtained in such a way that ||𝑤|| results in to minimum as described in 

(16), this ensures maximum margin satisfying (14) and (15). 

 

min
𝑤,𝑏

 
1

2
∥ 𝑤 ∥2    (16)  

 

Step 4: It is now treated as dual objective problem namely for maximum margin and unbiased hyper plane 

referring to Lagrangian described in (17). 

 

𝐿(𝑤, 𝑏, 𝛼)  =  
1

2
||𝑊||² −  ∑  𝛼ᵢ[𝑦ᵢ(w𝑇  Xᵢ +  𝑏)  −  1]𝑁

𝑖=1   (17)  

 

 Partial derivatives of Lagrangian w.r.t 𝑤 gives optimal weights which is linear combination of the 

training samples vector and equating it to zero determines weight values for each feature described in 

(18). The expression (19) leads to an unbiased hyperplane for the two classes.  

 
𝜕𝐿

𝜕w
 =  0 ⇒  w =  ∑  𝛼ᵢ𝑦ᵢ𝑥ᵢ𝑁

𝑖=1   (18) 

 
𝜕𝐿

𝜕b
 =  0 ⇒  ∑  𝛼ᵢ𝑦ᵢ𝑁

𝑖=1 =  0  (19)  

 

Substituting into the Lagrangian the dual optimization problem is formulated as in (20) and (21). 

 

max
𝛼

= ∑ⁿᵢ₌₁ 𝛼ᵢ −  
1

2
   ∑ 𝛼ᵢ 𝛼ⱼ 𝑦ᵢ 𝑦ⱼ Xᵢᵀ Xⱼ𝑁

𝑖,𝑗=1   (20) 

 

𝛼ᵢ ≥  0, ∑  𝛼ᵢ𝑦ᵢ𝑁
𝑖=1 =  0  (21)  

 

Step 5: Obtaining αᵢ using quadratic programming solvers and identifying support vectors (𝑆𝑉). Computation 

of weights (𝑤) is described in (22) and that of bias (𝑏) for support vector xₖ is formulated in (23). 

 

𝑤 = ∑  𝛼ᵢ𝑦ᵢ𝑥ᵢ𝑖∈𝑆𝑉    (21) 
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𝑏 =  𝑦ₖ −  𝑤𝑇𝑋ₖ  (22)  

 

Step 6: Function in (24) is used for classification, as islanding (+1) if 𝑓(𝑥) ≥ 0 and non-islanding (-1) if  

𝑓(𝑥) <0. 

 

𝑓(𝑥)  =  𝑤𝑇𝑥 +  𝑏     (24) 

 

 

5. RESULTS AND DISCUSSION  

The detection accuracy and prediction time are the parameters of primary interest in this study. 

Obtained data sets has been used in 7 different approaches named as Method-1 to Method-7. All these 

methods are described in the following paragraphs. Table 3 details the detection accuracy and prediction time 

for Method-1 to Method-7 and Figure 7 gives detection accuracy comparison. 

 

 

Table 3. Classification results 
Method Data and features used for 

classification 
ML Technique Accuracy Detection 

time 
Detection 

Time with IMF1 extraction time 

Method 1 Phase voltages (VA, VB, VC) Decision Tree 70.41% 1.9 ms 63.77 ms 

Method 2 Random Forest 71.46% 88.71 ms 150.58 ms 
Method 3 IMF1 of phase A (4 features) SVM model 84.60% 3.31 ms 65.18 ms 

Method 4 IMF1 of all 3 phases (4 features) SVM model 94.80% 3.50 ms 65.37 ms 

Method 5 IMF1 of phase A (9 features) SVM model 97.60% 1.31 ms 63.18 ms 
Method 6 Average of IMF1 of 3 phase voltages SVM model 99.8% 1.24 msec 63.11 ms 

Method 7 IMF1 of all 3 phases (27 features) SVM model 99.4% 1.42 msec 63.29 ms 

 

 

 
 

Figure 7. Detection accuracy comparison of different methods 

 

 

In Method-1 and Method-2, phase voltages namely VA, VB, and VC in the form of time series data has 

been used for classification, the original form of the signal is used without any decomposition. DT and RF 

ML techniques are used for classifying the events and it is found that detection accuracy is as low as 70.41% 

which is not satisfactory. To examine the significance of signal decomposition, in Method-3 the IMF1 of 

phase voltage VA generated by EMD has been used. Here four features namely Mean, SD, Energy and THD 

of IMF1 of VA has been considered for classification using SVM technique, though only one phase data is 

used accuracy has increased to 84.60% which is significant compare to Method-1and Method-2.  

Consideration of only one phase data cannot be generalized since resulting events impacts all three 

phases. Therefore, in Method-4 above mentioned features of IMF1 of all 3-phase voltages namely VA, VB, and 

VC are used and classification is observed using SVM. Accuracy in this case has increased almost by 10% 

compare to Method-3 i.e. 474 events are correctly detected resulting in an accuracy of 94.80%.  

To check the impact of additional statical features Method-5 uses nine features for IMF1 of only VA 

namely Mean, SD, Skewness, Kurtosis, Energy, THD, RMS, peak to peak value and MAD. Method-7 

considers all these features for IMF1 of VA, VB, and VC making a large data set of 27 features. Importantly the 

accuracy has been found to be better than the previous attempts.  
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Under normal operating condition the average of 3-phase voltage instantaneous value supposed to 

be minimum and considerable during the events. Therefore, the average of IMF1 of all three phases is used in 

Method-6, above mentioned nine features are applied to this data. It may be observed that with no loss of the 

data, number of features are reduced from 27 to 9. This method is found to be the best among all practiced in 

terms of accuracy and detection time. The total detection time resulted for this approach is 63.11 ms, which is 

quite promising. The maximum time for IMF extraction is found to be 61.87ms.  

The NDZ is plotted for Method-4 as shown in Figure 8, fourteen islanding events out of 250 cases 

have been wrongly detected and it includes operating conditions with active power mismatch (∆p/p) of 21% 

and reactive power mismatch (∆q/p) of more than 10%, which is not good. However, when the same data set 

is used in Method-6 all these cases have been detected correctly resulting in no NDZ i.e. all 250 islanding 

events have been detected correctly, however one non islanding case has been detected as islanding. The 

simulation time for classification has resulted in the range of 0.16 to 0.61 sec for methods using IMF time 

series data, whereas for the Method-1 and Method-2 where the data in its original form is used it is around  

3 minutes. 

 

 

 
 

Figure 8. NDZ for Method-4 

 

 

Further study of Method-6 is carried out to optimize the selection of features using correlation 

matrix shown in Figure 9. It has been observed that the same accuracy is retained selecting loosely correlated 

5 features namely Energy, THD, Kurtosis, Skewness and MAD. The weight values of the features and bias 

value are mentioned in Table 4. It can be clearly observed that MAD dominates in islanding, whereas other 

features for non-islanding. The decision function 𝑓(𝑥) defined in (12) is resulting in clear segregation with 

𝑓(𝑥) ≥ 0 for islanding and 𝑓(𝑥) < 0 for non-islanding. The overall approach gives customized solution for 

identified system and therefore any updates incorporated in the system, new data set is to be generated for 

training to set the reference. Results have been compared with other references in Table 5.  

The conventional methods have limitations in terms of detection time, NDZ, impact on power 

quality. Therefore, the study has been carried out in the context of enhancing the detection accuracy, 

minimizing NDZ and reducing detection time using signal decomposition and ML. The decomposition of the 

signal gives hidden insights of the signal. The use of statistical features for classification using SVM leads to 

more robust detection. 

The findings of the study are as follows.  

a. Average values of IMF1 of three phase voltages are found to be the best dataset among other datasets used 

in the study.  

b. The statistical feature MAD obtained for average values of IMF1 of three phase voltages is prone towards 

islanding, whereas Energy, THD, Kurtosis and Skewness are inclined towards non islanding events,  

Table 4 may be referred for weight values.  

c. SVM classifier using the above-mentioned features gives an accuracy of 99.8%. Importantly the overall 

detection time is only 63.11 ms.  

The outcome of the study is that it provides a framework for integrating signal decomposition and ML for 

accurate islanding detection for grid connected microgrids. 
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Figure 9. Correlation matrix for Method-6 

 

 

Table 4. Weight values of the features and bias value 
Parameter Weight (W)/Bias(b) Values 

Energy W1 -0.5582 
THD W2 -0.1305 

Kurtosis W3 -0.1528 

Skewness W4 -0.6122 
MAD W5 1.4956 

Bias b -0.1724 

 

 

Table 5. Comparison with other approaches 
Method Detection time Accuracy NDZ DG types 

Ref [10] - 99.10% Small PV 

Ref [19] 192 ms 98.75% Small PV 

Ref [15] 110 ms - Small PV, Wind, Synchronous 
Ref [4] 100 ms - Zero Synchronous 

Proposed 63.11 ms 99.80% Zero PV, Synchronous 

 

 

6. CONCLUSION  

Passive methods for islanding detection are prone to larger NDZ i.e. they fail to detect islanding 

during power matching conditions; active and hybrid method causes power quality issues and 

communication-based methods are costly. The study carried out emphasizes that using advanced signal 

processing tools like EMD for signal decomposition and ML platform, the island detection of microgrids 

happens in minimum time and results in zero NDZ. The fast variations of the signal are visible through IMF1 

obtained by EMD and are found valuable for distinguishing the islanding with other events, also the ability of 

SVM to optimize the selection of hyperplane, maximizing the margin has given promising results in terms of 

accuracy of 99.8%, zero NDZ and detection time as low as 63.11 ms for diverse operating conditions of the 

microgrid. Precise detection of the events leads to steady operation of the microgrids allowing smooth 

transition of the control modes, contributing in to safety, reliability, optimal usage of the resources and 

financial benefits for the microgrid owners. 
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