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This study investigates five clustering algorithms—K-Means, Gaussian
mixture model (GMM), hierarchical clustering (HC), k-medoids, and
spectral clustering—applied to student performance in mathematics, reading,
and writing to support the development of virtual reality (VR)-based
adaptive learning systems. Cluster quality was assessed using Davies-

Bouldin and Calinski-Harabasz indices. Spectral clustering achieved the best

results (DBI=0.75, CHI=1322), followed by K-Means (DBI=0.79,
Keywords: CHI=1398), while HC demonstrated superior robustness to outliers. Three
distinct student profiles—beginner, intermediate, and advanced—emerged,
enabling targeted adaptive interventions. Supervised classifiers trained on
these clusters reached up to 99% accuracy (logistic regression) and 97.5%
(support vector machine (SVM)), validating the discovered groupings. This
work introduces a novel, data-driven methodology integrating unsupervised
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1. INTRODUCTION

This work aims to analyze student performance in higher education institutions (HEIs) using
clustering and classification methods to inform virtual reality (VR)-based personalized learning. Personalized
learning represents a shift from traditional one-size-fits-all approaches toward tailored instruction that adapts
to each student’s abilities, preferences, and needs. Virtual reality (VR) enables immersive learning
environments that can adjust dynamically to learners, while clustering algorithms allow the identification of
meaningful student groups, supporting adaptive interventions and more efficient, customized educational
experiences.

Several studies have applied clustering to educational personalization. Ouassif et al. [1] used
K-Means on engagement behaviors, but their approach was limited to a single algorithm and dataset, with no
connection to Vahdat et al. [2] provided a general review without experimentation. Sarié-Grgié et al. [3]
analyzed behaviors in an intelligent tutoring system, but results were confined to online learning. Hooshyar
et al. [4] introduced the PPP algorithm based on procrastination, effective but limited to a single variable.
Navarro and Ger [5] compared algorithms on large datasets without considering immersive personalization.
DeFreitas and Bernard [6] evaluated K-Means, density-based spatial clustering of applications with noise
(DBSCAN), and balanced iterative reducing and clustering using hierarchies (BIRCH), confirming K-Means’
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effectiveness but only on internal metrics. Krizani¢ [7] combined clustering and decision trees on e-learning
logs, while Vital ef al. [8] integrated statistical analysis and clustering based on socio-personal factors.

Recent advances in predictive modeling further highlight the potential of sophisticated approaches
for complex nonlinear patterns. Jin et al. [9] applied neural networks to capture temporal dependencies in
trading volumes, and Jin et al. [10] used the same approach to forecast commodity prices. Jin and Xu [11]
demonstrated the effectiveness of Gaussian process regression (GPR) with Bayesian optimization for
predicting silver prices, and Jin and Xu [12] applied this method to thermal coal prices. Jin and Xu [13]
employed graphical models, including directed acyclic graphs (DAGs), to uncover causal structures in
multivariate economic data, while Xu [14] extended this type of analysis. Xu [15] showed that ensemble and
composite methods improve prediction robustness for agricultural commodities, and Xu and Zhang [16]
confirmed these benefits for financial indices. Inspired by these works, our study leverages clustering and
classification techniques to analyze student performance and guide adaptive VR-based learning.

Despite these advances, previous research mainly applied single clustering methods to educational
data, with limited validation and little connection to immersive personalization. This study addresses these
gaps by evaluating five clustering algorithms (K-Means, Gaussian mixture model (GMM), hierarchical,
K-medoids, and spectral clustering), quantitatively validating the discovered clusters through supervised
classifiers, and identifying interpretable student profiles—beginner, intermediate, and advanced—to inform
adaptive interventions. The contributions of this study are summarized in a single paragraph as follows: first,
a systematic comparison of five clustering algorithms on HEI student performance data; second, validation of
clusters using supervised classification models to ensure quantitative robustness; and third, identification of
interpretable student profiles to guide adaptive VR-based learning and provide a practical framework for
immersive, personalized education.

The remainder of the paper is organized as follows: section 2 reviews related research on clustering
methods in educational data mining. Section 3 presents our methodology, including preprocessing, dataset
attributes, system architecture, clustering algorithms, and evaluation metrics. Section 4 reports experimental
results, compares classification models, analyzes student groups, and evaluates clustering performance.
Finally, section 5 concludes and outlines future directions, including the application of deep learning and
real-time feedback systems.

2. LITERATURE REVIEW
2.1. Clustering technique in educational data mining

Clustering techniques have become a cornerstone of educational data mining (EDM), enabling the
identification of meaningful patterns in student performance, engagement, and behavior. Early models
(overlay, fuzzy logic, Bayesian networks) provided solid foundations but remain fragmented and poorly
suited to adaptive learning systems [17]. Recent studies have applied clustering to online learning
environments. Sarié-Grgi¢ et al. [3] performed clustering of students based on eight online behavior variables
in an intelligent tutoring system (AC-ware Tutor), including preprocessing, dimensionality reduction,
clustering, and post-test performance analysis, and created a decision tree for human interpretation of
clusters. However, the application was restricted to a specific online system and may not generalize to in-
person or VR learning environments. Hooshyar et al. [4] developed the PPP algorithm to predict student
performance according to procrastination behavior, classifying students as procrastinators, candidates, or
non-procrastinators, achieving 96% accuracy with multiple classifiers; however, this approach focused
mainly on procrastination, limiting overall performance prediction and not considering other behavioral or
academic variables. Navarro and Ger [5] compared different clustering algorithms on a large educational
dataset, showing that K-Means and partitioning around medoids (PAM) performed best for partitioning. At
the same time, divisive analysis (DIANA) excelled in hierarchical clustering, though the study focused on
large datasets without addressing VR or immersive personalization and did not track individual performance.
Fuseini and Missah [18] confirmed the dominance of clustering in higher education, while Li et al. [19]
applied ensemble clustering to detect typical and anomalous behaviors, yet restricted to a single institution.
DeFreitas and Bernard [6] also analyzed clustering algorithms on learning management system (LMS) data,
comparing K-Means, DBSCAN, and BIRCH, with K-Means achieving the highest Silhouette coefficients;
limitations included a lack of application to immersive systems, future performance prediction, and
pedagogical interpretation. Krizani¢ [7] applied data mining to e-learning logs from a Croatian university,
using clustering based on student behavior followed by a decision tree. Still, results were specific to the
existing e-learning platform with limited generalizability and did not consider VR or immersive learning.
Vital et al. [8] analyzed student performance using statistical methods combined with K-Means and
hierarchical clustering, studying factors such as family background, personal profile, and lifestyle habits,
with clustering helping to predict pass/fail outcomes and understand underlying causes. Other studies
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combined clustering with additional techniques: Prabha and Priyaa [20] applied fuzzy K-medoids but lacked
external validation or suffered high computational costs, Hafdi and El Kafhali [21] explored predictive
modeling with small datasets, and Xu ef al. [22] investigated performance evolution but faced sensitivity
issues. For dropout prediction in massive open online course (MOOC) via deep learning [23], clusters were
not explicitly generated, while Sharif and Atif [24] emphasized the benefits of personalized feedback despite
challenges related to privacy and contextual specificity. As the scope of clustering extends beyond
performance to include personalization, the integration of virtual reality emerges as a promising yet
underexplored area.

2.2. Virtual reality, personalized learning, and adaptive student modeling

VR technologies are reshaping learning by providing interactive simulations and personalized
content that enhance engagement and outcomes [25], [26]. Most studies focus on science and mathematics,
though the social sciences also adopt VR for educational purposes. While visual elements dominate,
immersive interactivity remains limited, highlighting the need for further research. Features such as presence,
autonomy, and authentic tasks support learning within constructivist frameworks, but longitudinal studies are
needed to assess knowledge retention.

Research on VR-based individualized learning and student clustering is still limited. Personalized
learning requires sophisticated profiling to adapt content, pacing, and instructional strategies. Traditional
methods often rely on assessments or behavioral tracking, whereas Al-driven approaches enable more
dynamic learner modeling. Adaptive learning technologies, boosted by Al and the surge in digital education
during the COVID-19 pandemic, have transformed personalization, accessibility, and efficiency, supporting
student-centered learning, fostering informed citizens, and promoting sustainable development [27].
Clustering techniques, in particular, offer promising avenues to generate actionable learner profiles, but
operationalizing them into meaningful strategies within immersive VR environments remains challenging
and calls for further interdisciplinary research.

Adaptive learning platforms that dynamically adjust to individual learners, often through multi-
agent systems, depend on comprehensive student models representing preferences, engagement levels, and
performance patterns. Recent advances in Al, particularly large language models (LLMs), have enabled
agentic workflows (AWs) and frameworks like Agent4dEDU, which support complex educational tasks and
multi-agent collaboration, further enhancing adaptive and personalized learning experiences [28]. Despite
these advancements, methodological inconsistencies in clustering studies continue to limit broader
application and replication.

2.3. Advanced machine learning techniques in other domains

While most clustering and predictive modeling studies in education remain limited in scope,
advances in other fields highlight the potential of machine learning to capture complex, nonlinear patterns.
These achievements, although outside the educational context, provide methodological insights that motivate
our exploration of advanced clustering and classification approaches for student profiling in VR-based
personalized learning.

Recent advances in predictive modeling—neural networks, Gaussian process regression (GPR),
graph-based, and ensemble methods—effectively capture complex nonlinear patterns, motivating the use of
multiple clustering and classification approaches for analyzing student performance in VR-based
personalized learning. Neural networks (NAR-NN) forecasted thermal coal trading volumes (2016-2020)
with minimal error up to the 99.273th quantile [9] and weekly peanut oil prices with training, validation, and
testing root mean squared error (RMSE) of 5.89, 4.96, and 5.57 [10]. GPR with Bayesian optimization
accurately predicted daily silver prices over 13 years (relative RMSE 0.2257%, correlation 99.967%) [11]
and thermal coal prices (relative RMSE 0.4210%) [12]. Graphical models, including DAGs, revealed
dynamic interactions among Chinese property indices [13] and contemporaneous linkages among US corn
futures and cash prices [14]. Ensemble and composite methods enhanced robustness, with 30 models and 10
combinations reducing errors in daily corn prices [15] and 51 models with 41 ensemble variations achieving
strong performance for the Chinese stock index [16]. These results demonstrate the potential of advanced
modeling techniques to identify nonlinear patterns and guide adaptive, personalized VR learning.

2.4. Methodological gaps and dataset limitations in educational clustering research

A review of clustering applications in educational contexts reveals important challenges related both
to evaluation practices and to the datasets employed. In terms of validation, studies rely on diverse metrics—
ranging from internal cohesion indicators to external classification-based validations—making it difficult to
compare findings or reproduce methodologies. Table 1 presents a comparative summary of the evaluation
techniques used in key studies.
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This comparison highlights key gaps in educational clustering research: i) inconsistent validation
metrics limiting reproducibility, ii) lack of external validation via downstream tasks, iii) absence of statistical
significance testing for algorithm comparisons, and iv) insufficient attention to educational interpretability
and practical applicability. Existing studies also rely on limited, often one-dimensional datasets from e-
learning platforms, focusing on single subjects or narrow indicators rather than capturing multifaceted
student competencies. Furthermore, few works systematically compare multiple clustering algorithms, and
the lack of standardized evaluation frameworks restricts replicability, hindering the development of robust
best practices.

Table 1. Evaluation metrics comparison across educational clustering studies

Study Internal metrics External validation Statistical testing  Educational interpretation
Govindasamy and NMI, Purity Not used Not used Limited
Velmurugan [29]

Navarro et al. [5] Silhouette, DB Index Not used Not used Limited
Vital et al. [8] Visual inspection Classification accuracy Not used Limited
Krizani¢ [7] Not reported Decision tree validation Not used Limited
This Study DB Index, CH Index Classification accuracy Not used Limited

2.5. Research positioning and contribution

This research addresses several critical gaps in educational clustering literature. Previous studies
often lack systematic comparisons between multiple clustering algorithms with rigorous statistical validation,
focus primarily on one-dimensional e-learning data, and provide limited conceptual frameworks for applying
clustering results in personalized learning systems, particularly in virtual reality environments. Moreover,
external validation of clusters through concrete educational tasks is frequently insufficient, raising concerns
about the practical applicability of the results.

To overcome these limitations, this study presents a comprehensive comparison of five clustering
algorithms applied to a multidimensional dataset encompassing mathematics, reading, and writing, enabling a
detailed analysis of student profiles. It develops a robust assessment framework combining internal indices,
external validation through classification, and rigorous statistical tests. In addition, it introduces a conceptual
framework for integrating these profiles into personalized learning environments in virtual reality. The
theoretical contributions demonstrate the superiority of spectrum clustering over conventional methods like
K-Means, prompting a reconsideration of analytical approaches to capture the complexity of educational
data. Practically, the study provides a concrete roadmap for personalization in immersive virtual reality
environments, facilitating the integration of data analysis into educational systems and laying the foundation
for the next generation of intelligent and adaptive learning systems.

3. METHODOLOGY
3.1. Research design and overall architecture

This study employs a hybrid machine-learning framework that combines unsupervised and
supervised techniques to develop personalized learning pathways for students' future use. Figure 1 shows the
framework flow from data input through clustering and classification to VR-based adaptive learning
integration. The proposed methodology is structured into three main phases: i) unsupervised clustering to
uncover natural groupings among students without relying on predefined labels, ii) supervised classification
to predict the group membership of new students based on their academic performance, and iii) the
conceptual integration of adaptive learning routes into a VR platform.

The innovative aspect of this approach lies in transforming unlabeled clustering outputs into labeled
targets for supervised learning, enabling the construction of predictive models based on empirically
discovered patterns. Unlike traditional classification systems, this methodology first detects latent structures
in student data—specifically, academic performance indicators such as math, reading, and writing scores—
using clustering algorithms (K-Means, hierarchical clustering (HC), Gaussian mixture model (GMM),
spectral clustering, and K-Medoids). The clustering performance is evaluated through internal validation
indices to determine the most suitable features and algorithms.

Next, supervised classification models, such as decision trees (DTs), support vector machine
(SVM), logistic regression (LR), K-nearest neighbors (K-NN), and random forest (RF), are trained to predict
the cluster membership of new students. The best-performing model is selected based on accuracy scores and
used to simulate student grouping for personalized intervention. The VR component is the next stage of this
research, even if it has not been used yet. With each cluster acting as the basis for triggering real-time,
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profile-driven adjustments in immersive learning environments, the long-term goal is to incorporate the
detected student profiles into a multi-agent VR-based educational system.
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Figure 1. Hybrid framework combining clustering, classification, and VR-based personalization

3.2. Dataset description and preparation

This study employs a dataset consisting of academic performance metrics from 1,000 students in
three core subjects: mathematics, writing, and reading. These subjects were specifically selected because they
provide a comprehensive understanding of students’ academic abilities and represent essential academic
competencies. The dataset, obtained from educational institutions, includes standardized test results for each
subject [30]. An overview of the dataset is presented in Table 2.

Table 2. Academic performance scores

Student ID Math score Writing score Reading score
0 72 72 74
1 69 90 88
2 47 57 44
999 88 99 95
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To ensure data quality and prepare the dataset for subsequent clustering and classification tasks,
several preprocessing steps were applied. Missing values in numerical features were treated using median
imputation, while outliers were identified and handled through the interquartile range (IQR) method.
Distribution analysis and statistical summaries were conducted to verify data integrity, followed by
standardization using the z-score transformation, defined as z = (x — ) / 6 [31]. This scaling step ensures that
all three academic subjects contribute equally to distance-based clustering algorithms. A summary of the
preprocessing pipeline is provided in Table 3.

Table 3. Overview of the data preprocessing pipeline

Step Description
Missing Value Handling Median imputation applied to numerical features
Outlier Detection The interquartile range (IQR) method is used to identify and treat outliers
Data Quality verification Distribution analysis and statistical summaries are used to ensure data integrity
Standardization Features scaled using StandardScaler: z=(x - pn)/ ¢
Justification for Scaling Ensures equal contribution of all academic subjects in distance-based clustering algorithms

3.3. Unsupervised clustering approach

This study employed five clustering algorithms selected for their complementary strengths and
suitability for educational data analysis. The K-Means algorithm partitions data into k well-separated clusters
by minimizing the within-cluster sum of squared distances, making it effective for continuous numerical
variables and suitable for categorizing students by performance. To ensure reproducibility and efficient
convergence, scikit-learn’s implementation was used with init = 'random' and max_iter = 300. As highlighted
by Alzahrani et al. [32], feature standardization with z-score transformation was essential to avoid bias when
variables had different scales. Hierarchical clustering (HC) was also applied to explore subgroup structures,
as it builds a tree-like hierarchy of clusters and reveals stratified links and nested groups within student
performance data. The Ward linkage criterion was chosen for agglomerative clustering, as it minimizes
variance within each cluster and tends to produce balanced, interpretable groups [33].

GMM was included to represent the data as a mixture of Gaussian distributions, providing
probabilistic cluster memberships and capturing overlapping clusters. This was particularly valuable for
student performance data, where individuals may simultaneously exhibit traits of multiple categories. The
Expectation-Maximization (EM) algorithm with full covariance matrices was used in implementation [34]. In
contrast, K-Medoids (PAM) was applied for its robustness to noise and outliers, as it selects actual data
points—medoids—as cluster centers. This preserved representative student profiles and improved
interpretability, using the Manhattan distance metric for similarity calculations [35].

Spectral clustering was finally employed to uncover subtle performance patterns that linear
approaches might overlook. By leveraging Eigen decomposition of a similarity matrix and combining
normalized spectral clustering with a k-nearest neighbors graph, this method captured complex and nonlinear
data structures effectively [36]. The combination of these five algorithms ensured both diversity and
robustness in uncovering performance-based student groupings.

The implementation procedure followed a systematic pipeline to ensure reliable results. The optimal
number of clusters £ was determined by varying k from 2 to 10, with each algorithm executed across 30
random initializations to ensure stability, as recommended in [37]. Cluster quality was assessed using two
internal validation indices: the Davies-Bouldin index (DB), where lower values indicated better separation
and compactness [38], and the Calinski-Harabasz index (CH), where higher values reflected well-defined and
distinct clusters [39]. To further strengthen the comparison, paired t-tests were conducted to assess the
statistical significance of performance differences between algorithms. The algorithm that achieved the most
favorable index scores and statistically significant results was identified as the best-performing method [40].

3.4. Supervised classification methodology

The optimal clustering solution produces categorical labels for each student, transforming the
unsupervised learning task into a supervised classification problem. These labels serve as target variables for
training predictive models, enabling automatic categorization of new students and providing an indirect
measure of cluster stability through classification accuracy [41]. Five supervised learning algorithms were
implemented: DT, SVM, LR, K-NN, and RF. The DT constructs rule-based boundaries via recursive
partitioning and was configured with a maximum depth of 10 and a minimum of five samples per leaf [42].
SVM finds the optimal hyperplane that maximizes class margins, using an RBF kernel with C = 1.0 and
gamma set to “scale” [43]. LR models class probabilities using the logistic function, trained with L2
regularization for up to 1000 iterations [44]. K-NN classifies instances based on the majority vote of the five
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nearest neighbors, employing uniform weighting and Euclidean distance [45]. RF combines 100 decision
trees with majority voting, a maximum depth of 10, and bootstrap sampling to reduce overfitting and
highlight important features [46].

Model training and evaluation followed a rigorous procedure to ensure reliability and validity. The
dataset was split into 70% for training (700 students) and 30% for testing (300 students) with stratified
sampling to maintain class distribution. Five-fold cross-validation was performed on the training set, and
performance was assessed using accuracy, F1-Score, and AUC-ROC metrics. This comprehensive approach
ensures robust classification of student categories while leveraging the clustering-derived labels to maintain
consistency with the discovered patterns.

3.5. Implementation environment and technical specifications

The technical implementation used Python 3.11 in a Jupyter Notebook environment. The main
libraries were Scikit-learn 1.3.0 for machine learning, Pandas 2.0.3 for data manipulation, NumPy 1.24.3 for
numerical operations, and Matplotlib 3.7.1 with Seaborn 0.12.2 for visualization. A fixed random seed (42)
ensured reproducibility. The experimental methodology followed a six-stage pipeline in Figure 2: starting
with raw CSV data, performing preprocessing and validation, applying StandardScaler normalization,
executing five clustering algorithms (K-means, K-medoids, GMM, HC, and spectral clustering), evaluating
with internal validation metrics, and concluding with visualization and statistical analysis.

The configuration parameters (Python 3.11, Scikit-learn 1.3.0, Random Seed: 42) are consistently
applied across preprocessing, feature engineering, and clustering stages to ensure reproducible results and
enable comparative analysis between different algorithmic approaches.

Canfiguration

Raw Student Data Python 3.11
CSV Files Seikit-learn 1.3.0

Random Seed: 42

"
A

Data Preprocessing
Validation & Cleaning

Feature Engin:\c ring
StandardScaler
Normalization

Clustering Algorithms
K-means, DBESCAN,
Hierarchical...

I

Performance Evaluation
Silhouette Score, Davies-
Bouldin Index

I

Visualization & Analysis
Cluster Plots, Statistical
Charts

Figure 2. Experimental pipeline from preprocessing to evaluation and visualization in Python 3.11
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4. RESULTS AND DISCUSSION
4.1. Clustering results overview

The advanced clustering & data visualization suite is a technical framework that allows researchers
to import CSV datasets and apply five clustering algorithms (K-Means, K-Medoids, GMM, HC, and spectral
clustering) to analyze academic performance data. Advanced methods, such as HPEFCM-FSP for clustering
and NeuroEvoClass for predictive modeling, can be employed to identify high-achieving, average, and
struggling students, enabling data-driven interventions. Optimized via particle swarm optimization (PSO) and
artificial neural network (ANN), these algorithms enhance accuracy, precision, and recall, supporting early
warning systems and personalized learning pathways, similar to the predictive approach suggested by Malik
et al [47]. The modular interface includes a left panel for data management and CSV import, algorithm-
specific tabs for analysis, and integrated results comparison using Davies-Bouldin and Calinski-Harabasz
performance metrics, creating a unified analytical pipeline for educational data mining. Figure 3 illustrates
the complete interface architecture and workflow implementation.

Advaneed Clustering & Data Visualization Suite
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e UBTAGIEL (ieTed ‘
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Pleagse import C3V file and select vaniables

Figure 3. Multi-algorithm clustering analysis platform interface

4.2. K-Means clustering performance analysis

The application of the K-Means algorithm revealed critical insights into student performance
patterns, demonstrating optimal clustering performance at k = 3 clusters. This three-cluster solution reflects
common educational practices of grouping learners into beginner, intermediate, and advanced levels. The
algorithm's evaluation metrics, including a Davies-Bouldin index (DBI) of 0.7923 and a Calinski-Harabasz
index (CHI) of 1398, indicate substantial improvements in clustering quality compared to previous studies.
Notably, our k = 3 solution effectively addresses the granularity versus practicality trade-off that has
challenged educational clustering applications, providing sufficient detail for personalized interventions
while maintaining manageable implementation complexity. The resulting clusters are visually represented in
Figure 4, while the corresponding evaluation metrics are summarized in the dedicated results comparison tab
of the interface. Similar analytical procedures were applied to all clustering algorithms to enable a
comprehensive performance comparison.

4.3. Comparative analysis and critical interpretation of clustering results

We evaluated five clustering algorithms—spectral clustering, K-Means, K-Medoids, Gaussian
mixture model (GMM), and Hierarchical Clustering—and found that Spectral Clustering performed best
(Davies-Bouldin Index: 0.7569, Calinski-Harabasz Index: 1322.422), followed closely by K-Means (DBI:
0.7923, CHI: 1398.4623). Both demonstrated strong clustering quality, as DBI values below 1.0 indicate
compact and well-separated clusters. Compared to [41], which reported a K-Means DBI of 1.71, our spectral
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approach shows a 56% improvement, confirming its effectiveness in capturing non-linear patterns in
educational data.

K-Medoids yielded slightly higher values (DBI: 0.8115, CHI: 1363.3195), while GMM achieved
comparable performance (DBI: 0.8011, CHI: 1350.3148). Hierarchical Clustering produced the highest DBI
(0.8297) and the lowest CHI (1189.2657), suggesting weaker separation between clusters. Overall, since a
lower DBI and higher CHI indicate better-defined clusters, spectral clustering emerged as the most effective
algorithm for this dataset. Figure 5 presents the evaluation results for all clustering algorithms.
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Figure 5. Clustering evaluation results for the five tested algorithms

The superior performance of spectral clustering represents a paradigm shift from traditional
distance-based clustering approaches in educational data mining. While Liu ef al. [48] demonstrated the
effectiveness of K-Means under optimal conditions; recent studies suggest that spectral methods uncover
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deeper structure in student data. For instance, Quy et al. [49] review the educational data science field and
highlight the need for advanced clustering methods to ensure both accuracy and fairness in student profiling,
and Yu et al. [36] demonstrate that adaptive fuzzy spectral clustering significantly enhances cluster quality
on complex nonlinear datasets. Spectral clustering, with its graph-based similarity approach, thus enables
identification of subtle performance relationships that centroid-based methods like K-Means may miss. This
finding challenges the prevalent use of K-Means in educational clustering and suggests that the educational
research community should adopt spectral methods for more accurate student profiling. The 4% improvement
in DBI scores (0.75 vs 0.79) may appear modest, but it represents substantial practical significance when
applied to large-scale educational systems where improved clustering accuracy directly influences
personalization effectiveness.

4.3. Student cluster assignment and performance labeling

The clustering results reveal that three distinct student groups emerged naturally-without
presupposing their number-consistent with exploratory educational research indicating similar structures. For
instance, Woods et al. [50] applied a cluster analysis to early elementary student data and found that three
clusters (low, average, and high performers) represented meaningful learning subgroups, rather than relying
on arbitrary classifications. This approach aligns with methodological recommendations in the educational
data mining literature, where selecting three clusters often balances interpretability and statistical validity.

Consequently, labeling the resulting groups as advanced, intermediate, and beginner is supported
both by our empirical findings and by prior studies suggesting that student performance naturally organizes
into three levels. This classification system reflects actual competency tiers more accurately than
conventional grading regimes. As illustrated in Figure 6, the three-cluster structure provides a clear visual
separation of student groups, reinforcing the validity of this categorization based on learning patterns and
performance data.

ID math score reading score writing score Cluster Level
2 72 72 74 B Intermediate
1 69 98 ] 2 Advanced
2 ] a5 93 2 Advanced
3 47 57 44 1 Beginner
4 76 78 75 2 Advanced
995 a8 99 95 2 BAdvanced
%96 62 55 55 1 Beginner
G997 59 71 65 B Intermediate
%95 68 78 77 B Intermediate
999 77 26 86 2 Advanced

Figure 6. Student cluster assignments and performance classification results

4.4. Classification model performance and predictive accuracy

Our classification evaluation using five machine-learning models demonstrates exceptional
predictive capability that substantially surpasses previous educational classification studies. Table 3 displays
the performance metrics obtained across the five models, highlighting their strong ability to predict cluster-
based performance labels with high accuracy and reliability.

Table 3. Performance of classification models in predicting student cluster labels

Model Accuracy F1-Score AUC-ROC
Logistic regression 0.990 0.990022 0.999751
SVM 0.975 0.975020 0.999787
KNN 0.970 0.969878 0.998787
Random forest 0.945 0.945025 0.996995
Decision tree 0.945 0.944909 0.958795

The results of our study demonstrate that classification models applied to the cluster labels achieve
high performance, with accuracies ranging from 94.5% for tree-based models (Random Forest, Decision
Tree) up to 99% for LR, alongside excellent F1-Scores and AUC-ROC values. These outcomes confirm the
quality of the prior unsupervised clustering step and the ability of supervised algorithms to effectively predict
student groups.
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These performance metrics are consistent with findings reported in the literature. Ajibade et al. [51]
achieved an accuracy of 91.5% using SVM, KNN, and DT enhanced with ensemble methods. Their study
highlights the robustness of SVM and ensemble techniques, results that we similarly observe with 97.5% and
99% accuracy, respectively, in our work. Furthermore, Amrieh ef al. [52] showed that ensemble methods
such as RF, Bagging, and Boosting improved prediction accuracy by up to 25.8% compared to baseline
models, confirming the importance of learner—-LMS interactions. Therefore, comparing our results with these
studies confirms that combining an initial unsupervised segmentation with supervised classification
techniques is an effective strategy for personalized learning and reliable student profiling.

5.  CONCLUSION

This study provides a comprehensive comparative analysis of five clustering algorithms applied to
student performance data, aimed at supporting the development of VR-based adaptive learning systems.
Spectral Clustering demonstrated superior performance with a Davies-Bouldin Index of 0.75 and a Calinski-
Harabasz Index of 1322, outperforming traditional methods like K-Means and showing a 56% improvement
over previous studies. Three distinct student profiles—beginner, intermediate, and advanced—were
identified, forming a robust foundation for personalized learning interventions, with supervised classifiers
achieving high predictive accuracy up to 99% for Logistic Regression and 97.5% for SVM. The hybrid
methodology combining unsupervised clustering with supervised prediction offers a practical framework for
designing immersive VR learning environments, producing reliable student profiling systems that surpass
previous educational classification studies and providing statistically validated groupings aligned with
pedagogical practices. Despite these promising results, the study is limited by its focus on only three
academic subjects and by the exclusion of behavioral, engagement, and socio-emotional factors, as well as by
reliance on internal clustering metrics without extensive external validation. The framework has not yet been
tested in actual VR environments, and its scalability across different educational contexts remains
unexamined. Future research should include longitudinal data analysis, expansion of the feature space to
incorporate behavioral and socio-emotional indicators, implementation in VR environments, exploration of
deep learning and ensemble methods to capture complex patterns, real-time adaptive feedback systems, and
cross-institutional validation to ensure generalizability and robustness. Overall, this work establishes a
foundation for intelligent, adaptive learning systems in immersive virtual environments, highlighting the
potential of integrating clustering analytics with VR technology to transform personalized education while
addressing the identified limitations for successful implementation.
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