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 Coronary artery disease (CAD) remains a leading cause of mortality 

worldwide, with an especially high burden in developing countries such as 

India. In light of increasing patient loads and limited medical resources, 

there is an urgent need for accurate and reliable diagnostic support systems. 

This study introduces a machine learning (ML) framework that aims to 

enhance CAD prediction accuracy by specifically addressing the reduction 

of false negatives (FN), which are critical in medical diagnostics. Utilizing a 

stacked ensemble model comprising five base classifiers and a meta-

classifier, the framework integrates cost-sensitive learning, classification 

threshold tuning, engineered features, and manual weighting strategies. The 

model was developed using a clinically acquired dataset from the Jawaharlal 

Institute of postgraduate medical education and research (JIPMER), 

consisting of 428 patient records with 36 original features. Evaluation 

metrics show that the proposed model achieved an accuracy of 92.19%, 

sensitivity of 98%, and an F1-score of 95.15%. These improvements are 

significant in a clinical context, potentially reducing missed diagnoses and 

improving patient outcomes. The model is intended for deployment in 

cardiology outpatient settings and demonstrates a scalable, adaptable 

approach to medical diagnostics. 
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1. INTRODUCTION 

Cardiovascular diseases, especially coronary artery disease (CAD), are a predominant cause of 

morbidity and mortality globally, contributing to approximately 28.1% of all deaths in India alone [1]. Given 

India's population surpassing 1.44 billion and an existing doctor-to-patient ratio significantly below the 

World Health Organization’s recommended 1:1000 [2], the existing healthcare system faces a massive 

burden in timely and accurate diagnosis. This scenario highlights the need for intelligent decision-support 

systems capable of alleviating the diagnostic workload, particularly in resource-constrained environments. 

The central problem in current machine learning (ML) based diagnostic models for CAD lies in 

their misclassification tendencies, especially false negatives (FN) cases where diseased patients are 

misclassified as healthy. This poses a severe risk in clinical settings, where early detection is crucial. 

Traditional models often optimize for accuracy or AUC, inadvertently neglecting sensitivity and error costs. 

A false negative in CAD diagnostics can delay life-saving interventions and mislead clinical decisions. 

Therefore, reducing FN must be a core objective for any ML model aimed at CAD prediction. Several ML 

https://creativecommons.org/licenses/by-sa/4.0/
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methodologies are available to reduce the FN depending on the specifics of different feature characteristics of 

the input dataset and the model algorithm implemented. In the broader landscape of predictive modeling, 

several methodologies such as adjusting the classification threshold [3], cost-sensitive learning [4], 

resampling techniques [3], feature engineering [5], algorithm selection [6], data augmentation [7], error 

analysis [3], ensemble methods [8], model calibration [9], active learning [10], manual and performance-

based weight adjustment [3], [10], hyperparameter tuning [11], and custom stacking [12] are commonly 

adopted to improve classification outcomes, particularly by reducing false negatives. Out of these 

methodologies, depending upon the prediction model developed, different methodologies are to be 

incorporated to reduce the FN. Selected set of methodologies for heart disease prediction systems with better 

prediction accuracy and recall are vital in India to combat the growing health issues due to cardiovascular 

diseases. They facilitate early detection, optimize resource utilization, reduce healthcare costs, and support 

better healthcare outcomes, contributing to overall societal well-being. 

Several works in literature have explored ML-based approaches for CAD detection. For instance, 

Khanna et al. [13] compared classification algorithms like SVM and neural networks for heart disease 

prediction, while Maini et al. [14] emphasized the utility of tailored prediction models for Indian populations. 

However, these studies primarily focused on accuracy enhancement without a detailed strategy for handling 

FN errors. Similarly, Zriqat et al. [15] and Babu et al. [16] discussed improved ML architectures but lacked 

targeted error-cost analysis or explicit threshold optimization methods. Thus, despite the progress in ML 

applications for CAD, a significant gap remains in handling error sensitivity, particularly reducing FNs. 

This study proposes an ensemble ML model tailored for FN reduction in CAD prediction. The 

model combines five diverse base learners (linear and non-linear SVM, k-nearest neighbors, random forest, 

and AdaBoost) with a stacking meta-classifier. It incorporates several novel strategies: cost-sensitive learning 

[4] to penalize FN, threshold adjustment based on precision-recall trade-offs [3], domain-driven manual 

weight assignment [3], and derivation of meaningful composite features such as pulse pressure, MAP, and 

ECG abnormality scores. These modifications are aimed at fine-tuning the model to reduce misdiagnoses 

while maintaining generalization ability. 

Our innovation lies in the integration of these FN-reduction methodologies into a clinically validated 

ensemble model. Unlike earlier studies, this approach emphasizes medical safety by lowering FN cases from 

six to two on a 428-patient dataset, improving recall from 94% to 98% a substantial leap in diagnostic 

reliability. This work not only addresses a critical clinical challenge but also sets a replicable precedent for 

deploying ML systems in real-world hospital workflows. The proposed model is currently being prepared for 

deployment at JIPMER and may be adapted for other disease domains with similar feature sets. 

The remainder of this paper is organized as follows: section 2 presents the proposed model and its 

theoretical foundation. Section 3 details the methodology used in building and tuning the ml model. Section 4 

reports the results and provides a comprehensive discussion comparing the model’s performance with 

existing methods. Finally, section 5 concludes the paper and outlines directions for future work. 

 

 

2. PROPOSED MODEL FOR CAD PREDICTION 

This section presents the design and theoretical foundation of the proposed machine learning 

framework for predicting coronary artery disease. It further elaborates on the incorporation of multiple false 

negative (FN) reduction strategies to the ensemble learning structure to improve diagnostic reliability by 

minimizing FN errors, which are critical in medical decision-making. 

 

2.1.  Stacked ensemble architecture 

The proposed machine learning model is designed as a stacked ensemble framework that integrates 

multiple base classifiers to leverage the individual strengths of each. Specifically, it combines five classifiers 

viz., support vector machine (SVM) with both linear and nonlinear kernels [17], [18], k-nearest neighbors 

(KNN) [19], random forest (RF) [20], and AdaBoost [21] followed by a meta-classifier that synthesizes their 

outputs for final decision-making. Ensemble learning methods, particularly stacking, are known to enhance 

model generalization and performance across diverse datasets. In this context, the choice of classifiers was 

informed by their complementary nature: SVM for margin-based separation, KNN for local decision 

boundaries, RF for feature importance and bagging, and AdaBoost for handling difficult-to-classify 

instances. The meta-classifier in the final layer captures and balances these behaviors to minimize overall 

classification error, particularly false negatives. 

 

2.2.  Integration of false negative reduction methodologies 

A distinguishing innovation in our model is the incorporation of multiple strategies explicitly 

targeting the reduction of false negatives (FN), a critical concern in medical diagnostics. First, a cost-sensitive 
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learning approach is employed where the misclassification cost of FN is set significantly higher than that of 

false positives, thereby influencing the model to be more conservative when predicting negative outcomes. 

Second, manual weighting is applied to base classifiers based on their historical performance and clinical 

insight this emphasizes more reliable models in the final decision. Third, the decision threshold is optimized 

using a precision-recall trade-off, selecting a value that maximizes the F1-score, which is particularly suited 

for imbalanced datasets. Finally, domain-specific engineered features such as pulse pressure, mean arterial 

pressure, ECG abnormality score, and comorbidity counts are introduced to enhance model interpretability and 

prediction strength. This multi-pronged strategy collectively reduces FN instances, making the model more 

trustworthy and clinically viable. Similar FN-reduction strategies have been successfully applied in recent 

works using cost-sensitive ensemble methods and threshold-moving techniques [22]–[24]. 

 

 

3. METHODS 

This section outlines the end-to-end methodology adopted for building the proposed ML model for 

coronary artery disease prediction. It covers the dataset characteristics, feature engineering strategies, model 

training process, and evaluation metrics. The methodological pipeline ensures high reproducibility and 

transparency in data processing, model development, and performance analysis. 

 

3.1.  Dataset description 

A dataset was prepared by collecting the demographical, clinical assessment, ECG, lab and ECHO 

features of 428 patients from Department of Cardiology, JIPMER, Puducherry. The dataset has 36 different 

features with the last feature indicating in binary values about the presence ‘1’ or absence ‘0’ of coronary 

artery disease (CAD). Full details about the remaining 35 features are provided in Table 1. 

 

 

Table 1. Details of 35 features from the JIPMER CAD dataset 
Feature Name Data Range Type Feature Category 

Age (Years) 20–83 Numerical Demographical 

Weight (kg) 50–90 Numerical Demographical 

Length (cm) 130–180 Numerical Demographical 

Gender 1–M,0–F Binary Demographical 

BMI (kg m2⁄ ) 19.37–35.5 Numerical Demographical 

Diabetes Mellitus 1–Y, 0–N Binary Demographical 

Hypertension 1–Y, 0–N Binary Demographical 
Current Smoker 1–Y, 0–N Binary Demographical 

Ex-smoker 1–Y, 0–N Binary Demographical 

Dyslipidemia 1–Y, 0–N Binary Demographical 
Systolic BP (mmHg) 90–189 Numerical Clinical Assessment 

Diastolic BP (mmHg) 52–112 Numerical Clinical Assessment 
Pulse rate (/min) 44–140 Numerical Clinical Assessment 

Angina 1–Y, 0–N Binary Clinical Assessment 

Dyspnea 1–Y, 0–N Binary Clinical Assessment 
Rhythm 0–Sinus, 1–Fibrillation Binary ECG 

Q-Wave 1–Y, 0–N Binary ECG 

QS Wave 1–Y, 0–N Binary ECG 
QRS Complex 1–Y, 0–N Binary ECG 

Axis Deviation 1–Y, 0–N Binary ECG 

ST-T changes 1–Y, 0–N Binary ECG 

T-Wave 1–Y, 0–N Binary ECG 

ST elevation 1–Y, 0–N Binary ECG 

ST depression 1–Y, 0–N Binary ECG 
T inversion 1–Y, 0–N Binary ECG 

Left ventricular hypertrophy 1–Y, 0–N Binary ECG 

Poor R Wave Progression 1–Y, 0–N Binary ECG 
Bundle Branch Block 0–Absence, 1–LBBB/ RBBB Nominal ECG 

RBS (mg/dl) 60–733 Numerical Lab and ECHO 

Creatinine (mg/dl) 0.3–2.7 Numerical Lab and ECHO 
Blood Urea (mg/dl) 9.3–70 Numerical Lab and ECHO 

Haemoglobin (gm/dl) 7.1–22 Numerical Lab and ECHO 

Platelet Count (1000/ml) 90–586 Numerical Lab and ECHO 
Ejection Fraction (%) 15–66 Numerical Lab and ECHO 

Regional wall motion abnormality 0–Normal, 1–Abnormal Binary Lab and ECHO 

 

 

3.2.  Data preprocessing and feature engineering 

Prior to model training, the raw clinical dataset obtained from JIPMER underwent systematic 

preprocessing. This included handling missing values, outlier treatment, and normalization of continuous 
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variables such as age, systolic/diastolic blood pressure, and ejection fraction. Categorical variables such as 

gender, smoking status, and ECG indicators were encoded into numerical representations using one-hot or 

ordinal encoding schemes, as appropriate. Feature engineering was conducted to enhance the model's 

discriminative power. Ten derived features were added, including clinically significant constructs like pulse 

pressure (systolic minus diastolic BP), mean arterial pressure (MAP), comorbidity count, ECG abnormality 

score, and ratios such as RBS to BMI. Additionally, categorical recoding for variables such as heart rate and 

ejection fraction was introduced to map these into clinically interpretable categories. The combined use of 

raw and engineered features yielded a total of 46 predictors, providing a richer and more robust input space 

for training the ensemble model. 

 

3.3.  FN reduction methodologies 

In developing a medical diagnostic tool to perform binary classification as, patient with disease 

(positive class) or without disease (negative class), there are two possible misclassification errors namely FP 

and FN are available. In this scenario: 

− A FN is when the ML tool incorrectly classifies a diseased patient as healthy, which can be very 

detrimental in terms of patient health. 

− A FP is when the ML tool incorrectly classifies a healthy patient as diseased, which can lead to 

unnecessary stress and further expensive tests. 

In the following sub sections, detailed information about modifications to reduce the FN and 

pipeline architecture of the tuned ML model are explained. 

 

3.3.1. Cost-sensitive learning 

Most of the ML methodologies assumes the misclassification errors are justified as they are 

inherently provided by the model itself. Rather than such a justification, the incorrect predictions of FP or FN 

should be seen as a question on the reliability of the ML model prediction. Incorrect predictions of FN and 

FP compared to the TP and TN leads to reduction in the recall and hence lower accuracy level for the final 

predicted values of the different features by the ML model. To avoid such errors in prediction by the 

ensemble model, a misclassification cost matrix is introduced to train all base classifiers to be followed by a 

meta classifier to reduce the wrong predictions. To reflect the severity of errors, a cost matrix is defined such 

that cost of a FN is higher than a FP. Thus, calculated elements for the cost matrix are not to be simply used 

as a multiplication factor, rather to be used as an influencing factor on how the classifier evaluates its 

decision. In the following we provide the details on how the cost matrix can be used to adjust the predicted 

values by the ML model.  

Very common methodology is to modify the decision threshold of the classifier using the elements 

calculated for the construction of the cost matrix. Let us denote the predicted probabilities of the positive 

class as p (output of the classifier), and assume the default threshold value for classifying a positive instance 

as 0.5. If the cost of a FN (CFN) is higher than the cost of a FP (CFP), there is a requirement to decrease the 

threshold value to reduce the FN. On the other hand, if the CFP is greater than the CFN, there is a requirement 

to increase the threshold value to reduce the FP. The adjusted threshold (Tadjusted) can be calculated as: 

 

𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝐶𝐹𝑃

𝐶𝐹𝑃 + 𝐶𝐹𝑁

 , 

 

and the corresponding prediction is adjusted as follows: 

If p ≥ Tadjusted, classify as positive, 

If p < Tadjusted, classify as negative. 

These adjustments balance the costs associated with the FP and FN as per the specific cost matrix. 

Also, it ensures that the model’s predictions align with the specific cost considerations, potentially leading to 

better outcomes in real-world scenarios where different types of errors, namely, type-I and type-II errors [14] 

have different consequences. In this research study, the misclassification cost matrix used is [0, 17, 20, 0] for 

[TP, FP, FN, TN] where all the base classifiers and meta classifier are trained and tested with their respective 

datasets and cost matrix. 

 

3.3.2. Manual weight adjustment 

Manual weight adjustment involves the modification of the prediction weightings in the individual 

base model’s ensemble to improve the overall performance. This methodology leverages domain expertise to 

provide proper significance to models that are expected to perform better in certain aspects. 
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Consider an ensemble of N = 5 base models. Let matrix X (428×35) be the input feature matrix, and 

y (428×1) be the target vector. The prediction from the ith model for a given input x (elements of matrix X) is 

denoted as 𝑦̂𝑖(𝑥). The ensemble prediction is typically a weighted combination of these individual 

predictions: 

 

𝑦̂ensemble(𝑥) = ∑ 𝑤𝑖

𝑁

𝑖=1

𝑦̂𝑖(𝑥), 

 

where wi are the weightings assigned to the predictions from each base model. In manual weight adjustment, 

these weightings wi are set based on the feature’s domain expertise.  

For our JIPMER dataset, the manual weightings used are [0.5, 0.8, 0.7, 0.9, 0.85] and the final 

model scores are obtained by multiplying with weightings and prediction scores of respective train and test 

datasets. 

 

3.3.3. Threshold adjustment 

Adjusting the decision threshold of a classifier can bring a trade-off between the precision and 

recall. The optimal threshold can be determined by maximizing the F1-Score and the necessary steps to be 

followed are: 

− Prediction scores: for each test instance, obtain the predicted probability scores p̂(x) from the model. 

− Thresholds: define a range for possible thresholds θ to evaluate. For each threshold θ, classify the data 

points as: 
 

𝑦̂𝜃(𝑥) = {
1   if   𝑝̂(𝑥) ≥ 𝜃

0   if   𝑝̂(𝑥) < 𝜃
 

 

− Compute metrics: for each threshold θ, compute precision and recall. 

− F1-Score calculation: calculate the F1-Score for each threshold. 

− Optimal threshold: select the threshold θ∗ that maximizes the F1-Score: 

 

𝜃∗ = arg 𝑚𝑎𝑥
𝜃

F1-Score(𝜃). 

 

3.3.4. Engineered/derived features 

Derived features, also known as engineered features, are new variables created by transforming or 

combining existing features. These features can capture more entangled relationships interconnecting the data 

that raw features might not reveal. In the context of medical data, derived features can be particularly useful 

in enhancing the predictive capacity and capability of the model by incorporating domain knowledge and 

specific medical insights. Its main purpose is: 

− By capturing additional information that raw features alone might not provide, derived features can help 

to improve the accuracy, precision, recall, and overall performance of the ML models. 

− Derived features can often make the models more interpretable by bringing out the important 

relationships and patterns in the data that are meaningful to the nature of the dataset (medical in our case 

study). 

− Properly engineered features can help to reduce the influence of the noisy data in the prediction process 

by focusing more on the relevant aspects of the data. 

Derived features can be of different kinds such as, statistical, temporal, transformation, etc. 

Depending on the prediction requirements any particular feature kind can be adopted. Nevertheless, inclusion 

of more feature(s) to the existing dataset features will introduce different constraints to the ML model like the 

overfitting, relevance and complexity. 

A total of 10 derived features are obtained for this work, where their names, relations with other 

features and their significance are listed below. 

− Pulse pressure: It is defined as: 

 

Pulse Pressure = Systolic BP – Diastolic BP. 

 

This derived feature provides insights into cardiovascular health and arterial stiffness. 

− Mean arterial pressure (MAP): It represents the average pressure in a patient’s arteries during a cardiac 

cycle. It is a useful indicator of perfusion pressure of the organs. It is defined as: 
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 MAP = (Systolic BP + 2 × Diastolic BP)/3. 
 

− Comorbidity count: This derived feature counts the patient’s number of comorbid conditions. The 

presence of multiple comorbidities [such as diabetes mellitus (DM), hypertension (HTN), and 

dyslipidemia (DLP)] can significantly impact the patient’s overall health and risk profile. It is useful to 

assess the burden of chronic diseases on a patient and helps in stratifying risk and tailoring treatment 

plans. It is defined as: 

 

Comorbidity Count = DM + HTN + DLP. 

 

− Heart rate category: It categorizes the patient’s heart rate into three levels: Low, Normal, and High. Heart 

rate is a critical vital sign that can indicate underlying conditions such as bradycardia (low heart rate), 

tachycardia (high heart rate), and normal heart functioning. This derived feature helps to swiftly identify 

any abnormalities in the heart rate that require immediate medical attention. It is computed as: 

 

Heart_Rate_Category = discretize (data.PR,[0, 60, 100, Inf], ‘categorical’, ‘Low’, ‘Normal’, ‘High’). 

 

− ECG abnormalities count: This derived feature adds up various abnormalities found in an ECG reading. 

Each of these components (QW, QS, QRSC) [22], [23] represents different types of ECG abnormalities 

that can indicate various heart conditions. Sum of these components becomes yet other derived feature 

that provides a consolidated measure of the overall ECG abnormality burden, which can be useful to 

predict cardiac events and the severity of the heart disease. It is calculated as: 

 

ECG_Abnormalities_Count = QW+QS+QRSC+STT+TW+STE+STD+TI+LVH+PRW+BBB. 

 

− Random blood sugar to BMI ratio: It measures the relationship between random blood sugar (RBS) levels 

and body mass index (BMI). It helps in understanding how blood glucose levels are affected by body 

weight. This ratio can be particularly useful in managing diabetes and obesity-related conditions, 

providing insights into the metabolic status of the patient. This ratio is calculated as:  

 

RBS_BMI_Ratio = RBS BMI⁄  . 
 

− Left ventricular ejection fraction (LVEF) Category: This derived feature quantifies the amount of blood 

pumped by the left ventricle in each heart contraction. Categorizing LVEF into Low, Normal, and High 

helps in assessing the functional status of the heart. A low LVEF indicates heart failure or 

cardiomyopathy, while normal and high categories are indications of good heart functioning. This 

categorization is crucial for diagnosing and monitoring heart conditions. LVEF category is computed as: 

 

LVEF_Category = discretize(data.LVEF,[0, 40, 55, Inf], ‘categorical’, ‘Low’, ‘Normal’, ‘High’). 

 
− Angina relative risk: Relative risk values are based on the gender and age for patients with typical angina 

(ANG) [25]. These values are manually assigned based on predefined risk categories as specified by the 

cardiologists. The probability values assigned for CAD as per the category depicted in Table 2. 
 

 

Table 2. Probability of CAD based on age and gender 
Age Typical Angina 

Men Women 

30-39 0.76 0.26 

40-49 0.87 0.55 
50-59 0.93 0.73 

60-69 0.94 0.86 

 

 

− Diabetes mellitus relative risk: relative risk for patients with diabetes mellitus (DM) have two-to four-fold 

possibility of developing coronary disease [26]. So, presence of DM is manually set to 0.7 and absence as 

0.3. 

− Smoking status: smoking status is another critical determinant of various health risks. Current smokers 

and ex-smokers have different risk profiles compared to individuals who have never smoked. This feature 
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combines the information from Current_Smoker and Ex_Smoker features into a single categorical 

variable. It uses the categorical values of the two smoking feature to map into a single value that 

corresponds to one of the following three categories: i) 0 for ‘Never Smoked’, ii) 0.5 for ‘Ex_Smoker’, and 

iii) 1 for ‘Current_Smoker’. 

By combining into a single categorical variable, the complexity of handling multiple related features is 

reduced. This helps in better interpretation and analysis. 

 

3.4.  Model training and evaluation 

The pipeline architecture of the tuned ML model is depicted in Figure 1. This workflow captures all 

stages of the modeling process, including data pre-processing, derived feature creation, model training with 

cost-sensitive learning, manual weightings, and classification threshold adjustment to optimize predictive 

performance. The proposed pipeline offers a structured and effective methodology for handling complex 

medical datasets. 

Initially, the dataset was partitioned into 70% for training and 30% for testing. After training, the 

model predictions were validated across the full dataset using cross-validated predictions to ensure 

robustness. The modeling process starts by loading the training and test sets, followed by preprocessing and 

feature selection. The five base classifiers are trained, their outputs fed into a meta-classifier, and the 

ensemble model is evaluated using a test dataset. 

For the base configuration (without any FN-reduction methods), the training procedure includes the 

following steps: (i) Load the dataset and perform a 70:30 train-test split; (ii) Apply data cleaning and feature 

selection; (iii) Train the ensemble model using five base classifiers and a meta-learner; (iv) Test the full 

dataset on the trained model; (v) Compare predicted values with actual labels to generate the confusion 

matrix; (vi) Compute evaluation metrics such as accuracy (ACC), precision (P), recall/sensitivity (S), 

specificity (SP), F1-score, Matthew’s Correlation Coefficient (MCC), and area under the curve (AUC). 

The pipeline ensures interpretability and reproducibility while enabling the use of ensemble methods 

with integrated FN reduction. A detailed comparison of the performance metrics for the baseline model 

(without FN reduction) is presented later in section 4 (Results and Discussion), where Table 3 reports the 

confusion matrix and associated evaluation outcomes. 

 

 

 
 

Figure 1. Pipeline architecture of the proposed ML model, including preprocessing, feature engineering,  

FN-reduction, training, and evaluation 
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4. RESULTS AND DISCUSSION 

This section presents and analyzes the performance of the proposed ML model for CAD prediction, 

focusing first on the baseline configuration without any error-reduction methodologies, followed by 

improvements achieved through the integration of individual and combined false negative (FN) reduction 

strategies. 

 

4.1.  Baseline model performance 

Table 3 summarizes the confusion matrix and performance metrics for the baseline ML model 

trained and evaluated without incorporating any FN-reduction methodologies. This configuration uses the 

full ensemble pipeline with original and derived features but applies no cost-sensitive learning, manual 

weighting, threshold tuning, or engineered strategies. As shown, while the model demonstrates respectable 

overall accuracy and AUC, it still suffers from a relatively higher false negative (FN) count, which is a 

critical concern in clinical applications where undiagnosed CAD cases can have severe consequences. 

The results from Table 3 highlight the need to address the FN issue directly. To evaluate the impact 

of FN-reduction strategies, additional experiments were conducted, applying each method individually and in 

combination. 

 

 

Table 3. Performance metrics of the baseline model without FN reducing methodologies 

S.No. Dataset Confusion Matrix Performance Metrics 
TN FP FN TP ACC P S SP F1 MCC AUC 

1. JIPMER 20 8 6 94 89.06% 92.16% 94.00% 71.43% 93.07% 67.23% 92.04% 

 

 

4.2.  Individual FN-reduction methodologies 

Here we report the effectiveness of the ML model in accurate prediction due to the incorporation of 

FN reduction methodologies detailed earlier. First, we detail the performance of the ML model with only one 

of the FN reduction methodologies is incorporated. In Table 4, all available features from the JIPMER 

dataset are applied and provided all the performance metrics of the model with individual methodologies 

utilized in the study i.e., engineered features, cost-sensitive learning, manual weightings provision and 

calculation of new thresholds using precision-recall trade-off. First model i.e., baseline model (S.No.1 in 

Table 4) that used only the original features resulted in maximum percentages for various metrics as: 

accuracy 89.06%, precision 92.16%, recall 94%, F1-score 93.07% and AUC 92.04%. These performance 

metrics are not the best we wished for as the original dataset features has only captured the essential 

characteristics required for accurate classification. Second model (S.No.2 in Table 4) is addition of 

engineered features along with the original features showed slight improvement in the precision 93% and 

recall 93%, but with a marginal decrease in AUC 91%. Marginal decrease in the AUC metrics of this case 

can be attributed to the noise and/or redundancy introduced by the inclusion of the derived features for the 

training and prediction. Third model (S.No.3 in Table 4) is the incorporation of the cost matrix that works 

only on the original features to reduce the FN, provided significant performance improvement in accuracy 

91.41%, recall 97% and F1-score 94.63%, along with a slight compromise in AUC 90.39%. This 

improvement of the accuracy is a direct reflection of the high reduction of FN metric in this model. Either 

fourth (S.No.4 in Table 4) model that incorporated manual weightings or the fifth (S.No.5 in Table 4) model 

that incorporated threshold adjustments to the original features dataset did not show any significant change in 

the performance compared to the first model (S.No. 1 in Table 4). This indicates that there are no added 

advantages in using both manual weightings and threshold adjustments methodologies together for accurate 

prediction of JIPMER CAD medical kind of datasets. The manual weightings did not alter the model’s 

decision boundary enough to cause any appreciable change in performance. As the original model already 

included the optimal threshold in the prediction process, the fifth model that incorporated the threshold 

adjustments has no effect on reducing the FN. The model's performance metrics suggest that the default 

threshold was appropriate, and any further adjustments did not enhance or degrade the model’s performance.  

 

4.3.  Combination of FN-reduction methodologies 

In Table 5, we report the effectiveness of the ML model in predicting the JIPMER dataset when 

combination of more than one FN reducing methodologies are incorporated. First combination model (S.No.1 

in Table 5) that used original and derived features along with manual weightings provided the strongest 

performance with accuracy 90.63%, recall 96.00% and F1-score 94.12%, while AUC got decreased to 

91.00%. Second combination model (S.No.2 in Table 5) used original and derived features along with 

threshold adjustments, mirrored the first combination model’s performance metrics indicating that there is no 
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additional benefit compared to first combination model that used original and derived features along with 

manual weightings. The third combination model (S.No.3 in Table 5) uses original and derived features with 

a cost matrix, demonstrates balanced performance metrics with an accuracy 89.06%, precision 93.00%, and 

an AUC 90.63% but not provide any significant improvement compared to first (or third) combination 

model. By observing the first three combination model cases, the addition of derived features with any 

methodology did not show substantial improvement due to potential noise or redundancy. The fourth 

combination model (S.No.4 in Table 5) used original features along with manual weightings and a cost 

matrix, resulted in percentages of performance metrics as: accuracy 91.41%, precision 92.38%, F1 score 

94.63% and recall 97.00%. The fifth combination model (S.No.5 in Table 5) uses original features along with 

manual weightings and threshold adjustment maintains with the original model’s (S.No.1 in Table 4) 

performance. The sixth combination model (S.No.6 in Table 5) utilizing a cost matrix and threshold 

adjustment with original features, emerges as the best ML predicting algorithm model, resulted in maximum 

percentages for various metrics as: accuracy 92.19%, recall 98.00%, F1 score 95.15%, and MCC 76.08%, 

though its AUC is slightly lower at 90.39%. By comparing the last three combination model cases, the 

effectiveness of the cost matrix in models highlights its importance in improving recall by reducing the FN 

by very good amount.  

 

 

Table 4. Performance metrics of the baseline model with individual FN methodologies 
S. No. Category No. of 

Features 
Confusion Matrix Performance Metrics 
TN FP FN TP ACC P S SP F1 MCC AUC 

1 Baseline model 36 20 8 6 94 89.06% 92.16% 94.00% 71.43% 93.07% 67.23% 92.04% 

2 Engineered features 46 21 7 7 93 89.06% 93.00% 93.00% 75.00% 93.00% 68.00% 91.00% 
3 Cost-sensitive learning 36 20 8 3 97 91.41% 92.38% 97.00% 71.43% 94.63% 73.68% 90.39% 

4 Manual weight adjustment 36 20 8 6 94 89.06% 92.16% 94.00% 71.43% 93.07% 67.23% 92.04% 

5 Threshold adjustment 36 20 8 6 94 89.06% 92.16% 94.00% 71.43% 93.07% 67.23% 92.04% 

 

 

Table 5. Performance metrics of the baseline model with combination of different FN methodologies 
S. 

No. 

Category No. of 

Features 

Confusion Matrix Performance Metrics 

TN FP FN TP ACC P S SP F1 MCC AUC 

1 Engineered features + Manual 
weight adjustment 

46 20 8 4 96 90.63% 92.31% 96.00% 71.43% 94.12% 71.42% 91.00% 

2 Engineered features + 

Threshold adjustment 

46 20 8 4 96 90.63% 92.31% 96.00% 71.43% 94.12% 71.42% 91.00% 

3 Cost-sensitive + Engineered 

features 

46 21 7 7 93 89.06% 93.00% 93.00% 75.00% 93.00% 68.00% 90.63% 

4 Manual weight + Cost-sensitive 36 20 8 3 97 91.41% 92.38% 97.00% 71.43% 94.63% 73.68% 90.39% 
5 Threshold + Manual weight 36 20 8 6 94 89.06% 92.16% 94.00% 71.43% 93.07% 67.23% 92.04% 

6 Cost-sensitive + Threshold 

adjustment 

36 20 8 2 98 92.19% 92.45% 98.00% 71.43% 95.15% 76.08% 90.39% 

 

 

In the techniques reported in the literature [14], [16], [27] good prediction accuracy for the 

respective dataset utilized were achieved either by building a new sophisticated ML algorithm or developing 

a deeper network. In particular, very few of them are concentrating on reduction of type–I and type–II errors 

[14]. In this work, we incorporated various methodologies to focus mainly on reduction of FN as the model 

almost picked out those patients who are having heart disease. From Table 4 and 5, it is evident that the 

model is well suited for selecting methodologies like cost-sensitive and threshold adjustment as FN are 

reduced to a count of only 2 patients which resulted in an accuracy improvement from 89.06% to 92.19%. 

This proves that the proposed idea of different methodologies can work as a better ML framework to provide 

efficient prediction model with reduction of type-I and type-II errors. This result demonstrates the maximum 

clinical value by successfully minimizing life-threatening misclassifications while preserving high diagnostic 

precision, highlighting the optimal trade-off achieved by integrating multiple error reduction strategies. It is 

important to note that the reported false negative (FN) count of 2 was obtained from the 30% test set, 

corresponding to approximately 128 patients. This count reflects the model’s evaluation performance on 

held-out data and not the entire dataset. 

 

 

5. CONCLUSION 

In this research study, a stacked ensemble-based ML classifier model is developed for coronary 

artery disease prediction of JIPMER out-patient dataset with high accuracy. The research work reported in 

this paper is focused on reducing the FN to improve the obtained prediction accuracy. This is achieved by 
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tuning or modifying the stacked ensemble model with FN reduction methodologies. Experimental results 

showed a clear reduction in FN count and improved performance across precision, recall, F1-score, and AUC 

metrics. Notably, combining cost-sensitive learning and threshold adjustment reduced FN to just two cases in 

the 30% test set, with a corresponding F1-score of 95.15% and recall of 98% highlighting the clinical impact 

of the proposed methodology. Any dataset having similar features like the JIPMER medical record dataset 

considered in this research can utilize our proposed ML model with incorporation of suitable FN reducing 

methodologies for accurate prediction.  

This work has substantial implications for real-time decision support in cardiology, especially in 

resource-limited settings. The developed model is now being prepared for deployment within the clinical 

workflow at JIPMER, with plans for real-world validation and expansion to other cardiovascular conditions. 

Future research will focus on integrating this predictive framework with deep learning-based segmentation 

models using angiography images, thereby advancing toward a unified and automated diagnostic pipeline. 

Additionally, the proposed model can be further enhanced by incorporating recent developments in hybrid 

and cost-based ensemble learning techniques to improve predictive accuracy and clinical adaptability. 
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