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 The article presents a selection of reactive power definitions, which are 

applicable for implementation in energy meters. For sinusoidal current and 

voltage waveforms, all provided dependencies yield equivalent reactive 

power values. However, in the presence of distorted current and voltage, the 

power values are determined by the applied method (algorithm). 

Standardization requirements for reactive energy meters stipulate 

metrological verification under sinusoidal conditions. The selection of an 

optimal reactive power definition remains a problematic and ongoing subject 

of debate within the field. The paper shows that a generalized unique 

definition of additive reactive power derives from the definition of active 

power. Unlike active power, reactive power must be independent of the 

conversion of electric energy into work and heat. This independence is 

achieved if one of the waveforms – the current in the scalar voltage and 

current product (specifying active power) – is replaced by a special 

orthogonal waveform. An orthogonal waveform can be derived through 

either differentiation or integration. Reactive power obtained by this method 

is an additive within the system. When differentiation is employed, the 

reactive power for a nonlinear resistive load with a unique, time-invariant 

current-voltage characteristic will be zero. Some other properties of reactive 

power defined in this way are presented. This method is straightforward to 

implement in reactive energy meters. 
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1. INTRODUCTION 

The distribution system operator (DSO) outlines the method for reactive energy consumption 

charges within its tariff, based on national regulations. Consumers supplied from medium, high, and extra-

high voltage networks are subject to these reactive energy billing arrangements. Furthermore, consumers 

supplied from networks with a nominal voltage not exceeding 1 kV may also be included in such billing. 

Reactive energy measurements are performed using meters that comply with the requirements of 

relevant standardization regulations [1]–[3]. The reactive energy, Eq, is determined from formula (1): 

 

𝐸𝑞 = ∑ 𝑄(𝑘)𝑚
𝑘=1 ∙ 𝑇 (1) 
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where Q represents the reactive power within the measurement window of duration T, and m denotes the 

sequential number of the window. Reactive energy forms the basis for financial settlements, and as such, its 

measurement accuracy and its measurement methodology should be beyond doubt.  

The average electrical energy over a voltage or current waveform period, is called active power, is 

converted into work and heat. 

 

𝑃 =
1

𝑇
∫ 𝑝𝑑𝑡

𝑇+𝑡0 

𝑡0
=

1

𝑇
∫ 𝑢𝑖𝑑𝑡

𝑇+𝑡0 

𝑡0
 (2) 

 

where p – instantaneous electrical power; u – periodically varying voltage and current with period T, t0 – any 

moment, it can be zero. 

Reactive power for sinusoidal voltage 𝑢 = √2𝑈𝑠𝑖𝑛 𝜔𝑡 and current 𝑖 = √2𝐼𝑠𝑖𝑛(𝜔𝑡 + 𝜑) waveforms 

is derived from active power. 

 

𝑃 =
2𝑈𝐼

𝑇
∫ 𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛(𝜔𝑡 + 𝜑)

𝑇

0
= 𝑈𝐼 cos 𝜑 (3) 

 

by replacing one of the functions with the orthogonal function 

 

𝑄 =
2𝑈𝐼

𝑇
∫ 𝑠𝑖𝑛𝜔𝑡 𝑐𝑜𝑠(𝜔𝑡 + 𝜑)

𝑇

0
= 𝑈𝐼 sin 𝜑. (4) 

 

It follows from (3) and (4) that. 

 

𝑃2 + 𝑄2 = 𝑆2 (5) 

 

where S=UI – apparent power. 

 It seems that the problem with defining reactive power for non-sinusoidal voltage and current 

waveforms stems from the fact not the physical principles, but formal equation (5) is used as the basis for this 

purpose. 

 For nearly a hundred years orthogonal power components for non-sinusoidal waveforms have been 

so defined as having their geometric sum equal to the apparent power [4]–[6] as in the case of sinusoidal 

waveforms (4). An overview of the development of power theory can be found in review papers [7]–[12]. 

But apparent power is not an additive quantity. Also, the newly formed power components are most often 

nonadditive. They are suitable for describing the energy properties of an object only in unusual cases. 

By analogy to the formula for active power calculated from Fourier series 

 

𝑃 = ∑ 𝑈𝑛𝐼𝑛 𝑐𝑜𝑠
𝑛

∞
𝑛=1 . (6) 

 

C.I. Budeanu [13] defined the reactive power of distorted waveforms. 

 

𝑄𝐵 = ∑ 𝑈𝑛𝐼𝑛 𝑠𝑖𝑛
𝑛

∞
𝑛=1   (7) 

 

where: n indicates the harmonic number, n is the phase shift between the n-th harmonic of the current and 

voltage, and Un and In are the RMS values of the harmonics. 

Iliovici’s idea [14] of measuring reactive power through the scalar product of voltage and orthogonal 

functions to current has not gained acceptance since the results obtained in this way may exceed the apparent 

power value [15], [16]. However, this method - replacing one of the voltage or current quantities in the active 

power formula (2) with an orthogonal function was proposed in the IEEE 1459-2010 standard [17] when 

calculating power for sinusoidal waveforms. This standard is an attempt to standardize and systematize the 

method of defining and measuring reactive power - dedicated to engineering applications. 

 

 

2. INSTANTANEOUS POWER AND ACTIVE POWER 

If electric energy is transferred between an object and the rest of the electric power system by 

currents ik in n+1 conductors, see Figure 1, then from the energy conservation law it follows that the 

instantaneous power of the object is, 

 

𝑝 = ∑ 𝑢𝑘𝑖𝑘
𝑛
𝑘=1 . (8) 
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Voltages uk in (8) are defined by the necessary condition. 

 
∑ 𝑖𝑘 = 0𝑛

𝑘=1  (9) 

 

 

 
 

Figure 1. An electrical object 

 

 

If from (9) one calculates, for instance, current in and substitutes it into equation (8), then one will 

get, 

 

𝑝 = ∑ (𝑢𝑘 − 𝑢𝑛)𝑖𝑘
𝑛−1
𝑘=1 , (10) 

 

According to which voltages uk in (8) are not unique, i.e., they can be the difference between the potentials of 

the particular conductors and the potential of the n-th or any other conductor. Also, one can add one more 

conductor (in which the current is always equal to zero) to the n conductors and starting from this conductor 

measure all voltages uk. Thus, each common point with any potential can be reference, but usually a point 

with zero potential is adopted for this purpose [14]. 

Depending on the potential of the adopted common point, the object can be variously divided into 

parts associated with the particular conductors and the total power will be the sum of the powers of all the 

parts. A quantity having this property is additive and satisfies the principle of energy conservation. The same 

procedure is followed for the remaining conductors.  

Since instantaneous power is an additive quantity, it is enough to analyze only one arbitrarily 

selected part of the object, assigned to one (the k-th) current conducting wire. When electric energy is 

converted into work and heat, the average instantaneous power of the electrical object, in energy conversion 

period T is not equal to zero since this instantaneous power parameter (called active power) is also the scalar 

product of voltage and current, referred to the period, i.e. it specifies the electric current work in a unit time 

(1). 

Being defined by the linear operation on the additive quantity (instantaneous power), active power is 

an additive quantity. Time T is a period if the current or voltage waveform is periodic. Generally, it is an 

interval of continuous functions u, i which have the same values at the interval’s ends. 

Referring to Faraday’s law u(t) = d/dt or the definition of current intensity i(t) = dq/dt, the 

instantaneous power of the system can be written as: 

 

𝑝(𝑡) =
𝑑𝜓

𝑑𝑡
𝑖(𝑡) , or  𝑝(𝑡) = 𝑢(𝑡)

𝑑𝑞

𝑑𝑡
 . (11) 

 

By changing the integration limits in formula (2) we obtain that active power can also be geometrically 

defined as follows 

 

𝑃 =
1

𝑇
∮ 𝑖 𝑑𝜓  (12) 

 

or in the second form 

 

𝑃 =
1

𝑇
∮ 𝑢 𝑑𝑞 , (13) 

 

where:  - a magnetic flux, q - an electric charge 

 

𝜓 = ∫ 𝑢 𝑑𝑡 ,  𝑞 = ∫ i𝑑𝑡. (14) 

 i1 in

in-1

ik

i2

u1 u2

uk

un-1 un

Electrical object
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According to (12) and (13), the surface areas of the closed loops formed by the characteristics of the object’s 

components in coordinates i, or in coordinates u, q represent the geometric picture of active power (the 

amount of energy delivered or received during one period T). For sinusoidal current and voltage waveforms - 

mutually shifted by an angle different from 0 and 180 degrees - the loop has the shape of an ellipse.  

 

 

3. REACTIVE POWER 

Reactive power is to describe the energy processes arising from the existence of electric energy in 

the form of electric, magnetic, and electromagnetic fields. They are elementary processes which may run 

irrespective of the conversion of electric energy into work and heat. Since the general definition of active 

power is based on the scalar product of two functions: u and i, (2), a generalized reactive power definition is 

obtained by replacing one of the functions, i.e., current function ik, with an orthogonal function. Reactive 

power defined in this way is an additive quantity. 

A function orthogonal to periodic current i is each of its odd-order time derivatives and each 

multiple integrals with odd multiplicity (analogously, it can be done with voltage). Both Illovici [14] and the 

IEEE 1459-2010 [17] standard mention equivalently a first-order function: derivative or integral. From all the 

functions only one – the first current derivative – forms with voltage u a scalar product always equal to zero 

when the electric energy is completely dissipated in the object [15], [16], [18]. 

Geometrically, the scalar product of the voltage and the current derivative is equal to the scalar 

product of the current and the voltage derivative. 

 

𝑄𝑑 =
1

𝑇𝜔
∫ 𝑢

𝑑𝑖

𝑑𝑡
𝑑𝑡 = −

1

𝑇𝜔
∫ 𝑖

𝑑𝑢

𝑑𝑡
𝑑𝑡 =

𝑇

0

1

2𝜋
∮ 𝑢 𝑑𝑖

𝑇

0
= −

1

2𝜋
∮ 𝑖 𝑑𝑢  (15) 

 

is the area of the loop formed by the characteristic of the object in coordinates i, u.  

Also, first order integrals (14) are a function orthogonal to current i and to voltage u. The integral 

and voltage u form the scalar product. 

 

𝑄𝑖 =
𝜔

𝑇
∫ 𝑢𝑞𝑑𝑡 = −

𝜔

𝑇
∫ 𝑖𝜓𝑑𝑡 =

𝑇

0

𝜔

𝑇
∮ 𝑞 𝑑𝜓

𝑇

0
= −

𝜔

𝑇
∮ 𝜓 𝑑𝑞  (16) 

 

whose geometric picture is the area of the loop in coordinates q,. 

For sinusoidal current and voltage waveforms, both reactive power formulas (15) and (16) give the 

same results. Reactive powers calculated from (15) and (16) give different values only for both non-sinusoidal 

waveforms. In order to distinguish reactive powers resulting from formula (2) - by inserting the orthogonal 

waveform obtained by applying differentiation, the index d was added (Qd), while in the case of integration the 

index i was added (Qi). In the presence of non-sinusoidal voltage and current waveforms, the reactive powers 

Qd and Qi exhibit differing values. In [14], the geometric mean of these powers is employed, denoted as 

equivalent reactive power. Relations (15) and (16) in the frequency domain take the form of series. 

 

𝑄𝑑 = ∑ 𝑛𝑈𝑛𝐼𝑛 𝑠𝑖𝑛 𝜑𝑛
∞
𝑛=1  (17) 

 

𝑄𝑖 = ∑
1

𝑛
𝑈𝑛𝐼𝑛 𝑠𝑖𝑛 𝜑𝑛

∞
𝑛=1 . (18) 

 

Power Qi - formulas (16) and (18) - are not recommended for calculating and cannot be the basis for 

a reactive power definition since Qi is not always equal to zero when the electric energy in the object is 

completely dissipated. For a voltage having the first and third harmonic. 

 

𝑢 = 𝑈1 sin 𝜔𝑡 + 𝑈3 cos 3𝜔𝑡, (19) 

 

when the factor of voltage and current proportionality uniquely depends on voltage in accordance with the 

equation. 

 

𝑅(𝑢) = 𝑎0 + 𝑎2𝑢2, (20) 

 

Characteristics in coordinates i, u and in coordinates q,, with waveforms as in Figure 2 are obtained. The 

characteristic in coordinates i, u Figures 2(a) is a line segment, and it correctly indicates the absence of 

reactive power while the characteristic in coordinates q, Figures 2(b) forms a loop whose area is not equal 

to zero. The energy dissipated during one period is equal to the area of the loop in coordinates u,q - 

Figure 3(a) and ,i - Figure 3(b). 
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(a) (b) 

 

Figure 2. Reactive power loops. Tahe characteristics of the nonlinear object completely dissipating electric 

energy, (a) in current-voltage coordinates and (b) in electric charge- magnetic flux coordinates. The 

characteristics were obtained from (19) and (20) for: U1=1V, U3=1/3 V,  = 2, a0=1 Ω, a2 = 1 Ω/V2 

 

 

  
(a) (b) 

 

Figure 3. Active power loops of a nonlinear resistor in (a) electric charge - voltage coordinates and  

(b) current - magnetic flux coordinates 

 

 

The dissipation of electric energy and the accumulation of electric energy in the form of an electric 

field and a magnetic field in the object can be approximately modelled by an electric circuit as shown in 

Figure 4. The current drawn by this circuit depends on the applied voltage, according to: 

 

𝑖 =
𝑢

𝑅
+

1

𝐿
𝜓 + 𝐶

𝑑𝑢

𝑑𝑡
. (21) 

 

 

 
 

Figure 4. An equivalent circuit of the object 

 

 

Considering that the resistance which models energy dissipation must uniquely depend on voltage, 

the reactive power of an equivalent circuit part with resistance R is equal to zero. If the object includes 

ferromagnetic circuits, then inductance L of the equivalent circuit should be treated as a time-dependent 

quantity. Thus, the reactive power Qd of a component with inductance L is equal to, 

 

CR
i

L
u

Electrical object
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𝑄𝑑 =
1

2𝜋
∫

𝑑

𝑑𝑡

𝑇

0
(

1

𝐿
) 𝑢𝜓𝑑𝑡 +

1

2𝜋
∫

1

𝐿
𝑢2𝑇

0
𝑑𝑡. (22) 

 

Inductance L of the equivalent circuit component modelling the occurrence of electric energy in the form a 

magnetic field must uniquely depend on equivalent flux . Thus, the first integer in (22) can be written as a 

loop area in coordinates , f(). 

 
1

2𝜋
∫

𝑑

𝑑𝑡

𝑇

0
(

1

𝐿
) 𝑢𝜓𝑑𝑡 = ∮

𝑑

𝑑𝑡
(

1

𝐿
) 𝜓𝑑𝜓 = ∮ 𝑓(𝜓) 𝑑𝜓 = 0. (23) 

 

Since the graph of periodic function f() is a line segment, the loop area is equal to zero. Thus, reactive 

power Qd of the inductance component can be determined through averaged inductance L. 

 

𝑄𝑑 =
1

2𝜋
∫

1

𝐿
𝑢2𝑇

0
𝑑𝑡 =

𝑇

2𝜋

1

𝐿
𝑈2 , (24) 

 

where U – a rms voltage. 

The reactive power of a component with constant capacitance C is 

 

𝑄𝑑 =
𝐶

2𝜋
∫ 𝑢

𝑇

0

𝑑2𝑢

𝑑𝑡2 𝑑𝑡 = −
𝐶

2𝜋
∫ [

𝑑𝑢

𝑑𝑡
]

2𝑇

0
𝑑𝑡 = −

𝑇𝐶

2𝜋
(𝑈̇)

2
 , (25) 

 

where 𝑈̇ – a rms value of the derivative of voltage u. 

The reactive power of the whole equivalent circuit as shown in Figure 4 is the sum of (24) and (25). 

 

𝑄𝑑 =
𝑇

2𝜋
[

1

𝐿
𝑈2 − 𝐶(𝑈̇)

2
]. (26) 

 

It follows from (26) that the reactive power of an inductive object (e.g., an electric motor) can be 

compensated to zero by means of a capacitor with a proper capacitance. The optimum capacitance C(opt) is 

calculated from the reactive power (Q’d) zeroing condition. 

 

𝐶(opt.) =
2𝜋

𝑇

𝑄𝑑
′

(𝑈̇)2 (27) 

 

Generalized reactive power Qd is measured before a capacitor with capacitance C(opt.) is connected to the 

object or before this capacitance is changed. 

Result (27) is exactly equivalent to the optimum capacitance, obtained under different assumptions 

in [11], [19]–[22], at which the minimum of rms current occurs. An example calculation for minimizing the 

current of an induction motor using a capacitor is provided in [23]. Thus, if the generalized reactive power of 

a given conductor becomes zero, the rms current reaches a minimum which does not depend on the resistance 

in the equivalent circuit. This property can be formally proved if the equivalent resistance uniquely depends 

on voltage and when the inductance uniquely depends on the magnetic flux . Measurements show that when 

the generalized reactive power Qd becomes zero [22], [23], the minimum rms current occurs also when the 

above relations are non-unique. Reactive powers Qd and Qi can be used to determine the constant parameters 

L, C of a parallel or series equivalent circuit of the receiver [10]. A necessary condition is that the values of 

Qd and Qi are different, which occurs when the voltage and current are non-sinusoidal. 

 

 

4. METHODS FOR MEASURING REACTIVE POWER IN DIGITAL METERS 

Modern electricity meters are composed of analogue-to-digital converters (ADCs) for measuring 

instantaneous voltage and current values, and a signal processing unit. This unit calculates power, energy, 

power factors, and other parameters, including those related to power quality. A meter can be implemented as 

a specialized integrated circuit (as shown in Figures 5(a)) or as a combination of a microprocessor with 

ADCs. The microprocessor or computational unit can be programmed to determine reactive power (energy) 

according to user requirements.  

For sinusoidal current and voltage waveforms, all dependencies presented in the preceding section 

yield the identical value of reactive power. The meter manufacturer is not constrained to a specific method 

for measuring reactive power. They can choose any dependency or implement the algorithm that is simplest 

to implement, provided it satisfies the established design criteria (e.g., utilization of a cost-effective 

microprocessor) [24]–[26]. 
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One such straightforward algorithm involves shifting the voltage samples relative to the current 

samples by an amount corresponding to one-quarter of the period of the measured waveform, see  

Figure 5(b). This 90-degree phase shift between current and voltage occurs exclusively at the fundamental 

frequency. For harmonics, the phase shift is multiplied proportionally, which results in a final value that is 

the sum of the fundamental harmonic reactive power and the active or reactive power of the harmonics (27). 

 

𝑄𝑇

4

=
1

𝑇
∫ 𝑢(𝑡)𝑖 (𝑡 −

𝑇

4
) 𝑑𝑡

𝑇

0
=  𝑄1 − 𝑃2 − 𝑄3 + 𝑃4 + 𝑄5 − (27) 

 

 

  
(a) (b) 

 

Figure. 5. Reactive energy (a) IC Functional block diagram of energy metering device ADE9078 – [27] and 

(b) reactive power calculation from 90º phase shift (27), ADE7758 [28] 

 

 

The measurement block of the integrated meter measuring reactive energy from the "power triangle" 

in accordance with equation (5) is implemented in many IC like [29]. Differences in the results of measuring 

the reactive energy of objects, resulting from the calculation algorithm used in the meter, are discussed many 

times in scientific studies, e.g., [30]–[33]. Standardization requirements for reactive energy meters stipulate 

metrological verification under sinusoidal conditions [1], [2]. Meters incorporating higher-harmonic filters 

effectively function as fundamental-component reactive energy meters, distinct from active energy meters. 

Other approaches to measuring power and reactive energy are being undertaken [34]–[36]. They have not yet 

been implemented in commercial reactive energy meters. Similarly, the recommendations of the IEEE  

1459-2010 standard [17] have not been implemented. 

 

 

5. CONCLUSION 

There is no universally accepted theory of reactive power for non-sinusoidal current and voltage 

waveforms. Fundamental reactive energy meters are used to account for reactive energy. The meters should 

use a reactive power measurement algorithm that considers distorted waveforms. A unique definition of 

additive reactive power, covering non-sinusoidal, periodical waveforms, is obtained by replacing the current 

in the equation (the scalar product of voltage and current) defining active power with a special orthogonal 

function – a derivative of current or voltage. 

Geometrically, the scalar product of voltage and current derivative is the surface area of the loop 

formed by the object characteristic in current-voltage coordinates (i, u). If the loop area in coordinates i, u, 

divided by 2 is adopted as the generalized definition of reactive power for periodical waveforms, then the 

previously defined reactive power for sinusoidal voltage and current waveforms will be its special case. The 

zero value of the reactive power Qd of the object indicates that the rms current in this object has reached its 

minimum. This state can be achieved by connecting a capacitor – a simple passive compensator.  
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