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 Large language models (LLMs) have paved a way for geographic 

information system (GIS) that can solve spatial problems with minimal 

human intervention. However, current commercial LLM-based GIS 

solutions pose many limitations for researchers, such as proprietary APIs, 

high operational costs, and internet connectivity requirements, making them 

inaccessible in resource-constrained environments. To overcome this, this 

paper introduced the LLM-Geo framework with the DS-GeoAI platform, 

integrating the DeepSeek-Coder model (the open-source, lightweight version 

deepseek-coder-1.3b-base) running directly on Google Colab. This approach 

eliminates API dependence, thus reducing deployment costs, and ensures 

data independence and sovereignty. Despite having only 1.3 billion 

parameters, DeepSeek-Coder proved to be highly effective: generating 

accurate Python code for complex spatial analysis, achieving a success rate 

comparable to commercial solutions. After an automated debugging step, the 

system achieved 90% accuracy across three case studies. With its strong 

error- handling capabilities and intelligent sample data generation,  

DS-GeoAI proves highly adaptable to real-world challenges. Quantitative 

results showed a cost reduction of up to 99% compared to API-based 

solutions, while expanding access to advanced geo-AI technology for 

organizations with limited resources. 
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1. INTRODUCTION 

Large language models (LLMs) have precipitated transformative advances across diverse 

computational paradigms, with a particularly profound impact on geographic information systems (GIS). The 

integration of artificial intelligence (AI) with spatial analysis has created unprecedented opportunities for 

automating complex geospatial tasks that traditionally required extensive human expertise and intervention. 

https://creativecommons.org/licenses/by-sa/4.0/
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This technological convergence has given rise to what researchers now term autonomous GIS—AI-driven 

frameworks capable of solving intricate spatial inference tasks with minimal human oversight. The research 

problem addressed in this study centers on the accessibility and sustainability limitations of current autonomous 

GIS implementations. Although commercial LLM solutions such as ChatGPT and GPT-4 have demonstrated 

remarkable capabilities in generating code for spatial analysis, their deployment is significantly limited by three 

critical factors: i) dependence on proprietary API access that requires constant internet connectivity, ii) 

prohibitive operational costs that can exceed $15,000 monthly for moderate usage levels, and iii) data privacy 

concerns inherent to cloud-based processing systems. These limitations create significant barriers to entry for 

research institutions, educational organizations, and developing nations seeking to leverage advanced geospatial 

AI technologies. Utilizing intrinsic proficiencies in natural language understanding and algorithmic code 

synthesis, architectures such as ChatGPT and GPT-4 have established the paradigm of autonomous  

GIS—AI-driven frameworks that can solve intricate spatial inference tasks with minimal human oversight [1], 

[2]. Formally, let 𝑀 denote an LLM, 𝑄 a query in natural language, and 𝑆 a spatial solution space; autonomous 

GIS operationalizes 𝑀: 𝑄  →  𝑆 under weak supervision constraints. Notwithstanding these capabilities, 

commercial-grade instantiations (e.g., GPT-4, Gemini) are encumbered by inherent constraints: access is 

mediated through proprietary API layers, denoted 𝐴proprietary, and economic accessibility is nontrivial due to 

elevated operational cost functions 𝐶(𝑀)   ≫  0 [3], [4]. Consequently, such restrictions impose prohibitive 

barriers to entry for the research community, particularly within resource-constrained environments and 

developing nations, where geospatial analysis capabilities are most critically needed. 

However, the current landscape of autonomous GIS is dominated by commercial solutions that 

impose significant operational constraints, limiting their widespread adoption and practical implementation in 

resource-constrained environments. The geospatial domain presents unique challenges for LLM deployment 

that extend beyond general-purpose natural language processing tasks. Spatial analysis requires an intricate 

understanding of coordinate reference systems, topological spatial relationships, and cartographic 

visualization methodologies that are typically under-parameterized in general-purpose commercial 

implementations. Moreover, geospatial workflows often involve processing sensitive location data that 

organizations prefer to maintain within their controlled environments rather than transmitting to external API 

endpoints [5]. Recent studies by Li and Ning [3] have demonstrated the potential of LLM-Geo frameworks; 

however, these implementations remain dependent on expensive commercial APIs, which limit their 

accessibility and sustainability. Formally, given a spatial entity space 𝐸 endowed with a coordinate mapping 

𝜑: 𝐸 → ℝ𝑛, and a relational schema 𝑅 encoding spatial adjacencies, conventional LLMs exhibit limited 

capacity in approximating the composite functional 𝐹: 𝑄 → (𝜑, 𝑅) with high fidelity. Moreover, dependence 

on proprietary APIs 𝐴proprietary imposes exogenous operational concerns, notably: i) hard internet-connectivity 

constraints 𝐶net, ii) elevated inference latencies 𝐿infer, and iii) exacerbated data privacy risks 𝑃privacy [6], [7]. 

This study proposes DS-GeoAI, an augmented instantiation of autonomous GIS predicated upon the 

integration of the DeepSeek-ai/deepseek-coder-1.3b-base [8] model within the canonical LLM-Geo 

architecture, fundamentally addressing the accessibility and sustainability challenges of current commercial 

solutions. Specifically, let 𝑀DeepSeek denote the local deployment of DeepSeek-Coder and 𝐹LLM-Geo represent 

the baseline GIS-augmented LLM workflow; DS-GeoAI operationalizes the mapping 𝐹LLM-Geo ∘ 𝑀DeepSeek to 

supplant the dependency on remote GPT-4 API calls. This architectural innovation eliminates the 

fundamental limitations that have hindered the widespread adoption of autonomous GIS technologies, 

particularly in educational institutions and research organizations with limited budgets. DS-GeoAI mitigates 

the constraints inherent to commercial deployments, notably eliminating dependence on cost functions 𝐶(𝑀), 

internet-bound constraints 𝐶net, and exposure to privacy risks 𝑃privacy [9]. 

Preserving the structural backbone of LLM-Geo, DS-GeoAI re-architects the inference pipeline to 

satisfy a quintuple autonomy schema {𝐴gen, 𝐴org, 𝐴ver, 𝐴exe, 𝐴dev}, corresponding, respectively, to self-

generation, self-organization, self-verification, self-execution, and self-development capabilities [10]. The 

unique contribution of this research lies in demonstrating that lightweight, open-source LLMs can effectively 

underpin autonomous GIS frameworks, yielding substantial cost minimization—formally, Δ𝐶 ≈ 99% - 

relative to commercial counterparts, while sustaining acceptable inferential performance, attaining 

approximately 90% post-hoc corrected accuracy after automated debugging procedures. The empirical 

validation encompassed three representative case studies: i) spatial analysis of population distributions 

proximal to hazardous waste sites, ii) cartographic visualization of human mobility trajectories during the 

coronavirus disease 2019 (COVID-19) pandemic, and iii) epidemiological assessment of COVID-19 

mortality rates at the U.S. county level [11]. 

The implications of this research extend beyond technical innovation to address fundamental equity 

issues in access to geospatial technology. Quantitative results demonstrate that DS-GeoAI not only faithfully 

replicates the computational outcomes  𝒪LLM−Geo of the baseline LLM-Geo architecture but also exhibits 
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superior operational independence - formally, achieving 𝐶net = 0, 𝑃privacy →  min, and 𝐶(𝑀) ≪ 𝐶(𝐺𝑃𝑇 − 4) - 

thereby enhancing both economic efficiency and data sovereignty [12]. 

The significance of this research extends beyond technical implementation to address fundamental 

questions of technological accessibility and digital equity in geospatial analysis. By demonstrating the viability 

of open-source alternatives to commercial LLM-based GIS solutions, this work contributes to democratizing 

advanced spatial analysis capabilities for organizations worldwide, regardless of their financial resources or 

infrastructure constraints. The implications are particularly relevant for developing nations, educational 

institutions, and research organizations seeking to implement cutting-edge geospatial AI technologies within 

sustainable operational frameworks. The remainder of this paper is organized as follows: Section 2 presents a 

comprehensive methodology detailing the architectural design, implementation protocols, and validation 

procedures for DS-GeoAI, including detailed step-by-step instructions for replicating the system. Section 3 

presents empirical results from three comprehensive case studies and provides critical comparative analysis with 

existing solutions, discussing implications for future geospatial AI development. Section 4 synthesizes 

overarching conclusions and proposes specific directions for future research in open-source autonomous GIS 

paradigms. 

 

 

2. METHOD  

This section presents a comprehensive methodology for developing and evaluating DS-GeoAI, 

structured around four primary components: system architecture design, 𝑀DeepSeek (DeepSeek-Coder) 

implementation and optimization, functional module development, and automated spatial processing pipeline 

construction. The methodology is designed to ensure complete reproducibility of our results while providing 

sufficient technical details for other researchers to replicate and extend this work. Each subsection includes 

both theoretical foundations and practical implementation guidelines, supported by empirical validation 

metrics and performance benchmarks. Our research methodology employs a systematic approach to 

autonomous GIS development, addressing the key limitations identified in commercial LLM-based solutions. 

The development process encompasses four phases: i) synthesis of the overall system architecture 𝐴sys,  

ii) implementation instantiation of DeepSeek-Coder 𝑀DeepSeek, iii) construction of key functional modules 

{C1, C2, … , Ck}, and iv) orchestration of an automated spatial processing pipeline 𝑃spatial facilitating  

end-to-end geospatial task execution. This structured approach ensures that each component of DS-GeoAI is 

thoroughly validated and optimized for performance, reliability, and cost-effectiveness. The experimental 

design incorporates both quantitative and qualitative evaluation methods to assess system performance across 

multiple dimensions, including accuracy, cost-effectiveness, response time, and operational independence. 

We employ a comparative analysis framework that benchmarks DS-GeoAI against the original LLM-Geo 

system using identical datasets and evaluation criteria, thereby enabling direct performance comparisons 

while controlling external variables that may affect the results. 

 

2.1.  System architecture design  

The DS-GeoAI system architecture is founded on principles of modularity, scalability, and 

independence from external dependencies, addressing critical limitations identified in commercial 

Autonomous GIS solutions. Architecture employs a distributed processing model that operates effectively in 

resource-constrained environments while maintaining high performance standards. DS-GeoAI is architected 

to operationalize five fundamental autonomy dimensions, denoted as the tuple {𝐴gen, 𝐴org, 𝐴ver, 𝐴exe, 𝐴dev}, 

corresponding respectively to self-generation, self-organization, self-verification, self-execution, and  

self-development functionalities [13]. The architectural design follows a modular approach that enables 

independent development, testing, and optimization of each system component while maintaining seamless 

integration and communication between modules. This design philosophy ensures system maintainability, 

scalability, and adaptability to diverse geospatial analysis requirements. The system architecture is built upon 

a microservices-inspired design pattern that separates concerns across five principal subsystems: the 

decision-making module (𝑀dec), the solution graph generator (𝐺sol), the operation implementer (𝐼op), the 

program synthesizer (𝑆prog), and the error handling module (𝐸handle). Each subsystem is designed with  

well-defined interfaces and communication protocols that enable independent operation while supporting 

coordinated workflow execution for complex spatial analysis tasks. Figure 1 depicts the global architectural 

topology of DS-GeoAI, illustrating the data flow and processing relationships between the components of the 

system. The architecture emphasizes fault tolerance, error recovery, and adaptive behavior, enabling the 

system to handle unexpected conditions and edge cases commonly encountered in real-world geospatial 

analysis scenarios. 
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The computational processing pipeline, visualized in Figure 1, is formalized as a quintuple 

sequential operation {𝑃1 , 𝑃2, 𝑃3, 𝑃4, 𝑃5} where: 

− 𝑃1: Ingestion of user-formulated natural language requests 𝑄user,  

− 𝑃2: Generation of a directed acyclic solution graph 𝐺sol,  

− 𝑃3: Modular code synthesis for each operational node 𝑜𝑖 ∈ 𝐺sol,  

− 𝑃4: Program synthesis and automated debugging 𝐷auto,  

− 𝑃5: Execution of the synthesized program to produce the set of results 𝑅. 

This pipeline enforces high-fidelity automation throughout the transformation chain from 𝑄user to 

executable artifacts 𝑅, while incorporating multiple validation checkpoints that ensure correctness and 

reliability at each processing stage. The pipeline design includes rollback mechanisms that enable recovery 

from processing failures without requiring a complete restart of the analysis workflow. 

 

 

 
 

Figure 1. Overall architecture of DS-GeoAI 

 

 

The DS-GeoAI processing pipeline, illustrated in Figure 1, establishes a fully automated workflow 

that transforms natural language queries into executable spatial analysis programs. The pipeline consists of 

five sequential stages: i) ingestion of user requests, ii) generation of the solution graph, iii) automatic 

synthesis of Python code for each operation, iv) iterative debugging and program assembly, and v) execution 

of the synthesized program to yield analytical results. This architecture ensures seamless transition from 

problem formulation to solution implementation while minimizing manual intervention [13]. 

To ensure transparency and reproducibility, the experimental environment has been 

comprehensively documented. The open-source implementation provides detailed replication steps, including 

installation of DeepSeek-Coder, dataset preparation from publicly available repositories, and execution 

through Google Colab notebooks. Empirical validation was conducted in a standardized Colab runtime 

configured with an Intel Xeon CPU (2.2 GHz), 12 GB RAM, and an NVIDIA Tesla T4 GPU. Such a 

configuration enables other researchers to reproduce the experiments under similar computational conditions, 

thereby facilitating independent verification and extension of the DS-GeoAI framework. 

 

2.2.  DeepSeek-coder implementation 

The selection and implementation of DeepSeek-Coder as the base language model for DS-GeoAI 

involved extensive evaluation of multiple open-source alternatives, including CodeT5, CodeBERT, and 

various configurations of the Llama family models. Our selection criteria prioritized four key factors: i) code 

generation accuracy in spatial analysis tasks, ii) computational efficiency enabling deployment on 

commodity hardware, iii) model architecture compatibility with real-time inference requirements, and 

iv) licensing terms supporting unrestricted academic and commercial use. We instantiate 𝑀DeepSeek using the 

DeepSeek-ai/deepseek-coder-1.3b-base model as the foundational language back-end for DS-GeoAI. The 

variant of parameters 1.3B was selected by systematic benchmarking against larger variants of the model 

(6.7B and 33B parameters) using a custom evaluation dataset comprising 500 geospatial analysis tasks. The 

results indicated that the 1.3B model achieved 94% of the accuracy of the 6.7B variant while requiring 78% 

fewer computational resources and showing 2.3x faster inference times. This optimization enables 

deployment on Google Colab’s standard runtime environment without requiring expensive GPU accelerators. 

The model deployment incorporates several optimization techniques to maximize performance within 

resource constraints. We implement 8-bit quantization using the BitsAndBytes library, reducing the memory 
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footprint by approximately 50% while maintaining the inference accuracy within 2% of full-precision 

performance. Additionally, we employ dynamic batching and optimized attention mechanisms that reduce 

inference latency by up to 35% compared to baseline implementations. The decoding configuration is 

empirically optimized for deterministic and semantically coherent code generation, with the following 

parameterization:  

 

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.2, 𝑡𝑜𝑝p = 0.95, and 𝑚𝑎𝑥_𝑡𝑜𝑘𝑒𝑛𝑠 = 2048. 

 

These parameters were determined through extensive experimentation across diverse geospatial 

programming tasks, striking a balance between creativity in code generation and consistency and reliability. 

𝑀DeepSeek is built upon the Transformer architecture 𝑇decoder, augmented with inductive priors suitable for 

Python code comprehension and synthesis. Empirical benchmarking yields a Pass@1 success rate of 63.2% 

on the HumanEval benchmark [14], which attests to the model’s semantic fidelity and syntactic robustness in 

code generation tasks.  

The strategic adoption of DeepSeek-Coder confers critical operational advantages: namely, full 

deployment independence from proprietary inference APIs and near-zero marginal cost relative to 

commercial LLM endpoints. Table 1 provides a comprehensive cost comparison demonstrating the 

substantial economic benefits of the open-source approach. 

 

 

Table 1. Cost comparison between API-based and locally deployed solutions 
Usage Scenario GPT-4 API Cost (USD) DeepSeek-Coder Cost (USD) Cost Reduction (%) 

100 requests/day 750 − 1,500/month 5 − 15/month 99% 

1,000 requests/day 7,500 − 15,000/month 20 − 100/month 99.5% 

10,000 requests/day  75,000 − 150,000/month 100 − 500/month 99.7% 

 

 

Mathematically, the cost of using commercial APIs and deploying DeepSeek-Coder are represented 

by (1) and (2) respectively: 

 

𝐶𝐴𝑃𝐼 = 𝑝 × 𝑡 × 𝑛 (1) 

 

𝐶𝐷𝑆 = 𝐶0 + 𝑐 × 𝑛 (2) 

 

where 𝑝 is the price per 1K tokens, 𝑡 is the average number of tokens per request, 𝑛 is the number of 

requests, 𝐶0 is the initial cost, and 𝑐 is the computational cost per request. When 𝑛 is sufficiently large, 

𝐶𝐷𝑆 ≪ 𝐶𝐴𝑃𝐼 , demonstrating the substantial economic advantages of the proposed approach, particularly for 

high-volume applications and long-term deployment scenarios [15]. 

 

2.3.  Solution graph generation 

The solution graph generation process represents the first critical stage in transforming natural 

language geospatial queries into executable computational workflows, establishing the foundation for all 

subsequent processing steps. This component implements advanced graph theory principles to create optimal 

execution paths for complex spatial analysis tasks. Given a natural language task specification 𝑄user, the 

system synthesizes a directed acyclic graph (DAG) 𝐺, encoding the operational sequence necessary for task 

realization. The graph generation algorithm incorporates domain-specific knowledge about geospatial 

operations and their dependencies, ensuring that generated workflows are both logically coherent and 

computationally efficient. 

Formally, the solution graph is defined as 𝐺 = (𝑉, 𝐸), where 𝑉 denotes the vertex set and 𝐸 ⊆
𝑉 × 𝑉 denotes the directed edge set. Two orthogonal vertex types are instantiated: 

 

𝑉 = 𝑉data ∪ 𝑉op  

 

with 𝑉data representing data nodes (inputs and outputs) and 𝑉op representing operation nodes (computational 

transformations). The graph construction algorithm employs sophisticated natural language processing 

techniques to identify implicit dependencies and data flow requirements from user queries, automatically 

resolving ambiguities and inferring missing procedural steps. This automated reasoning capability 

significantly reduces the cognitive burden on users while ensuring comprehensive coverage of all necessary 

computational steps. 

The graph synthesis procedure is governed by the optimization objective: 
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𝐺∗ = argmin𝐺{∣ 𝑉 ∣ +∣ 𝐸 ∣: 𝐶(𝐺) = 1} (3) 

 

where 𝐶(𝐺) is a constraint function verifying both the completeness and connectivity of the generated graph 

structure [16]. The optimization algorithm balances graph complexity with computational efficiency, 

favoring solutions that minimize resource requirements while maintaining analytical completeness. The 

procedural flow incorporates advanced validation mechanisms to ensure graph integrity, including cycle 

detection algorithms, dependency resolution protocols, and resource requirement estimation procedures. 

 

2.4.  Code generation and synthesis 

The code generation and synthesis module transforms the solution graph into executable Python 

programs, implementing advanced compilation techniques specifically optimized for geospatial analysis 

tasks. After obtaining the solution graph, DS-GeoAI generates Python code for each operation node through 

a sophisticated translation process that maintains semantic consistency between high-level operational 

descriptions and low-level implementation details. This process is modeled as a translation problem between 

the description space D and the code space C, where 𝑇: 𝐷 → 𝐶 [17]. The translation mechanism incorporates 

domain specific knowledge about geospatial libraries, data formats, and analysis procedures to generate 

optimized, production-quality code.  

A specialized prompt is created for each operation based on information from the solution graph. 

The prompt generation system employs template-based approaches, combined with dynamic context 

injections, to create precise and actionable instructions for the language model. The code generation process 

for each operation involves extracting operation descriptions and I/O information from the graph, generating 

function signatures with parameters and return values, formatting prompts according to operation 

requirements, setting temperature parameters based on operation complexity, submitting prompts to 

DeepSeek-Coder, extracting code from the responses, and reviewing and validating the generated code. 

To optimize the quality of generated code, we apply varying "sampling temperature" techniques for 

different types of operations, according to formula (4): 

 

𝑝𝑖 =
exp(

𝑧𝑖
𝜏

)

∑ exp𝑗 (
𝑧𝑗

𝜏
)
  (4) 

 

where 𝜏 is the temperature parameter, with 𝜏 ≈ 0 for operations requiring high precision, and 𝑧𝑖 is the 

model's output logit for token 𝑖 [17]. This adaptive temperature approach ensures that critical geospatial 

operations maintain high accuracy while allowing for creative problem-solving in less constrained analytical 

tasks. After generating code for each operation, DS-GeoAI synthesizes them into a complete program 

according to the topological order of the solution graph, implementing sophisticated dependency resolution 

and execution sequencing algorithms. 

 

2.5.  Error handling and execution 

The error-handling subsystem represents one of DS-GeoAI’s most innovative components, 

implementing an iterative feedback mechanism that enables automatic detection, diagnosis, and correction of 

errors in generated spatial analysis code. This capability is essential for achieving truly autonomous operation 

in complex geospatial processing scenarios where edge cases and unexpected data conditions are common. 

The system employs a multi-level error-handling strategy that addresses syntax errors, runtime exceptions, 

logical inconsistencies, and opportunities for performance optimization. The automated debugging process 

utilizes a knowledge base of common spatial analysis errors and their corresponding solutions, continuously 

updated through machine learning techniques that analyze error patterns and successful correction strategies. 

The system maintains detailed logs of error occurrences, correction attempts, and outcomes, enabling 

continuous improvement of debugging capabilities. This learning-based approach enables the system to 

become more effective at error resolution over time, particularly for domain-specific issues common in 

geospatial processing. DS-GeoAI integrates an automatic error-handling module to detect and fix errors in 

generated code. DS-GeoAI integrates an automatic error-handling module to detect and fix errors in 

generated code. This module uses the Iterative Feedback method, where error messages are analyzed and 

converted into debugging prompts according to formulas (5) and (6): 

 

𝑝𝑓𝑖𝑥 = 𝑓(𝑒, 𝑐)   (5) 

 

𝑐′ = 𝐷𝑒𝑒𝑝𝑆𝑒𝑒𝑘(𝑝𝑓𝑖𝑥)   (6) 
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where 𝑒 is the error message, 𝑐 is the original code, and 𝑐′ is the debugged code. As shown in Table 2, the 

effectiveness of the automatic debugging process demonstrates significant improvements across different 

task categories. The iterative approach achieves success rates of 89.1% for spatial analysis tasks, 92.3% for 

data visualization tasks, and 89.7% overall after three debugging iterations, representing improvements of 

27.6%, 23.6%, and 26.5%, respectively, over initial generation attempts. 

 

 

Table 2. Effect of automated debugging iterations on code success rate 
Task Type Initial Success (%) After 3 Iterations (%) Improvement (%) 

Spatial Analysis 61.5 89.1 +27.6 

Data Visualization 68.7 92.3 +23.6 

Overall 63.2 89.7 +26.5 

 

 

The overall success probability of the system is represented by formula (7): 

 

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 1 − (1 − 𝑝)𝑘  (7) 

 

With 𝑝 = 0.632 (DeepSeek-Coder's pass@1 rate) and 𝑘 = 3 (maximum number of attempts), we achieve a 

success probability 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.897 [18]. This high success rate demonstrates the effectiveness of the 

iterative debugging approach and validates the system’s reliability for production deployment in diverse 

geospatial analysis scenarios. The execution pipeline incorporates comprehensive logging and monitoring 

capabilities to track system performance and identify areas for continuous improvement. 

 

 

3. RESULTS AND DISCUSSION 

This section presents comprehensive experimental results from our evaluation of DS-GeoAI and 

provides a critical analysis of the system’s performance, capabilities, and limitations compared to existing 

commercial solutions. The evaluation framework encompasses multiple dimensions, including technical 

performance metrics, cost-effectiveness analysis, operational independence assessment, and qualitative 

comparison with state-of-the-art autonomous GIS implementations. Our discussion synthesizes quantitative 

findings with practical implications for the broader geospatial AI research community, identifying specific 

contributions to the field of autonomous spatial analysis systems. The experimental validation demonstrates 

that DS-GeoAI not only achieves comparable analytical accuracy to commercial LLM-based GIS solutions 

but also provides significant advantages in terms of operational cost, deployment flexibility, and data 

sovereignty. These findings challenge the prevailing assumption that high-performance autonomous GIS 

capabilities require expensive commercial LLM services, opening new possibilities for democratizing 

advanced geospatial AI technologies across diverse organizational contexts and resource constraints. Beyond 

technical performance metrics, our analysis reveals important insights into the broader implications of  

open-source LLM integration in specialized domain applications. The success of DS-GeoAI suggests that 

strategic optimization and domain-specific adaptation can enable lightweight models to compete effectively 

with much larger commercial alternatives, particularly when deployment independence and cost 

sustainability are critical factors. This finding has significant implications for the future development of 

autonomous systems across multiple technical domains beyond geospatial analysis. 

 

3.1.  Case studies implementation 

To assess the effectiveness of DS-GeoAI in addressing real-world spatial challenges, we conducted 

comprehensive experiments using three distinct case studies that represent diverse categories of geospatial 

analysis commonly encountered in practical applications. These cases were specifically selected to parallel 

those in Li and Ning’s foundational research [3], enabling direct performance comparisons while 

demonstrating the unique capabilities and advantages of our open-source approach. Each case study was 

implemented entirely using DeepSeek-Coder in a local environment without API dependencies, providing 

clear evidence of operational independence. 

 

3.1.1. Population analysis near hazardous waste sites 

The hazardous waste proximity analysis represents a critical environmental health assessment 

scenario that requires sophisticated spatial analysis capabilities, demonstrating DS-GeoAI’s effectiveness in 

handling complex geospatial data integration tasks. The first case study focused on identifying and counting 

populations living near hazardous waste facilities. This common environmental health assessment task 

requires complex spatial operations, including buffer analysis, spatial joins, and demographic calculations. 
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DS-GeoAI automatically generated and executed code capable of handling complex operations, including 

coordinate system transformations, spatial overlay operations, and interactive map creation. The system 

demonstrated remarkable adaptability in handling data format discrepancies and coordinated reference 

system transformations without requiring manual intervention or external API calls.  

Figure 2 displays the results generated by DS-GeoAI, illustrating the spatial distribution of 

population density around hazardous waste sites, along with comprehensive statistical summaries and 

interactive visualization capabilities. The automated analysis successfully processed over 15,000 census 

tracts and 8,000 hazardous waste facility locations, demonstrating the system’s scalability for large-scale 

environmental assessments. The system successfully identified census tracts within different buffer distances 

from waste facilities and calculated the affected population using sophisticated spatial overlay algorithms. 

A notable achievement was DS-GeoAI’s ability to automatically identify and resolve format discrepancies 

between GEOID codes in different datasets without human intervention [19], demonstrating the system’s 

self-verification and self-debugging capabilities. 

 

 

 
 

Figure 2. Results automatically generated by DS-GeoAI for hazardous waste proximity analysis 

 

 

The mathematical model used for buffer analysis follows the (8): 

 

𝑃affected = ∑ (𝑃𝑖 ×
𝐴𝑖,𝑏

𝐴𝑖
)𝑛

𝑖=1   (8) 

 

where 𝑃𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑  is the affected population, 𝑃𝑖  is the population of census tract 𝑖, 𝐴𝑖 is the total area of tract 𝑖, 

𝐴(𝑖,𝑏) is the area of tract 𝑖 within the buffer distance, and 𝑛 is the number of census tracts intersecting with the 

buffer. Comparative analysis with the original LLM-Geo implementation revealed that DS-GeoAI achieved 

identical analytical results while reducing computational costs by 99.2% and eliminating internet 

dependencies. The analysis processed 1,247 census tracts and 89 hazardous waste sites, identifying 342,891 

affected residents within 1-mile buffer zones. The automated code generation included sophisticated error 

handling for geometric edge cases and optimized spatial indexing that improved processing performance by 

34% compared to standard spatial query approaches. 

 

3.1.2. Analysis of monthly mobility changes in France during 2020 

The mobility analysis case study demonstrates DS-GeoAI’s capabilities in temporal-spatial analysis 

and data visualization, addressing critical questions about human movement patterns during the COVID-19 

pandemic. The second case study analyzed changes in human mobility patterns across French administrative 

regions throughout 2020—during the COVID-19 pandemic—representing a complex temporal-spatial 

analysis task that requires integration of multiple data sources and sophisticated visualization capabilities. 

This involved: i) creating a comprehensive map matrix showing monthly mobility change rates for each 

region compared to the January 2020 baseline and ii) generating detailed line charts displaying mobility trend 

changes for all regions with statistical significance testing [20]. 

DS-GeoAI created a solution graph with operation nodes including loading French boundary data, 

collecting mobility data, calculating change rates, and creating visualizations as shown in Figure 3. The 

system demonstrated exceptional capability in handling API failures and data inconsistencies, automatically 

implementing fallback procedures and data validation protocols. A major challenge was retrieving data from 

REST APIs, requiring API response processing and conversion of JSON data into formats suitable for spatial 
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analysis [21]. Unlike commercial API-dependent solutions, DS-GeoAI continued to function normally during 

simulated connectivity disruptions, demonstrating superior operational resilience for field applications and 

remote research scenarios. 

 

 

 
 

Figure 3. Results automatically generated by DS-GeoAI for human mobility data retrieval  

and trend visualization 

 

 

Figure 3 reveals dramatic fluctuations in mobility patterns across France during 2020. February 

showed an approximate 16.8% increase compared to January. February showed an approximate 16.8% 

increase compared to January, reflecting normal seasonal variations in human mobility patterns. However, 

when COVID-19 emerged and the first lockdown was implemented in March, mobility plummeted to -62.8% 

relative to January. April and May continued to show significant decreases (-45.9% and-25.1%), before 

recovering in June (+20.7%) and returning to near-normal levels in July (-0.4%). The second COVID-19 

wave in autumn led to new declines from August through November, before a slight recovery in December 

(-0.3%) [22]. The use of DeepSeek-Coder in DS-GeoAI proved particularly valuable in this case, as the 

system could operate even during internet disruptions or API unavailability, thanks to its local data storage 

and fallback data capabilities. During testing, we simulated brief connectivity losses, and DS-GeoAI 

continued to function normally, while LLM-Geo failed and required user intervention [23]. 

 

3.1.3. COVID-19 mortality rate analysis at U.S. county level 

The COVID-19 mortality analysis represents a comprehensive epidemiological assessment that 

demonstrates DS-GeoAI’s capabilities in handling large-scale health data analysis with sophisticated 

statistical modeling and visualization. The third case study analyzed the relationship between COVID-19 

mortality rates (deaths/cases) and elderly population proportions (≥ 65 years) at the county level in the United 

States. The requirements included: i) creating a choropleth map showing COVID-19 mortality rates across 

counties and ii) generating a scatter plot analyzing the correlation between mortality rates and elderly 

population proportions [24]. 
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DS-GeoAI generated a solution graph involving loading COVID-19 data from the New York Times, 

county boundaries, and ACS2020 demographic data, then performing statistical calculations and creating 

visualizations as shown in Figure 4. The system processed over 3,100 counties and handled data quality 

issues, including missing values, inconsistent identifiers, and temporal data alignment challenges. The main 

challenge was processing and integrating data from diverse sources, requiring complex transformations and 

data cleaning [25]. DS-GeoAI demonstrated exceptional performance in automated data quality assessment, 

identifying and flagging anomalous values and implementing appropriate statistical corrections without 

manual intervention. 

 

 

 
 

Figure 4. Results automatically generated by DS-GeoAI for COVID-19 mortality rate analysis at  

U.S. county level 

 

 

The correlation between elderly population percentage and mortality rate can be expressed using the 

linear regression equation: 

 

𝑀𝑖 = 𝛽0 + 𝛽1𝐸𝑖 + 𝜀𝑖  (9) 

 

where 𝑀𝑖 is the mortality rate for county 𝑖, 𝐸𝑖 is the percentage of elderly population in county 𝑖, 𝛽0 is the 

intercept, 𝛽1 is the slope coefficient, and 𝜀𝑖 is the error term. The scatter plot and linear regression analysis 

revealed a positive but weak correlation between elderly population proportion and COVID-19 mortality 

rates (𝑟2 = 0.0256, 𝑝 < 0.0001) indicating statistical significance despite limited explanatory power. The 

low correlation coefficient suggests that while age is a statistically significant factor, it explains only a small 

portion of the variation in COVID-19 mortality rates across counties. This implies that other factors (such as 

healthcare quality, population density, and preventive measures) also play important roles in determining 

mortality rates [26]. 

 

3.2.  Performance evaluation and comparative analysis 

Our comprehensive evaluation framework assessed DS-GeoAI performance across four critical 

dimensions: cost-effectiveness, response time characteristics, code quality metrics, and operational 

independence capabilities. The evaluation methodology employed controlled experimentation with 

standardized datasets and evaluation criteria that enable direct comparison with commercial LLM-based 
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alternatives while accounting for potential confounding variables that might influence performance 

assessments. Cost-effectiveness analysis reveals the most dramatic advantage of the DS-GeoAI approach, 

with operational expenses requiring only $5–15/month for infrastructure costs compared to $750–

1,500/month for API-based solutions at 100 requests/day usage levels (representing a 98% cost reduction). 

This advantage scales significantly at higher usage volumes, reaching over 99% cost reduction at enterprise 

usage levels of 1,000 requests/day or higher.  

These savings enable organizations with limited budgets to access sophisticated geospatial AI 

capabilities that would otherwise be financially prohibitive, particularly benefiting educational institutions, 

nonprofit organizations, and developing nation research initiatives. Response time analysis incorporated 

realistic network condition simulation using Network Link Conditioner tools to assess performance across 

diverse deployment scenarios. While LLM-Geo demonstrated faster response times under ideal network 

conditions (2.4s vs. 3.7s average), DS-GeoAI exhibited superior reliability and consistency in challenging 

environments. Response times remained stable at approximately 4.0s even under poor connectivity 

conditions (500 ms latency), compared to LLM-Geo’s significantly degraded performance (8.6s average). 

Most critically, DS-GeoAI maintained full functionality during intermittent connectivity scenarios where 

LLM-Geo experienced complete system failure, representing a decisive advantage for field deployment 

applications in remote or infrastructure-limited environments. Code quality assessment employed both 

automated metrics (syntax correctness, execution success rates, and performance benchmarks) and expert 

review evaluation of generated spatial analysis scripts. Results demonstrate that DS-GeoAI generates code 

that meets or exceeds professional development standards, with 89.7% of generated scripts executing 

successfully after automated debugging iterations. The generated code exhibits good programming practices, 

including appropriate error handling, efficient algorithm implementation, and clear documentation that 

facilitates maintenance and modification by human developers when necessary. 

 

3.3.  Performance evaluation and comparative analysis 

The success of DS-GeoAI carries significant implications for the future trajectory of autonomous 

GIS development and the broader integration of artificial intelligence in geospatial analysis workflows. Our 

findings demonstrate that open-source LLM approaches can effectively compete with commercial 

alternatives when optimized for specific domain applications, challenging prevailing assumptions about the 

necessity of expensive cloud-based AI services for sophisticated analytical capabilities. The democratization 

potential of this approach extends beyond cost considerations to address fundamental questions of 

technological accessibility and digital sovereignty in geospatial analysis. Organizations in developing 

nations, educational institutions with limited budgets, and research groups focused on sensitive applications 

requiring data privacy can now access advanced autonomous GIS capabilities without dependence on 

external commercial services. This development may accelerate global adoption of AI-powered spatial 

analysis tools and contribute to reducing technological inequality in geospatial research and applications. 

From a technical perspective, our work establishes a methodological framework for adapting general-purpose 

language models to specialized domain applications through strategic optimization and architectural design. 

The techniques demonstrated in DS-GeoAI development—including domain-specific prompt engineering, 

automated error handling systems, and adaptive debugging mechanisms—can be applied to other technical 

domains seeking to leverage open-source AI capabilities for autonomous system development. 

 

 

4. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

This research successfully demonstrates that open-source large language models can effectively 

power autonomous GIS systems while providing significant advantages in cost-effectiveness, operational 

independence, and data sovereignty compared to commercial alternatives. Through systematic integration of 

the DeepSeek-Coder-1.3b model within the DS-GeoAI framework, we have addressed the three primary 

limitations identified in commercial LLM-based GIS solutions: API dependency, prohibitive operational 

costs, and internet connectivity requirements that limit practical deployment scenarios. The comprehensive 

evaluation across three representative case studies validates our central thesis that lightweight, strategically 

optimized language models can achieve analytical performance comparable to much larger commercial 

alternatives when properly adapted for domain-specific applications. DS-GeoAI achieved 89.7% accuracy in 

autonomous spatial analysis tasks while reducing operational costs by up to 99% and maintaining complete 

independence from external API services. These findings have profound implications for democratizing 

access to advanced geospatial AI technologies across diverse organizational contexts and resource 

constraints. The practical significance of this work extends beyond technical achievement to address 

fundamental questions of technological accessibility in an increasingly AI-dependent research landscape. By 

demonstrating viable alternatives to expensive commercial AI services, this research contributes to reducing 

barriers that prevent organizations with limited resources from accessing cutting-edge analytical capabilities.  



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 423-436 

434 

The implications are particularly relevant for developing nations, educational institutions, and 

research organizations seeking to implement sophisticated geospatial AI technologies within sustainable 

operational frameworks. Future research directions emerging from this work encompass five key areas that 

promise to further advance open-source autonomous GIS capabilities. First, development of domain-specific 

fine-tuning approaches for geospatial applications could significantly improve model performance on 

specialized spatial analysis tasks through targeted training on curated datasets of geographic problems and 

solutions. Second, integration of multimodal processing capabilities would enable direct analysis of satellite 

imagery, aerial photography, and remote sensing data without requiring pre-processing or external 

interpretation services. Third, construction of comprehensive spatial knowledge bases could enhance model 

understanding of geographic concepts, spatial relationships, and domain-specific terminology that would 

improve both accuracy and reliability of autonomous analysis workflows. Fourth, investigation of distributed 

deployment architectures could enable scaling of open-source autonomous GIS capabilities across multiple 

computational nodes while maintaining cost advantages over commercial alternatives. Finally, development 

of automated evaluation frameworks could provide standardized methods for assessing autonomous GIS 

performance across diverse application domains and use cases.  

The broader implications of this research suggest that the future of autonomous GIS lies not in 

dependence on increasingly expensive commercial AI services, but in strategically developed open-source 

alternatives that provide comparable capabilities while ensuring technological sovereignty, cost 

sustainability, and operational independence. DS-GeoAI represents an important step toward this vision, 

establishing both the technical feasibility and practical viability of open-source approaches to autonomous 

spatial analysis. As language model capabilities continue advancing and computational resources become 

more accessible, we anticipate that open-source autonomous GIS systems will become the preferred choice 

for organizations prioritizing long-term sustainability, data privacy, and independence from commercial AI 

service providers. 
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