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 With the increasing frequency and complexity of cyber threats, there is a 

pressing need for effective real-time solutions to detect and prevent 

malicious activities. This study introduces a novel machine learning-based 

architecture for real-time cybersecurity to enhance accurate identification 

and prevention of malicious cyber activities. The proposed framework 

combines advanced machine learning algorithms with Wireshark network 

traffic analysis to effectively detect and classify a wide range of 

cyberattacks, providing timely and actionable insights to cybersecurity 

professionals. A core component of this system is a prototype blocker, which 

is seamlessly integrated with Cisco infrastructure, enabling proactive 

intervention by blocking suspicious IP addresses in real-time. In addition, a 

user-friendly web application enhances system operability by offering 

intuitive data visualization and analytical tools, enabling rapid and informed 

decision-making. This comprehensive approach not only strengthens 

network security and protects digital assets but also equips defenders with 

the capability to respond effectively to the dynamic landscape of cyber 

threats. 
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1. INTRODUCTION 

The internet has become an essential component of everyday life in today’s world, influencing 

nearly every aspect of society. People are more dependent on the internet than ever because to the 

advancement of smartphones, internet of things (IoT) devices, and fast connections. Because online 

communication is so widely used, a wide range of cyberthreats, such as ransomware, phishing, malware, and 

data breaches, can affect people, companies, and infrastructure [1]. Economic stability, security, and privacy 

are all seriously jeopardized by these challenges. 

As network-related crimes increase, enhanced cybersecurity and monitoring are essential to combat 

these threats. Network forensics plays a key role by investigating security incidents, identifying 

vulnerabilities, and tracing the sources of cyber threats. It involves capturing and analyzing network traffic to 

uncover details about communication, such as source, destination, timing, and content [2], [3]. This approach 

is critical for responding to and preventing internet-related crimes. Packet analysis is a crucial method in 

network forensics to gather evidence and detect suspicions. network activities, including intrusion attempts, 

brute force, port scans, distributed denial-of-service (DDoS), and denial-of-service (DoS) [4], [5], [6].  

https://creativecommons.org/licenses/by-sa/4.0/
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Machine learning (ML) techniques combined with network forensics enhance cybersecurity by 

enabling faster and more efficient threat detection. Unlike traditional methods, which are time-consuming 

and may miss new attacks, machine learning can identify complex patterns and anomalies in network traffic. 

Studies, such as those by Naqash et al. [7] and Shivare et al. [8], show the effectiveness of machine learning-

based intrusion detection systems (IDS), including hybrid models with convolutional neural networks 

(CNNs) and long short-term memory (LSTMs). Using supervised learning on datasets like Canadian Institute 

for Cybersecurity Intrusion Detection System 2017 dataset (CICIDS-2017) helps classify threats, while 

packet analysis allows for detecting zero-day attacks. Integration with real-time tools like Wireshark further 

strengthens threat detection and response capabilities. 

Despite these advancements, most existing systems focus only on detection without implementing 

real-time mitigation strategies. There is a pressing need for intelligent, automated systems that can both 

detect and proactively respond to cyber threats in real-time. To address this gap, this paper proposes an 

advanced real-time intrusion detection and protection system (IDPS) that combines machine learning, 

network forensics, and automated blocking to detect, analyze, and mitigate cyber threats in real-time. The 

framework integrates network traffic analysis using Wireshark with machine learning algorithms to classify 

and block malicious activities, contributing to enhanced cybersecurity practices. Thaseen et al. [9] 

specifically analyzed Wireshark PCAP files, whereas our work uses the CICIDS-2017 dataset, which is 

widely recognized and consists of different types of attacks along with up-to-date network attack patterns.  

The primary aim of this work is to develop a practical, scalable, and deployable machine learning-

based framework that not only detects intrusions with high accuracy but also initiates automated network-

level countermeasures. Our central analysis is that combining real-time packet analysis with ML-driven 

detection and autonomous blocking significantly enhances the effectiveness of intrusion detection systems. 

The key contributions of our work are as follows: 

a. We have used the CICIDS-2017 dataset to train our intrusion detection model and employed Wireshark, a 

widely used packet-capturing and network analysis tool, to test the model’s accuracy with real-time data. 

b. We have detected abnormal packets that are automatically logged into a dynamically updated database, 

which helps prevent potential threats by storing details for further analysis and action. 

c. We have developed an interactive web application for visualization and analysis, which provides real-

time insights into normal and abnormal network packets, enhancing user understanding of network traffic. 

d. A prototype blocker system is developed that retrieves malicious IP addresses identified from the 

database in real time and proactively blocks these addresses, thereby improving network security. 

e. The proposed system demonstrated an accuracy of 81% in classifying network traffic, outperforming 

similar models in scalability and detection time. 

The remainder of this paper is structured as follows: section 2 reviews the relevant literature and 

previous research in the field. Section 3 outlines the foundational concepts and the intuitive approach 

underlying our work. The detailed methodology is presented in section 4. Section 5 discusses the results 

obtained and provides a comprehensive analysis. Finally, section 6 concludes the paper and suggests 

directions for future research. 

 

 

2. LITERATURE REVIEW 

An intrusion detection system (IDS) is essential for cybersecurity, monitoring network traffic for 

malicious activities [10]. Detection techniques include packet analysis [11] and flow data analysis [3]. 

Signature-based IDS detects known threats but struggles with new attacks [9], while anomaly-based 

approaches use machines to identify zero-day threats [8]. Rule-based and cloud-based methods enhance real-

time detection [12]. Machine learning techniques like K-nearest neighbors (K-NN), support vector machine 

(SVM), and convolutional neural network (CNN) improve accuracy [13], [8], and hybrid systems further 

enhance detection rates with reduced false positives. Recent studies propose integrated IDS models 

leveraging ML and rule-based approaches for robust security [14], [15]. 

Using sophisticated algorithms and in-depth examination of each packet’s data, we have selected 

machine learning-based detection and packet analysis methods for intrusion detection in our study. By 

combining these strategies, we aim to improve intrusion detection systems’ capability to identify and 

neutralize online threats. Using different strategies, a variety of machine learning models have been proposed 

on the CICIDS-2017 dataset. In order to identify network assaults in the CICIDS-2017 dataset, Panwar et al. 

[14] used eight supervised classification algorithms, including GaussianNB (GNB), BernoulliNB (BNB), 

decision tree (DT), K-nearest neighbors (K-NN), logistic regression (LR), support vector machine (SVM), 

random forest (RF), and stochastic gradient descent (SGD). Three machine learning models were created  

by Elmasri et al. [15] utilizing the local outlier factor (LOF), improved k-nearest neighbors (KNN) 

algorithms. 
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Various studies highlight the effectiveness of ML models in detecting network attacks using the 

CICIDS-2017 dataset [16], [17], [18], [19]. Wireshark, a powerful network protocol analyzer, is widely used 

for digital forensics and cybersecurity. Kamble et al. [20] demonstrated its utility in data collection and 

monitoring, while Soepeno [21] emphasized its superiority over TCPdump and NetFlow for real-time packet 

analysis. Dodiya et al. [22] utilized Wireshark to identify indicators of compromise (IOCs) for malware 

detection. Chaudhary et al. [23] explored network traffic analysis (NTA) with Wireshark, developing 

geolocation-based visualization for security tracking. Mabsali et al. [24] used Wireshark to detect TCP SYN 

flood attacks, analyzing traffic patterns and vulnerabilities. Our study builds on these insights by establishing 

a database to store packet details and developing a web application for intrusion detection analysis and 

visualization. 

 

 

3. SYSTEM ARCHITECTURE 

There can be many users in a network system that are connected via routers to servers. When an end 

user’s device transmits a packet, it is processed as well as security checked by the default pre-configured 

router firewall system and then passed through the server’s default gateway towards the destination device. 

Unfortunately, cybercriminals have become so advanced that they can easily break through that default 

security system and commit crimes without leaving a trace. Therefore, a more secure intelligent security 

approach is needed, and our IDPS is a suitable tool. 

IDPS is trained using the K-NN ML Algorithm that checks various parameters of a packet passing 

through the server, and it tries to categorize the packet into either normal or non-normal packets. Normal 

packets are passed, while suspicious ones trigger IP blocking. A dynamic database stores suspicious packet 

data, which is then used to generate a command log for blocking those IPs in the router’s firewall. This 

process repeats, updating the database with suspicious new data. In Figure 1, we see that our IDPS system is 

integrated into a network via a primary router. The IDS analyzes packet traffic, allowing normal packets to 

pass and isolating suspicious ones. Suspicious packet data is stored in a temporary database, which is then 

used to generate a command log for blocking malicious internet protocol (IP) addresses. Simultaneously, 

authorized personnel are alerted, enabling rapid IP blocking via the command log, ensuring network security 

and facilitating forensic analysis. 

 

 

 
 

Figure 1. System architecture 

 

 

4. METHODOLOGY 

This section describes the proposed intrusion detection and protection system based on a real-time, 

machine learning-driven approach. The phases of the methodology are visualized in Figure 2. Real-time 

network traffic data is collected using wireshark, followed by rigorous cleaning and feature selection to 

prepare the data for the development of machine learning models. The trained model is then evaluated using 

Wireshark-captured data to assess its effectiveness in classifying benign and non-benign traffic. Finally, the 

deployed model predicts the nature of incoming traffic in real-time, enabling the identification of potential 

intrusions and the implementation of appropriate security measures. 
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Figure 2. Phases of the methodology 

 

 

4.1.  Phases of methodology 

4.1.1. Data collection process 

To ensure model robustness and fairness, we have performed comprehensive data preprocessing, 

including cleaning, balancing, and splitting the dataset. The publicly available CICIDS2017 dataset (79 

features) from CICIDS [11] is chosen for its recent network traffic data (5 days) encompassing diverse 

attacks, including DDoS [25], port scan [26], Botnet [27], Infiltration [28], web attacks: Brute Force Attack, 

XSS attack [29] and SQL injection attack [30]. Figure 3 describes the files contained within the CICIDS2017 

dataset. This figure offers a comprehensive overview of the data structure and organization, enhancing 

understanding of the dataset’s contents. 

 

 

 
 

Figure 3. Description of files containing the CICIDS 2017 dataset 

 

 

4.1.2. Data preprocessing 

The raw data is thoroughly cleaned, addressing the missing values by imputation and dividing them 

into training and testing sets for the model evaluation in an unbiased way. To address class imbalance, 

synthetic minority oversampling technique (SMOTE) is used to generate synthetic data points for the minority 

class, ensuring a balanced dataset for effective machine learning model training. This preprocessing step 

significantly improves the reliability of the model by reducing bias introduced by uneven class distribution. 
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4.1.3. Feature selection 

Feature selection plays a crucial role in improving model efficiency and accuracy by identifying the 

most relevant network parameters for classification. After data pre-processing, a crucial step involves 

selecting the most informative features for intrusion detection. Rather than randomly choosing features, the 

selection focuses on those with clear significance to identify network threats. Key features such as 

‘Destination Port’ (distinguishing network services), TCP flags (insights into connection and data flow), and 

‘Congestion Window Reduced’ and ‘ECN-Echo’ (indicators of congestion control and network health) 

enhances the ability of the model to differentiate normal traffic from intrusions. As detailed in Table 1, this 

targeted selection ensures that the model learns relevant patterns for accurate detection. 

 

 

Table 1. List of selected features 
No No feature name 

1 Destination Port 
2 Fin 

3 Syn 

4 Reset 
5 Push 

6 Acknowledge 

7 Urgent 
8 Congestion Window Reduced 

9 ECN-Echo 

 

 

4.1.4. Machine learning model development 

To identify the best-performing model for our intrusion detection task, we have evaluated multiple 

classifiers based on standard performance metrics. Established classification algorithms (Gaussian naïve 

Bayes (GNB), decision tree (DT), random forest (RF), logistic regression (LR), gradient boosting, and 

K-nearest neighbors (K-NN)) are selected for their effectiveness in handling complex network traffic. The 

preprocessed data is split for training and testing, allowing each algorithm to optimize its parameters for 

accurate intrusion detection. Performance is evaluated using accuracy, precision, recall, and F1-score. 

Among the models evaluated, the K-NN achieves the highest precision (81%), as shown in Figure 4, making 

it the optimal choice for intrusion detection. Real-time detection capabilities of the framework are further 

assessed using established metrics, which demonstrate superior accuracy over existing approaches. 

 

 

 
 

Figure 4. Comparison of accuracy and error rate between algorithms 

 

 

Incorporating K-NN, the proposed framework is rigorously evaluated for real-time malicious 

activity detection using established metrics (precision, recall, F1-score, accuracy). Promising results indicate 

superior accuracy compared to existing approaches for protecting online environments. We present 
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comparisons of precision, recall, and F1-score for each algorithm to analyze framework performance in 

different metrics. Precision evaluates the accuracy of intrusion detections, recall measures how well actual 

intrusions are identified, and F1-score balances both. As shown in Figure 5, different algorithms excel in 

specific scenarios: naive Bayes performs well for benign traffic (precision) in Figure 5(a), infiltration (recall) 

in Figure 5(b) and PortScan (F1-score) in Figure 5(c), while K-NN struggles with Bot attacks. These 

variations highlight the trade-offs in algorithm selection for intrusion detection. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Comparison of machine learning algorithms based on (a) precision, (b) recall, and (c) F1-score 
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4.1.5. Testing using the wireshark PCAP file 

Wireshark, a powerful network analyzer [31], is used to capture over 10,000 data points in 7 hours 

for real-time traffic analysis. The data are pre-processed, including feature selection, imputation, and scaling, 

to optimize them for machine learning. K-NN is chosen for its superior accuracy in intrusion detection, and 

its performance is evaluated to validate its effectiveness in distinguishing benign from malicious traffic, 

enhancing network security. 

 

 

5. WEB APPLICATION AND PROTOTYPE DEVELOPMENT 

After validating the effectiveness of the machine learning model, we have focused on integrating it 

into a deployable system for practical use. We have chosen a web application for its accessibility and cross-

platform compatibility, enabling seamless cybersecurity data analysis for all users. With intuitive tools and 

visualizations, it simplifies complex insights, empowering non-technical users to evaluate security posture 

and make informed decisions in Figure 6. 

Our infrastructure features a well-designed XAMPP database that stores critical security data, 

including detected threats and IP addresses, ensuring efficient data management for proactive threat 

mitigation. A prototype blocker system, implemented using Cisco Packet Tracer in Figure 7, blocks 

malicious IPs identified by the IDPS system. This integrated framework enhances cybersecurity by enabling 

real-time threat detection and response, safeguarding digital assets. 

 

 

 
 

Figure 6. Non-benign prediction in a table on website 

 

 

 
 

Figure 7. Blocker system prototype in CISCO 
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6. PERFORMANCE AND RESULT ANALYSIS 

K-nearest neighbors (KNN), chosen for its high accuracy (81%), powers our web-based intrusion 

detection system in real time. It integrates with a secure database to logged threats and block malicious IP 

addresses proactively, while also providing clear visualizations for security professionals to take action. 

 

6.1.  System features 

Our feature selection process aims to identify the most impactful features for intrusion detection. 

While an exhaustive comparison with all recent works is beyond the scope of this paper, Table 2 provides a 

breakdown of key features employed in our system. This table highlights some of the features utilized by our 

system for intrusion detection. We may incorporate additional features based on our specific network 

environment and threat landscape to further optimize the model’s performance. 

 

 

Table 2. Feature comparison with recent works 
References ML Real-time data Web application Prototype 

Chaudhary et al. [23] × ✓ ✓ × 

Mabsali et al. [24] × ✓ × × 

Thockchom et al. [32] ✓ × × × 

Thaseen et al. [9] ✓ ✓ × × 

IDPS ✓ ✓ ✓ ✓ 

 

 

6.2.  System accuracy 

Our system prioritizes accuracy, achieving 81% in classifying traffic. Figure 8 compares our 

model’s accuracy with a recent network intrusion detection system (NIDS) [9]. While both show similar 

accuracy for smaller datasets, ours exhibits better scalability with larger data volumes (2,830,743 vs. 1,130 

instances in [9]), suggesting superior generalization. This robustness is further enhanced by our system’s 

proactive prevention capabilities (malicious IP blocking) that extend beyond mere intrusion detection. 

 

 

 
 

Figure 8. Accuracy matrix 

 

 

6.3.  Detection time 

Our system emphasizes real-time performance, with a detection time scale proportional to the 

number of packets analyzed, as illustrated in Figure 9. This capability ensures that our system responds more 

rapidly compared to a recent NIDS [9], particularly when handling larger data volumes. The reduced 

detection time is crucial as it allows for swift mitigation of security threats, thereby enhancing the overall 

security posture and minimizing potential damage. This efficiency in processing and response is vital to 

maintaining robust network security, enabling the timely identification and neutralization of malicious 

activities. 
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Figure 9. Detection time comparison 

 

 

6.4.  User feedback 

User feedback is crucial for IDPS improvement. We gathered feedback from 10 users, most of them 

recommending the system, as shown in Figure 10. This feedback loop informs future development efforts to 

improve usability and effectiveness against evolving cyber threats. 

 

 

 
 

Figure 10. User feedback 

 

 

7. CONCLUSION 

This study proposed an intelligent, real-time intrusion detection and protection system (IDPS) that 

integrates machine learning, network forensics, and automated response mechanisms to detect and mitigate 

malicious network activities. As stated in the Introduction, the primary objective was to develop a practical 

and deployable framework capable of accurate intrusion detection and timely mitigation, and the results and 

discussion confirm that this objective has been successfully achieved. The experimental evaluation 

demonstrates that integrating packet-level traffic analysis with a trained machine learning model and 

dynamic IP blocking enhances both detection accuracy and real-time protection in modern networks. 

The findings validate the compatibility between the expected outcomes and the achieved results, 

highlighting the effectiveness of combining machine learning with real-time network traffic analysis. Based 

on these results, future research may focus on improving detection accuracy through advanced learning 

models, integrating edge computing and federated learning for scalability, and deploying the system in real-

world network environments. Overall, the proposed framework provides a strong foundation for developing 

intelligent and scalable cybersecurity solutions applicable to enterprise networks, smart infrastructures, and 

research-driven security platforms. 
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