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 The study investigates a novel stretched-compressed exponential low-pass 

(SCELP) filter to denoise electrocardiogram (ECG) signals. As an extension 

of Gaussian filter and unlike other denoising filters, the SCELP filter utilizes 

the stretched-compressed exponential function (SCEF) in the convolution 

kernel, being the Gaussian function its particular case. A MATLAB 

implementation is provided with a single parameter (β), which allows to 

modify the filter strength, to increase the signal-to-noise ratio (SNR) and 

reduce the mean squared error (MSE). The SCELP filter’s advantages over 

traditional denoising filters (i.e., Gaussian, Mittag–Leffler, and Savitzky-

Golay filters) were assessed on 100 ECG signals, 50 normal and 50 

abnormal (affected by sleep apnea), provided by the PhysioNet dataset. The 

SCELP filter’s efficacy in rejecting noise was evaluated as the β parameter 

varies, quantifying the filters' performance in terms of mean SNR and MSE 

to determine the optimal β value. The obtained results showed that the 

SCELP filter's best performances are achieved for β equal to  1.6 (i.e., 

16.9508 dB and 13.7574 dB SNR values, and 0.01025 and 0.01178 MSE 

values for normal and abnormal ECGs, respectively). Furthermore, the 

SCELP filter was tested on ECG signals with added white noise; compared 

to Gaussian, Mittag–Leffler, and Savitzky-Golay filters, the SCELP filter 

yields better performance regarding SNR (16.495 and 14.940 dB) and MSE 

(0.0106 and 0.0114) values, for normal and abnormal ECGs, respectively, 

suggesting its applicability for ECG signals' denoising. 
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1. INTRODUCTION 

Filtering a signal involves suppressing some of its characteristics or deleting unwanted components. 

Usually, it means eliminating specific frequencies or frequency ranges from a noisy signal's intended use. 

However, specific frequency components can be selectively removed by sparingly filtering in the frequency 

domain without causing interference. Filters are widely used in many applications, including computer 

graphic, radar, image processing, control system sensors, signal processing, electronics, and tele-

communications. Many types of filters are commonly employed, such as the Laplacian filter [1], Bayesian 

one [2], and the Gaussian one [3]. A significant area of applications is filtering data related to biomedical 

https://creativecommons.org/licenses/by-sa/4.0/
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signals, such as electroencephalogram (EEG), electrocardiogram (ECG), and electromyogram (EMG). 

Numerous denoising approaches are proposed in the literature using different types of filters [4]–[6]. 

Heart-related anomalies can be identified and detected using ECG signals, commonly employed as a 

diagnostic tool for associated illnesses [7], [8]. For precise categorization or decision-making, the ECG 

signal's quality is essential [9], [10]. Denoising is essential in ECG processing because high-quality, noise-

free signals are required for reliable diagnosis and detection of cardiac diseases [11]. ECG signals are often 

contaminated by various types of noise, such as baseline wander, power line interference, and muscle 

artifacts, which can distort the original ECG signal [12]. The noise makes it difficult to identify important 

features, such as the P-wave, QRS complex, and T-wave, essential for diagnosing conditions like arrhythmias 

or ischemia. Several types of filters for biomedical signal processing have been used: Gaussian, Mittag 

Leffler, Golley, adaptive, and median filters. They were analyzed in terms of effectiveness in suppressing 

fluctuations due to artifacts, power line noise and other noise sources in order to improve the original ECG 

signal’s quality [8], [13]–[15]. In signal filtering, a key advancement is the development of generalized filters 

such as the Mittag-Leffler one, which provides additional user-adjustable parameters, ensuring higher 

flexibility than traditional exponential or Gaussian filters. This filter type allows for a better balance between 

noise reduction and signal retention by tuning the parameters, making it particularly effective for noisy ECG 

signals. This approach enhances the filter performance by addressing challenges such as filtering stochastic 

components while reducing computational complexity and outperforming conventional filters [16]. For 

instance, in [17], the authors introduced a Mittag-Leffler filter, an extension of the Gaussian one, using the 

Mittag-Leffler function in its probability-density function and convolution kernel. The filter has three 

adjustable parameters influenced by a forgetting factor, offering advantages over classical Gaussian filtering 

in tasks such as ECG signals denoising. The implementation details and the developed MATLAB function 

are provided.  

In [18], the authors proposed the Alexander fractional differential window (AFDW) filter for ECG 

signal denoising based on the generalized Alexander polynomial and fractional calculus; it uses a forward 

and backward filtering approach, averaging the coefficients of both filters. Based on morphological power 

preservation measure (MPPM), the results demonstrated that the filter preserves signal power and QRS 

morphology. The study in [19] proposed fractional-order wavelet filters for ECG signal denoising, replacing 

traditional low- and high-pass filters. The fractional wavelets were compared using appropriate thresholding 

and wavelet decomposition. Results showed superior performance of fractional wavelets compared to 

traditional wavelets, especially in removing high-frequency noise without requiring prior frequency 

knowledge. Furthermore, a new algorithm for denoising ECG data contaminated by wide-band noise was 

proposed, where the ECG signal is segmented into components with disjoint time and overlapping frequency 

domains [20]. Each segment is denoised using ideal filters designed by minimizing a penalized least-squares 

function; the method outperforms existing techniques. Also, Savitzky-Golay filters were useful for efficiently 

denoising the ECG signals; in [21], a low-distortion adaptive Savitzky-Golay (LDASG) filtering method for 

ECG denoising was proposed, which, unlike standard Savitzky-Golay filter, uses discrete curvature 

estimation to adjust for signal variations, reducing distortion while maintaining effective data smoothing. 

Based on the traditional exponential filter, this article investigates a novel stretched-compressed 

exponential filter for denoising the ECG signals. Given the effectiveness of the exponential filter, which can 

lead to the Gaussian one, especially in ECG signals' processing, a novel idea emerged for a stretched-

compressed exponential low-pass (SCELP) filter. The SCELP filter retains the basic structure of the 

exponential filter, but it has superior performance by adapting its shape, making it more effective in handling 

ECG signals while maintaining simplicity and efficiency. The SCELP filter employs an exponential function 

as a kernel to the standard exponential Gaussian filter that mathematically modifies the input signal through 

convolution. Like the exponential filter, featured by an exponential function as impulse response, the SCELP 

filter has the advantage of not overshooting the signal, minimizing rise and fall times [22]–[27]. 

A MATLAB implementation of the SCELP filter has been developed and tested, denoising publicly 

available ECG samples (50 normal and 50 abnormal) from the PhysioNet database by varying the β 

parameter. The characterization results demonstrated that a β value ranging from 1 to 2 provides optimal 

performance in terms of mean SNR and MSE values. Furthermore, the capability of SCELP filter in treating 

signals affected by additive white noise was tested. Compared with other filter typologies (i.e., Gaussian, 

Mittag–Leffler, and Savitzky-Golay), the proposed SCELP filter provides better performance, as detailed in 

section 3. The main contributions to the proposed research article are the following: 

- A novel stretched-compressed exponential low-pass filter is presented, whose impulse response is 

optimized as a function of the β parameter to maximize the SNR and minimize MSE, outperforming 

traditional filters typically used in denoising ECG signals. 

- The proposed SCELP filter has been characterized, proving its effectiveness in denoising the ECG signals 

by varying the hidden exponential parameter (β) to determine the optimal filter setting. 
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- A comparative analysis of the SCELP filter, in terms of mean SNR and MSE, with different filter 

typologies (i.e., Gaussian, Mittag–Leffler, and Savitzky-Golay filters) is presented, demonstrating the 

superiority in denoising the ECG signals. In addition, the SCELP filter’s performance was evaluated on 

ECG signals affected by additive white noise and compared with the other filters' typologies, 

demonstrating its effectiveness and slight superiority in terms of mean SNR and MSE. 

The research article is organized as follows: in section 2, the filter's mathematical representation is 

proposed, and the ECG signals' dataset used to evaluate the filter performance is described. The results 

related to the SCELP filter characterization are reported in section 3, demonstrating the best performance of 

the proposed filter compared to other filter typologies. Section 3 also reports on the discussion on the SCELP 

filter’s performance and a comparative analysis with other common ECG-denoising filters. Finally, section 4 

summarizes the main results presented in the research work and future perspectives. 

 

 

2. PROPOSED METHOD 

This section introduces the fundamentals and definitions of the exponential filters and their main 

properties; then, the stretched-compressed exponential function and distribution are presented, which, 

integrated into the kernel, are used for defining the novel stretched-compressed exponential filter. Finally, the 

MATLAB implementation of the proposed customizable exponential filter and metrics to evaluate its 

performance in denoising the ECG signals are reported. 

 

2.1.  Exponential filter: mathematical formulation and step response 

The exponential filter is one of the simplest forms of low-pass filter, with high frequencies 

attenuated and low frequencies passed unchanged. The sampling interval is the only other tuning parameter 

available, and the previous output is the only variable that needs to be stored. It is an infinite impulse 

response (IIR) auto-regressive filter, meaning that the effects of an input change on the filter output diminish 

exponentially, taking into account the computational limits of the processing and display devices. This filter 

is also known as exponential smoothing in some academic fields. The exponential filter is referred to as an 

exponentially weighted moving average (EWMA) or simply an exponential moving average (EMA) filter in 

certain fields, such as investment research; for this filter typology is improperly used the term “moving 

average” referred to the time-series analysis, in the classic autoregressive moving average (ARMA) model 

since a moving average filter just considers the current input rather than the input history. The exponential 

filter is the analog counterpart of the first-order lag frequently employed in the analog modeling of 

continuous-time control systems for discrete time. An RC filter, constituted by a single resistor and capacitor, 

is a first-order lag in electrical circuits. When highlighting the parallelism with analog circuits, the time 

constant, represented by the Greek symbol tau (τ), is the only tuning parameter; given the same time 

constant, the values at the discrete sampling periods perfectly match the corresponding continuous-time lag. 

The following equations illustrate the link between the digital implementation (i.e., 𝑎 smoothing 

constant) and time constant (τ). To ensure that the output and input signals are identical under steady-state 

conditions, the exponential filter combines the most recent input data with a weighted combination of the 

prior estimate (output), with the total weights set to 1 as shown in Figure 1. The output 𝑦(𝑘) vs input 𝑥(𝑘) 

relationship of an exponential filter is expressed as (1): 

 

𝑦(𝑘) =  𝑎 ∗  𝑦(𝑘 − 1) +   (1 − 𝑎) ∗  𝑥(𝑘) (1) 

 

where 𝑥(𝑘) is the raw input at time step k, 𝑦(𝑘) the filtered output at time step k, and 𝑎 a parameter (called 

smoothing constant) between 0 and 1 (typical values are chosen in the range 0.8 ÷ 0.99). 

 

 

 
 

Figure 1. Block diagram of a generic discrete-time filter 

 

 

The smoothing constant is computed and saved for convenience only in cases when the application 

developer specifies a new value for the desired time-constant 𝜏 in systems with a fixed sampling period T: 

 

𝑎 = 𝑒
(−

𝑇

𝜏
)
  (2) 
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where 𝜏 is the filter time constant in the same time units as T. The exponential function in (2) must be applied 

to each time step in systems where data sampling occurs at irregular intervals (namely, T is not constant). 

Usually, the first input is used to initialize the filter output. There is no filtering if the smoothing constant (𝑎) 

goes to zero, namely when the time constant approaches zero, and consequently, the output (𝑦(𝑘)) equals the 

new input (𝑥(𝑘)). Otherwise, if the smoothing constant (𝑎) is close to 1, and therefore τ increases, the new 

input is essentially ignored, resulting in extremely strong filtering. 

The filter equation can be rearranged into the following equivalent predictor-corrector relationship: 

 

𝑦(𝑘) = 𝑦(𝑘 − 1) + (1 − 𝑎) ∗ (𝑥(𝑘) − 𝑦(𝑘 − 1)) (3) 

 

Therefore, the filter output is anticipated to remain constant from the prior estimate 𝑦(𝑘 − 1) plus a 

corrective term based on unexpected contribution, given by the difference between the new input 𝑥(𝑘) and 

forecast 𝑦(𝑘 − 1); the (3) makes this prediction clearer. This form may also be obtained by considering the 

exponential filter as a straightforward special case of a Kalman filter, which is the best solution for an 

estimation problem under specific presumptions. Figure 2 shows the unit-step response of an exponential 

filter, obtained by abruptly changing the input value to 1 from zero initial value. 

 

 

 
 

Figure 2. Step response of the exponential filter: input (blue trace) and output (purple trace) plots as a 

function of t/ 

 

 

The exponential filter's step response enables more readily predicting the outcomes for any time 

interval and value of the filter time constant (𝜏) by dividing the time by 𝜏. The filter output climbs to 63.21% 

of its final value after a single 𝜏 and increases to 86.47% after two-time constants; after 3, 4, and 5τ the 

output reaches 95.02%, 98.17%, and 99.33% of the final value, respectively. These percentages are 

unchanged for any input step's amplitude, because the filter is linear. The filter output transient can be 

considered exhausted after a time equal to 4 or 5 time constants, even if the step response, in theory, takes 

unlimited time. Other settings include 𝑎=0.90 and 𝑎=0.998, respectively, corresponding to 𝜏=9.49 and 499.5 

minutes for a sampling period T of one minute. One way to arrange the exponential filters is in series, 

resulting in greater attenuation of high-frequency noise but also causing a greater output delay, often 

excessive for control loops or diagnostic applications. A non-linear exponential filter is an exponential filter's 

variant that responds more quickly to greater input changes and is designed to filter out noise substantially 

within a specific amplitude range [28]. In essence, the exponential filters operate by assuming that the signal 

is a random walk or Brownian motion pattern, with random process noise as the only variation source. Then, 

before displaying more recent data, the previous value represents the best estimate of the subsequent value. 

All that remains of the final estimate is a weighted average of the new observed value and the expected one. 

Creating a representative dataset of the system is helpful for some applications, such as 

sophisticated control systems as well as fault detection and isolation algorithms, because it serves as the basis 

for understanding the system’s behavior, identifying anomalies, and designing effective control strategies. 

The dataset captures the relationships between the system's inputs, outputs, and internal states under normal 

and abnormal conditions, making it an invaluable resource for analysis and decision-making. Some control 

techniques interact directly with that dataset without the need for an explicit model of the system, including 

the model-free binary decision and action control (BDAC) approach and some fault isolation and detection 

strategies. These model-free methods are particularly useful in systems where developing an accurate 

mathematical model is challenging due to complexity, nonlinearity, or uncertainty. In other cases, the dataset 

serves as a training set for creating models that are subsequently used for control or diagnosis. This approach 

is particularly relevant in model-based approaches, where a mathematical or data-driven model of the system 
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is constructed and utilized for decision-making. Neural network (NN) models, model-based control (like 

model predictive control (MPC)), and traditional regression models fall into the category of the model-based 

approach. A complete multi-variable method known as real time exponential filter clustering (RTEFC) has 

been created that combines exponential filtering with real-time clustering [29]. 

 

2.2.  Stretched-compressed exponential function and distribution 

The stretched exponential function can be expressed as (4): 

 

𝐼(𝑡) = 𝐼0 𝑒
−(

𝑡

𝜏
)

𝛽

 (4) 

 

It is achieved by fitting the exponential function with a fractional power law, which is only significant for 

argument t between 0 and +∞ in most applications [30]. The standard exponential function is obtained when 

𝛽 = 1. The function gets its name from the characteristic stretching of the log 𝐼 against 𝑡 graph, which has a 

stretching exponent 𝛽 between 0 and 1. Another practical significance is attached to the compressed 

exponential function (with 𝛽 >1), with the notable exception of 𝛽=2, which yields to the normal distribution. 

Figure 3 plots the 𝐼(𝑡) function reported in (4) as a function of the 𝑡/𝜏 ratio, varying the 𝛽 parameter. 

 

 

 
 

Figure 3. Plot of I(t)/𝐼0 vs. (t⁄τ), showing the stretched exponential function for several 𝛽 values 

 

 

In mathematics, the complementary cumulative Weibull distribution is another name for the 

stretched exponential function [31]. The characteristic function of the Lévy symmetric alpha-stable 

distribution is also the stretched exponential one, or in simpler terms, the Fourier transform [30]. The 

stretched exponential function is a phenomenological explanation of relaxation in disordered systems 

frequently utilized in physics. The Kohlrausch function was proposed from R. Kohlrausch to explain how a 

capacitor discharges [32]. The Fourier transform of the stretched exponential function is also known as the 

Kohlrausch–Williams–Watts (KWW) function; it was first applied in 1970 by Williams and Watts to 

characterize the dielectric spectra of polymers [33]. For small-time arguments, the Cole-Cole and Cole-

Davidson equations, and the Havriliak-Negami relaxation are examples of the primary dielectric models 

whose time-domain charge response is correlated with the KWW function [34]. In phenomenological 

applications, it is often unclear whether the stretched exponential function should describe the integral 

distribution function, the differential one, or neither. The asymptotic decay is the same in all cases, but the 

power law pre-factor varies, leading to a more ambiguous fit than simple exponentials. The asymptotic decay 

has been shown to be a stretched exponential [30], [31], although the pre-factor is typically an unrelated 

power. 

There have been attempts to explain the stretched exponential behavior using a linear superposition 

of simple exponential decay, as seen in the distribution function for the stretched exponential function. 

Therefore, a nontrivial relaxation time distribution, 𝜌(𝑥; 𝛽), is required, which is implicitly defined by (5): 

 

𝑒−𝑡𝛽
= ∫ 𝑒

−𝑡

𝑥
∞

0
𝜌(𝑥; 𝛽)𝑑𝑥 (5) 
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Alternatively, a distribution related to the parameter 𝛽 is given: 

 

𝐺(𝑥; 𝛽) = 𝑥𝜌(𝑥; 𝛽) (6) 

 

where 𝜌(𝑥; 𝛽) can be expressed as (7): 

 

𝜌(𝑥; 𝛽) = −
1

𝜋𝑥
 ∑

(−1)𝑘

𝑘!

∞
𝑘=0 sin(𝜋𝛽𝑘) Γ(𝛽𝑘 + 1) 𝑥(𝛽𝑘)  (7) 

 

where Γ is the Gamma function. For rational values of 𝛽, 𝜌(𝑥; 𝛽) can be calculated in terms of elementary 

functions. But the expression is, in general, too complex to be useful except for the case β=1/2, where the 

distribution will be as (8): 

 

𝐺(𝑥; 1 2⁄ ) = 𝑥𝜌(𝑥; 1 2⁄ ) =
1

2√𝜋
 √𝑥𝑒

−𝑥

4  (8) 

 

Figure 4 shows the function in (8) for different values of the 𝛽. 

 

 

 
 

Figure 4. Plot of the stretched exponential distribution function 𝐺(𝑥; 𝛽) vs. (x) for different 𝛽 values 

 

 

The Fourier transform of the stretched exponential function has to be computed using a series 

expansion or numerical integration; the Havriliak–Negami function can be used to approximate the Fourier 

transform [13]. However, modern numerical computation is so efficient that the Kohlrausch–Williams–Watts 

function should always be used in the frequency domain [35]. 

In most cases, the filter aims to separate the actual signal from the noisy measured signal: 

 

𝑦(𝑡) = 𝑦𝑑(𝑡) + 𝑦𝑠(𝑡) (9) 

 

where 𝑦(𝑡) is the observed (measured) signal at the time 𝑡, 𝑦𝑑(𝑡) the true, deterministic part of the signal, 

and 𝑦𝑠(𝑡) a stationary noise, a stochastic (random) part in the signal, which is assumed with zero mean value. 

An exponential low-pass filter is featured by an impulse response equal to the exponential function 

𝜌(𝑥; 𝜎); thus, the output of the exponential filter (𝑦𝐸𝐹(𝑡)) is defined as the convolution of the measured 

(observed) signal 𝑦(𝑡)and the impulse response 𝜌(𝑥; 𝜎): 

 

𝑦𝐸𝐹(𝑡) = 𝑦(𝑡) ∗ 𝜌(𝑡; 𝜎) = ∫ 𝑦(𝑡 − 𝜏)
∞

−∞
𝜌(𝜏; 𝜎)𝑑𝜏 (10) 

 

2.3.  Proposed compressed exponential filter and performance metrics 

The novel exponential filter, hereinafter indicated as the stretched exponential filter, is defined by 

extending the exponential function to the stretched exponential function with a single parameter. Therefore, 

the output of the stretched exponential filter 𝑦𝑆𝐸𝐹(𝑡) is given by: 
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𝑦𝑆𝐸𝐹(𝑡) = 𝑦(𝑡) ∗ 𝜌(𝑡; 𝛽) = ∫ 𝑦(𝑡 − 𝜏)
∞

−∞
𝜌(𝜏; 𝛽)𝑑𝜏 (11) 

 

where: 
 

𝜌(𝑡; 𝛽) =
1

𝜎√2𝜋
 𝑒

−(
1

2
(

𝑡−𝜇

𝜎
)

2
)

𝛽

 
 (12) 

 

Therefore, the filter output is expressed as (13): 
 

𝑦𝑆𝐸𝐹(𝑡) = 𝑦(𝑡) ∗ 𝜌(𝑡; 𝛽) =
1

𝜎√2𝜋
 ∫ 𝑦(𝑡 − 𝜏)

∞

−∞
𝑒

−(
1

2
(

𝑡−𝜇

𝜎
)

2
)

𝛽

 
𝑑𝜏 (13) 

 

When 𝛽 = 1 , a classical Gaussian filter is obtained, additionally, various filter typologies are achieved by 

tuning the 𝛽 hidden factor, allowing to modify the curve of the probability-density function. Conversely, 

different distribution shapes necessitate the usage of distinct distribution functions, such as the normal 

distribution, the Cauchy one, and others of this family. Compared to a classical one-parameter filter, the 

proposed one is more versatile given the extra tuning parameters 𝛽, enabling modifying the distribution curve 

and the exponential stretch and, thus, providing more degrees of freedom. 

The signal-to-noise ratio (SNR) and mean square error (MSE) are usually used in the literature to 

evaluate the filter's ability to reduce the noise [36]. This article uses the following defined evaluation markers 

to compare the proposed algorithm with the existing methods and assess its effectiveness in reducing the 

noise. The definition of the output signal-to-noise ratio is as (14): 
 

𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10 (
∑ [𝑥(𝑖)]2𝑖=𝑁

𝑖=1

∑ [𝑥(𝑖)−𝑥(𝑖)̂ ]
2𝑖=𝑁

𝑖=1

) (14) 

 

where 𝑥(𝑖) are the original (ideal) signal's samples, while 𝑥̂(𝑖) are the samples of the filtered ECG signal 

[37]. The mean square error is defined as in [15]; both, the mean SRN and MSE values calculated on all ECG 

signals in the dataset were considered for testing the effectiveness of the proposed SCELP filter. 

 

𝑀𝑆𝐸 =
1

𝑁
∑ [𝑥(𝑖) − 𝑥̂(𝑖)]2𝑖=𝑁

𝑖=1  (15) 

 

A technique to implement the Gaussian filter in the discrete-time domain is to follow the 

instructions in [38], [39]. Since the Gaussian filter is not causative, the time-domain filter window is 

symmetric. Because the Gaussian function for x ∈(-∞,∞) would theoretically require an infinite window 

length, the Gaussian filter is physically unfeasible. In practice, it makes sense to reduce the filter window's 

length and apply it straight to narrow windows; however, occasionally, this shortening can result in serious 

mistakes. The filter cannot be applied to the signal being processed until the incoming samples occupy the 

filter window, resulting in a latency in real-time systems. In convolution, the Gaussian filter kernel is 

continuous, but it is commonly approximated by a discrete sampled Gaussian kernel created by sampling 

points from the continuous kernel. This discrete version is the most widely used substitute for the continuous 

Gaussian kernel. The summing process across all samples can be used in place of an integration operation in 

convolution [40]. 

It is also commonly recognized that traditional moving average filters, or weighted moving average 

filters with stretched exponential, are not always appropriate for allocating weights to preceding filtered 

signal samples [41]. A common requirement is that samples with a high proportion of stochastic (noisy) 

components should be assigned lower weights rather than simply assigning lower weights to older samples. 

By prioritizing more recent samples, such filters can respond faster to changes in deterministic or stochastic 

components. To be used even in digital controllers with limited computing power, the filtering algorithm 

must meet two requirements: reasonably simple to implement and effective even when the measured 

waveforms contain significant stochastic noise. Similar challenges to those discussed earlier may arise when 

implementing the stretched exponential filter. Specifically, while flexible in its weighting of past samples, the 

stretched exponential function can be computationally demanding and sensitive to parameter choices. In real-

time applications, evaluating the function over extended time ranges can pose practical difficulties, 

particularly in systems with limited computational resources. Additionally, the absence of a natural cutoff in 

the stretched exponential function necessitates careful truncation to balance accuracy and computational 

efficiency, further complicating its use in real-time scenarios. A MATLAB function for the stretched 

exponential function is proposed in this research work; its header is given below: 
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function [y]=SEF (beta, x) 

% SEF (beta, x) is the stretched exponential function 

% for each element of x and beta are scalars, 

% array. The output is of the same size as x. 

 

The filter output expression reported in the (13) can be implemented by a MATLAB function 

[y]=SEF (beta, x). The MATLAB function of developed stretched exponential filter has the following header: 

 
function [y_filt]=SE_filter (t, y, beta, sigma) 

% function [y_filt]=SE_filter (t, y, beta, sigma) 

% Stretched Exponential filter  

%   Inputs:  t=independent variable  

%            y=noisy data to be filtered at the points t   

%            beta=parameters of the Stretched Exponential function 

%   Output:  y_filt=filtered data given in variable y 

 

2.4.  ECG signals’ dataset 

The ECG signals were taken from the public Physionet archive, available at the website 

https://archive.physionet.org/physiobank/database/apnea-ecg/; the used dataset consists of 100 ECG records 

in total, 50 labeled as normal and 50 as abnormal (related to patients affected by sleep apnea), each featured 

by 30 min duration and 360 Hz sampling rate; thus, each record contains a total of 648.000 samples. For 

testing the proposed stretched filter, three QRS complexes were considered for normal ECG signals and two 

QRS complexes for abnormal ECGs with 2- and 1-second durations, respectively. Table 1 summarizes the 

features of ECG signals used for testing the proposed stretched exponential filter. 

 

 

Table 1. Normal and abnormal ECG signal parameters selected for testing the stretched exponential filter 
 Normal ECG Abnormal ECG (sleep apnea) 

Number of ECG Records 50 50 

ECG Time Length 30 min 30 min 

Sampling Rate 360 Hz 360 Hz 
Processed ECG signals' duration 2 sec 1 sec 

 

 

3. RESULTS AND DISCUSSION 

Figures 5(a)-5(d) and 6(a)-6(d) show the effect of the designed SCELP filter applied to abnormal 

and normal ECG noisy signals, respectively, for different  parameter values. The purpose of filtering process 

is to denoise the raw ECG signal (input, red plots) and provide a filtered output (blue plots) suitable for 

further processing. 

Table 2 and 3 present the obtained mean SNR and MSE values after applying the SCELP filter for 

different  values in the range [0.2 ÷ 10.0] to the dataset's abnormal and normal ECG signals. The SNR and 

MSE values were calculated from all ECG signals for each  value; then, the mean values have been reported 

in Table 2 for abnormal ECG signals and in Table 3 for the normal ones. For both signal types, the filter 

outperforms for β between 1.2 and 2, providing the highest SNR and lowest MSE values for   1.6. Table 4 

shows the overall performance in terms of average SNR and MSE for  higher than 2, between 1.2 and 2, and 

equal to or smaller than 1. As explained in the method section, based on (13), the filter will operate as a 

compressed exponential filter if  > 2, a stretched-compressed exponential filter if 1 <  ≤ 2, a Gaussian filter 

if =1, and as a stretched exponential filter when  < 1. Finally, Figures 7(a) and 7(b) shows the obtained 

results as histograms relating to SNR and MSE values, as already reported in Table 4, for the different  

ranges. 

In addition, to further investigate the effectiveness of developed filter, a normal white noise has been 

added to the ECG signals constituting the dataset described in section 2 in order to verify the SCELP filter’s 

efficacy and compare its performance with different denoising filters' typologies like the Gaussian, Mittag– 

Leffler, and Savitzky-Golay ones. In more detail, nine seconds were extracted from each ECG signal, and 

then a normal white noise (𝑁(𝑡)) was added. This process is used to test the capability of filters to elucidate 

the inherent signal (𝑦𝑇(𝑡)) from the contaminated, noise-ridden signal (𝑦𝑛𝑜𝑖𝑠𝑦  (𝑡)). Thus, a white noise array 

was generated through MATLAB and then added to the ECG signal by point-by-point addition of the ECG 

and noise values (16); for this purpose, a Matlab code has been implemented, reported below. 

 

𝑦𝑛𝑜𝑖𝑠𝑦(𝑡) = 𝑦𝑇(𝑡) + 𝑁(𝑡) (16) 
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load('AbnormalECGSignalone.mat') 

%  load('Normal ECG_Filter.mat') 

noiseSignal=randn(size(X2)); 

newSignal=noiseSignal + X2; 

y=newSignal 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 5. Filtered abnormal ECG signals by compressed and stretched exponential filters for different  

values: =10.0 (a) =6.0, (b) =1.6, (c) =0.6, and (d) all tested filters have σ=
𝜎𝐸𝐶𝐺

10
 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 6. Filtered normal ECG signals by compressed and stretched exponential filters for different  values: 

=10 (a) =6, (b) =1.6, (c) =0.6, and (d) all tested filters have σ=
𝜎𝐸𝐶𝐺

10
 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 A novel stretched-compressed exponential low-pass filter and its application … (Roberto de Fazio) 

239 

Table 2. Performance comparison of proposed compressed-stretched exponential filter for different β values 

applied to normal ECG signals (totally 50) from the Physionet dataset 
Filter type Filter parameter Mean SNR (dB) Mean MSE 

Compressed exponential filter β=10 1.7778 0.04508 

Compressed exponential filter β=6.0 6.4092 0.01487 

Stretched-compressed exponential filter β=2.0 14.4321 0.01157 
Stretched-compressed exponential filter β=1.6 16.9508 0.01025 

Stretched-compressed exponential filter β=1.2 14.6729 0.01140 

Gaussian filter β=1.0 11.2580 0.01328 
Stretched exponential filter β=0.6 9.6678 0.01395 

Stretched Exponential filter β=0.2 7.2595 0.01598 

 

 

Table 3. Performance comparison of proposed compressed-stretched exponential filter for different β values 

applied to abnormal ECG signals (totally 50) from the Physionet dataset 
Filter type Filter parameter Mean SNR (dB) Mean MSE 

Compressed exponential filter β=10 0.9444 0.05980 

Compressed exponential filter β=6.0 3.2498 0.03756 

Stretched-compressed exponential filter β=2.0 9.6594 0.01365 
Stretched-compressed exponential filter β=1.6 13.7574 0.01178 

Stretched-compressed exponential filter β=1.2 11.5354 0.01348 
Gaussian filter β=1.0 8.6939 0.01685 

Stretched exponential filter β=0.6 6.2048 0.01893 

Stretched exponential filter β=0.2 5.7240 0.02486 

 

 

Table 4. Average SNR and MSE values related to normal and abnormal ECGs (from the Physionet dataset) 

denoised by the developed compressed/stretched exponential filter for different  ranges 
 Normal ECGs (50 signals) Abnormal ECGs (50 signals) 

Exponential parameter () Average SNR (dB) Average MSE Average SNR (dB) Average MSE 

 > 2 4,0935 0,02997 2.0971 0,04868 

1.2 ≤  ≤ 2 15,3519 0,01107 11,6507 0,01297 

 ≤ 1 9,3951 0,01440 6,8742 0,02021 

 

 

  
(a) (b) 

 

Figure 7. Histograms with the obtained average SNR (a) and MSE (b) values from normal and abnormal 

ECGs processed by the developed compressed/stretched exponential filter for different  ranges 

 

 

Finally, the denoising performances of the different filter types have been examined and reported in 

Table 5. For a Gaussian filter, the most critical parameter is the standard deviation (σ) of the Gaussian kernel, 

as it determines the smoothing extent; a larger σ results in greater smoothing but may blur the fine details, 

while a smaller σ preserves finer details but might not remove the noise effectively. The kernel size is 

typically chosen as a function of σ, often using a size of (6σ+1) to ensure the filter encompasses most of the 

Gaussian distribution [39]. Additionally, the boundary conditions such as “reflect,” “constant,” or “wrap” 

must be selected based on the input data’s nature to avoid edge artifacts. The main parameters for Mittag-

Leffler filter are the scaling factor α and fractional order β, which govern the weight of the Mittag-Leffler 

function in modeling memory or smoothing effects [42]; a smaller β emphasizes long-term memory effects, 

while a larger β provides more localized smoothing. The parameters should be tuned based on the desired 
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level of smoothing and signal's noise characteristics. Finally, the key parameters for Savitzky-Golay filters 

include the polynomial order (M) and the window size (nl and nr) [43], [44]. The window size should be 

large enough to smooth noise effectively but small enough to avoid over-smoothing the signal. The 

polynomial order determines the degree of the fitted curve and should be chosen based on the signal's 

complexity; for example, a higher order captures more intricate trends but risks amplifying noise. To 

maintain stability and accuracy in the filter's output, it is essential to ensure the window size exceeds the 

polynomial order. 

Table 5 shows the average SNR and MSE values obtained from ECG signals of the dataset described 

in section 2 with the added noise and processed by the stretched-compressed exponential low-pass, Gaussian, 

Mittag-Leffler, and Savitzky-Golay filters. Referring to scientific literature (specifically, Ref. [25] for 

Gaussian filter, Ref. [16] for the Mittag-Leffler filter, and Refs. [21], [43], [45] for the Savitzky-Golay filter), 

the values of different filters' parameters were optimized for noise removal from the ECG signals; the 

selected values for each filter type are reported in Table 5. For the SCELP filter, based on previously reported 

results (Tables 2 and 3), the  parameter’s value was chosen equal to 1.6 to get higher SNR and lower MSE 

values. Figure 8 shows the applied input signals (with the added noise) and the filtered output ones from the 

different types of filters tested to allow the performance comparison. The results reported in Table 5 

demonstrated that the proposed SCELP filter provides slightly better SNR and MSE values than other types 

of filters, demonstrating the effectiveness of the proposed solution in removing the noise of the ECG signal. 

This study aims to validate the use of a novel SCELP filter for noise reduction in ECG signals; the 

results demonstrated that it has better performance, in terms of higher SNR and lower MSE values, for  

parameter between 1.2 and 2. Different filters used in ECG denoising [16], [21], [25], [43], [45] were 

compared to SCELP filter; the results in Table 5 regarding normal ECG signals with added noise showed that 

the SCELP filter performs slightly better than others, certifying its ability in removing noise affecting ECG 

signal. 

 

 

Table 5. Average SNR and MSE values related to the Physionet ECG signals with added white noise for 

different denoising filters compared to the stretched-compressed exponential low-pass filter's performance 
  Gaussian filter 

σ=0.015=
σECG

10
 

(Figure 8(a)) 

Mittag-Leffler filter 

σ=0.01, α=0.95, β=0.9 

(Figure 8(b)) 

Savitzky-Golay filter 

(nl=16, nr=16, M=4) 

(Figure 8(c)) 

SCELP filter 

(β=1.6)  

(Figure 8(d)) 

Normal ECG 

signals + white 

noise (n=50) 

Average SNR (dB) 14.233 11.988 12.864 16.495 

Average MSE 0.0119 0.0135 0.0126 0.0106 

Abnormal ECG 

signals + white 

noise (n=50) 

Average SNR (dB) 11.219 10.625 10.957 14.940 

 Average MSE 0.0154 0.0184 0.0167 0.0114 

 

 

A Gaussian filter has a typical Gaussian impulse response, with no overshoot in response to a step 

input, reduced rise and fall times, and minimal group delay. As for uncertainty principle in signal processing, 

which is the suppression of high frequencies while minimizing spatial dispersion, the Gaussian function is the 

best trade-off between time (spatial) and frequency localization, as it reduces the uncertainty effect. The 

Weierstrass transform represents how a Gaussian filter modifies the input signal by convolving it with the 

Gaussian function. The Gaussian-exponential filter shows good group delay, but the attenuation slope above 

the cutoff frequency is not ideal; tables were created to get the desired Gaussian group-delay response at low 

and mid frequencies and a Chebyshev-type transition with steeper slope at high frequency. 

A Savitzky-Golay filter is used to smooth out a signal and improve its accuracy without changing its 

trend [25], [45], [46]. This task is accomplished using the convolution technique, which involves using linear 

least squares to fit successive subsets of nearby data with a low-degree polynomial. An analytical solution to 

the least-squares equations can be found when data points are evenly spaced; it takes the form of a single set 

of convolution coefficients to be applied to all data subsets to estimate the smoothed signal or its derivatives 

at each subset's central point. Savitzky and Golay popularized the mathematical approach [46], releasing 

tables of convolution coefficients for a range of polynomials and sub-set sizes [43]. The technique was 

expanded to handle two- and three-dimensional data. Savitzky-Golay filters have a stronger cutoff in the 

frequency domain, an initially flatter response, and greater signal-to-noise ratio for bandwidth-limited 

signals, but have two drawbacks: the generation of artifacts when polynomial fits are used for first-final 

points and relatively poor suppression of some high frequencies [45]. 
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The experimental results demonstrated that the SCELP filter outperforms other denoising filters, 

requiring only one customizable parameter according to which the distribution function can be adapted, 

making the filter ideal for ECG signal denoising, in alternative to Butterworth or Savitzky-Golay filters [47]. 

Further research will allow to validate its effectiveness for different types and levels of noise. Based on the 

presented results, the designed SCELP filter offers new perspectives for denoising medical signals, as well as 

EEG and EMG in addition to ECG signals, and for image-processing medical applications [48], [49]. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 8. Comparison of input ECG signals (labeled as normal) with added noise (red trace) and output 

filtered signals (blue), processed by different filters: (a) Gaussian (σ=
𝜎𝐸𝐶𝐺

10
), (b) Mittag– Leffler (σ=0.01, 

α=0.95, β=0.9), and (c) Savitzky-Golay (nl=16, nr=16, M=4), and (d) the proposed SCELP filter (β=1.6)  
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4. CONCLUSION 

This study presents a novel low-pass filter based on the stretched-compressed exponential function 

for signal processing applications. Compared to traditional exponential and Gaussian filters, the proposed 

filter is more versatile with only one adjustable parameter. A MATLAB code for the SCELP filter has been 

developed, to be tested on 100 ECG signals from the PhysioNet dataset, verifying the denoising capabilities 

by varying the β parameter; the best performance was obtained for 1.2<<2 (exactly for =1.6). Then, 

additive noise was added to ECG signals to compare its performance with common filters for ECG signals' 

denoising (i.e., Gaussian, Mittag–Leffler, and Savitzky-Golay). The obtained results showed that the SCELP 

filter provides higher average SNR (16.495 and 14.940 dB) and lower MSE (0.0106 and 0.0114) values, than 

other filter typologies, for normal and abnormal ECG signals, respectively. Finally, the results validated the 

SCELP filter’s use for new application fields, namely for bio-signals’ denoising and medical image 

processing. 
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