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 The deployment of artificial intelligence in environmental monitoring 

demands models balancing efficiency, interpretability, and computational 

cost. This study proposes a hybrid radial basis function network (RBFN) 

framework integrated with fuzzy c-means (FCM) clustering for predicting 

harmful algal blooms (HABs) using water quality parameters. Unlike 

conventional approaches, our model leverages localized activation functions 

to capture non-linear relationships while maintaining computational 

efficiency. Experimental results demonstrate that the RBFN-FCM hybrid 

achieved high accuracy (F1-score: 1.00) on test data and identified 

Chlorophyll-a as the strongest predictor (r=0.94). However, real-world 

validation revealed critical limitations: the model failed to generalize 

datasets with incomplete features or distribution shifts, predicting zero HAB 

outbreaks in an unlabeled 11,701-record dataset. Comparative analysis with 

Random Forests confirmed the RBFN-FCM's advantages in training speed 

and interpretability but highlighted its sensitivity to input completeness. This 

work underscores the potential of RBFNs as lightweight, explainable tools 

for environmental forecasting while emphasizing the need for robustness 

against data variability. The framework offers a foundation for real-time 

decision support in ecological conservation, pending further refinement for 

field deployment. 
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1. INTRODUCTION 

Artificial neural networks (ANNs) have become fundamental in modern artificial intelligence, 

empowering diverse applications in healthcare, finance, environmental monitoring, and smart cities by 

enabling pattern recognition, data-driven prediction, and adaptive control systems [1], [2]. Among various 

ANN architectures, radial basis function networks (RBFNs) have emerged as a particularly efficient  

model for function approximation, classification, and regression tasks. Distinguished by their localized 

activation functions, such as Gaussian kernels, RBFNs exhibit strong generalization capabilities and fast 

https://creativecommons.org/licenses/by-sa/4.0/
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training convergence, especially when applied to problems involving non-linear and spatially distributed 

features [3], [4]. 

Recent advancements in RBFNs have improved their robustness and accuracy, particularly through 

the integration of clustering techniques and hybrid learning strategies [5]. For instance, combining RBFNs 

with fuzzy c-means (FCM) clustering enhances center selection by capturing underlying data structures, thus 

improving predictive reliability in complex environments [6]. Moreover, hybrid models that integrate RBFNs 

with ensemble techniques or deep learning paradigms have shown improved performance across various 

domains, such as financial forecasting, climate prediction, and engineering applications [7], [8]. These 

innovations address key limitations of traditional RBFNs, including sensitivity to center initialization, limited 

scalability in high-dimensional spaces, and susceptibility to overfitting. 

In the context of environmental monitoring, machine learning models have shown considerable 

promise in forecasting harmful algal blooms (HABs), a recurring phenomenon that disrupts marine 

ecosystems, fisheries, and water quality management. Traditional monitoring approaches, which rely heavily 

on manual water quality sampling, are often time-consuming and reactive. By contrast, predictive models 

offer a proactive strategy for early warning and response. Despite growing interest in using machine  

learning for HAB detection, limited studies have explored the performance of RBFNs in this domain or 

benchmarked them against alternative algorithms such as random forests (RFs) or support vector machines 

(SVMs) [9], [10].  

This study proposes a hybrid machine learning framework that combines RBFNs with FCM 

clustering to predict HAB events based on key water quality parameters. The model leverages real-world 

sensor data, public domain datasets, and synthetic datasets generated through comparative statistical methods 

to ensure sufficient variability and generalizability. A comparative analysis is conducted to evaluate model 

performance against RF classifiers, emphasizing classification accuracy, generalization to unseen data, and 

sensitivity to incomplete or noisy inputs. 

The contributions of this paper are threefold. First, it presents an optimized RBFN architecture 

tailored for environmental prediction tasks, enhanced with fuzzy clustering for improved center initialization. 

Second, it demonstrates the comparative advantage of this hybrid RBFN model over conventional models, 

including RF, particularly in real-time, low-resource settings. Third, the study provides insights into 

deployment challenges, such as data completeness and overfitting risks, and proposes future research 

directions toward improving model robustness. 

The remainder of this paper is structured as follows: section 2 reviews the fundamentals of RBFNs 

and training methodologies. Section 3 describes the dataset, preprocessing steps, and model architecture. 

Section 4 presents experimental results and a detailed discussion comparing the proposed model with existing 

techniques. Finally, section 5 concludes the paper. 

 

 

2. LITERATURE REVIEW 

Table 1 summarizes some of the key recent advancements in RBFN research. These developments 

span enhanced training algorithms through hybridization with deep learning models, highlighting a trend 

toward integrating RBFNs with more complex neural architectures. Furthermore, the research also focuses on 

practical implementations, including advancements in hardware acceleration for computational efficiency 

and applications in emerging areas such as behavior recognition. 

RBFNs differentiate themselves from other ANN architectures due to their unique structure and 

training methodology. Compared to multi-layer perceptrons (MLPs) and convolutional neural networks 

(CNNs), RBFNs offer several advantages but also have some limitations [16]–[22]. Table 2 provides a 

comparative analysis of different learning algorithms used in RBFN training, focusing on their 

methodologies, advantages, and typical applications. 

 

 

Table 1. Recent developments in RBFNs 
Research Area Advancement Details Reference 

Enhanced training algorithms Hybrid RBFNs RBFNs integrated with deep learning models, enhance 

performance in cyber-physical systems. 

[11] 

Deep learning and RBFNs Hybridization with deep 
learning 

RBFNs combined with NLP and vision models 
improve classification accuracy. 

[12], [13] 

Hardware acceleration and 

computational efficiency 

AI in Enterprises Enterprise-scale artificial intelligence (AI) models 

leverage RBFNs for efficient scaling. 

[14] 

Emerging application areas Crowd dynamics and 

behavior recognition 

AI-based surveillance utilizes RBFNs for behavior 

analysis. 

[15] 
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Table 2. Learning algorithms of RBFNs 
Learning algorithm Description Advantages Application 

Ensemble clustering 
[23] 

Combines multiple clustering methods to determine 
RBF centers, enhancing robustness and accuracy. 

Improved center selection, 
enhanced model robustness 

Educational 
performance modelling 

RBF-ARX 

Integration [24] 

Combines RBFNs with Autoregressive with 

exogenous inputs (ARX) models for predictive control 

Enhanced predictive accuracy, 

robust control strategies 

Control systems in 

engineering 
Hybrid RBFNs [25] Integrates RBFNs with other machine learning 

techniques to improve time series forecasting. 

Increased forecasting 

accuracy, versatility 

Financial forecasting, 

weather prediction 

K-Means and 
gradient descent [7] 

Employs k-means for center determination and 
gradient descent for weight optimization in reservoir 

characterization. 

Effective modelling of 
geological data, robust 

predictions 

Geological reservoir 
characterization 

 

 

3. METHOD 

This study adopted a hybrid machine learning approach to predict Harmful Algal Bloom (HAB) 

events using water quality data. The methodology consisted of five main stages which data preparation, 

synthetic data generation, feature normalization, model design, and performance evaluation. An overview of 

the full workflow is illustrated in Figure 1. Two types of machine learning models were used, a standard RF 

classifier and the proposed hybrid model that combines RBFNs with FCM clustering. 

Model training and evaluation were performed using consistent data split for all models, with 70% 

of the data used for training and 30% reserved for testing. The models were assessed based on accuracy, 

precision, recall, and F1-score, with the latter prioritized due to its balanced representation of sensitivity and 

precision, especially under imbalanced class conditions. This evaluation approach ensures that the model is 

not only accurate in general classification but also effective in identifying minority class instances, which in 

this case are the rare HAB events. 

The models were developed using Python and MATLAB and executed on Google Colab platform. 

Libraries such as Scikit-learn, NumPy, Pandas, and KERAS were utilized for data manipulation, model 

training, and evaluation. This hybrid programming environment enabled efficient experimentation and 

ensured compatibility across tools. All code and datasets used in this study have been structured to support 

reproducibility and future extension by other researchers. 
 

 

 
 

Figure 1. Workflow of the HAB prediction framework 

 

 

3.1.  Training approach 

The training process in RBFNs follows a two-step approach, determining center vectors where 

centers are typically selected using clustering algorithms such as k-means or random sampling, and 

optimizing weights once centers are fixed, weights in the output layer are optimized using methods like least 

squares regression or gradient-based techniques. The separation of center selection from weight optimization 

allows RBFNs to train efficiently, avoiding backpropagation through multiple layers as in deep learning 

models. This training process is generally categorized into supervised and unsupervised learning approaches. 

Supervised learning involves adjusting network parameters based on labeled training data. The 

primary goal is to minimize the error between the predicted outputs and the actual target values [26]. 

Unsupervised learning utilizes clustering techniques, such as k-means clustering, to determine the centers of 

the radial basis functions without requiring labeled data. This method is commonly used in the initial training 

phase to identify representative data points before fine-tuning the network's weights [27]. Several algorithms 

are fundamental to the training of RBFNs according to Table 3. 
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Table 3. Training algorithm of RBFNs 
Algorithm Functionality 

K-Means clustering An unsupervised algorithm used to identify the centers of the RBFs by partitioning the input data into 
clusters. Each cluster center serves as a center vector for a corresponding RBF neuron. 

Gradient descent A supervised learning method employed to optimize the weights of the output layer by iteratively adjusting 

them to minimize the prediction error. 
Ensemble clustering Combines multiple clustering methods to enhance the robustness and accuracy of center selection, thereby 

improving the overall performance of the RBFN. 

 

 

3.2.  Data preprocessing 

To prepare the dataset for model training, multiple Excel files containing water quality 

measurements were consolidated into a unified dataset. Standardization steps included renaming columns for 

consistency, selecting relevant features, and encoding the target variable as a binary classification (1 for HAB 

outbreak, 0 for no outbreak). Key environmental parameters such as temperature, total dissolved solids 

(TDS), salinity, and nutrient concentrations were retained, while non-relevant or redundant features were 

excluded. Missing values were handled through imputation where possible, while records with excessive 

missing data were removed to ensure model reliability. 

Following data cleaning and feature selection, the dataset was normalized to ensure consistent value 

ranges across features, which is essential for optimizing the performance of machine learning algorithms, 

particularly those sensitive to scale differences. Since the dataset exhibited class imbalance with significantly 

fewer HAB outbreak records compared to non-outbreak cases, synthetic minority over-sampling technique 

(SMOTE) was used to address this issue. SMOTE generates synthetic samples of the minority class by 

interpolating between existing minority class instances, effectively balancing the class distribution. This step 

was crucial to prevent the models from being biased toward the majority class and to enhance the reliability 

of the classification outcomes. 

 

3.3.  Exploratory data analysis and feature relationships 

A correlation matrix was computed to examine relationships between water quality parameters and 

HAB occurrences. Figure 2 shows the Chlorophyll-a exhibited the strongest positive correlation (0.94) with 

HAB outbreaks, reinforcing its significance as a key predictive feature. Other parameters, such as 

temperature, TDS, and pH, resulted in weaker correlations, indicating that HAB occurrence is influenced by 

complex, non-linear interactions. Kernel density estimation (KDE) plots revealed substantial overlap in 

feature distributions between outbreak and non-outbreak conditions, suggesting that simple linear models 

may be insufficient for accurate classification. 

 

 

 
 

Figure 2. Correlation matrix between water quality parameters and target variables 
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Overlapping distributions were observed for most features, including temperature, pH, and DO, 

highlighting the complexity of separating the classes using linear methods. Figure 3 indicates the 

Chlorophyll-a showed the most distinct separation, aligning with its strong correlation to the target variable. 
 

 

 
 

Figure 3. Correlation plot between Chlorophyll-a and target variables 
 

 

4. RESULT AND DISCUSSION 

RBFNs have attracted considerable interest due to their ability to efficiently approximate complex 

functions while maintaining interpretability in neural computations. However, like any computational model, 

RBFNs come with both strengths and weaknesses. This section provides the results obtained from the data 

training and a comprehensive discussion including the advantages and limitations of RBFNs, supported by 

relevant literature. 

 

4.1.  Prediction on real-world unlabeled dataset 

To evaluate the practical applicability of the proposed model, the trained RBFN-FCM model was 

tested on an unlabeled dataset referred to as “Datan HL7 2023–2024.” This dataset comprised 11,701 records 

containing real-time water quality readings. Only three input parameters, which are temperature, pH, and 

chlorophyll-a, were directly available from the data source, while other features used during training were 

unavailable. To maintain consistency in the input shape, missing values were filled with zeros. The model 

predicted all instances in the dataset as “No Outbreak.” Table 4 shows some of the predicted data: 

Although this result may indicate that no HAB events occurred during the period of data collection, 

it also reflects a potential limitation of the model when applied to datasets with incomplete feature sets. The 

reliance on multiple parameters for classification suggests that the model’s performance may decline when 

only a subset of inputs is available. This outcome emphasizes the need for a more robust model that can adapt 

to missing or imbalanced data without significant performance degradation. 
 

 

Table 4. Sample predicted data 
Date Time Temperature pH Chlorophyll-a Predicted HAB Outcome 

2024-04-08  17:10:00 32.2 8.32 4.11 No Outbreak 

2023-10-07  17:50:00 31.96 8.09 3.15 No Outbreak 

2023-12-28  23:00:00 29.4 8.25 4.61 No Outbreak 
2024-09-21  00:00:00 29.77 7.85 2.62 No Outbreak 

2024-03-25  16:50:00 32.46 8.31 4.87 No Outbreak 

 

 

4.2.  Model performance and evaluation 

During the training phase, the model achieved perfect performance metrics, including 100% 

accuracy, precision, recall, and F1-score on the test dataset. The confusion matrix confirmed the absence of 

both false positives and false negatives, indicating that the model learned the patterns in the training data 

exceptionally well. However, this level of performance also raises concerns regarding potential overfitting, 

particularly given the synthetic nature of part of the training data. To assess the model’s generalization 

capability, it was tested on an outlier dataset with feature distributions that differed significantly from those 

in the training set. The results showed a complete failure to classify HAB outbreak cases, resulting in a recall 

score of 0.00 for the positive class. This outcome underscores the challenge of generalizing from synthetic or 

uniform datasets to real-world environments, where the data may contain noise, imbalance, or variability 
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does not present during training. The confusion matrix indicates perfect predictions, with no false positives or 

false negatives, as shown in Table 5. 
 
 

Table 5. RBFNs classification report 
 Precision Recall F1-Score Support 

No Outbreak 1.00 1.00 1.00 20990 

HAB Outbreak 1.00 1.00 1.00 20989 

Accuracy   1.00 41979 
Macro Avg 1.00 1.00 1.00 41979 

Weighted Avg 1.00 1.00 1.00 41979 

 
 

5. CONCLUSION 

This study proposed and evaluated a hybrid RBFN integrated with FCM clustering for predicting 

HAB events based on key water quality parameters. The experimental results demonstrate that the RBFN-

FCM model achieved excellent predictive performance on balanced and clean datasets, with an F1-score of 

1.00, and identified Chlorophyll-a as the most influential predictor of HAB occurrences. The model 

outperformed random forest classifiers in terms of training speed and interpretability, suggesting its 

suitability for real-time, low-resource environmental monitoring systems. However, testing on a real-world, 

incomplete dataset highlighted critical limitations in the model’s generalization capability, as it failed to 

detect any HAB events under feature constraints. These findings underscore the challenges of deploying AI 

models in dynamic, noisy environments and highlight the importance of robust handling of missing or 

imbalanced data for reliable field performance. This research contributes to the growing body of work on 

lightweight, explainable AI for ecological monitoring and offers a foundation for integrating hybrid RBFNs 

into early warning systems for aquaculture and coastal management. Future work should focus on improving 

resilience to data variability through adaptive kernel functions, advanced imputation strategies, and 

incorporating online learning mechanisms for continuous model refinement in real-world deployments. 
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