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 A software-defined networking (SDN) architecture is designed to improve 

network agility by decoupling the control and data planes, but while much 

more flexible, also makes networks more vulnerable to threats, such as 

distributed denial of service (DDoS) attacks. In this study we present a novel 

detection model, the flow-guided long short-term memory (LSTM) network 

with adaptive directional learning (ADL), for the mitigation of DDoS attacks 

in software defined networking (SDN) environments. While the 

methodology is based on a flow direction algorithm (FDA), which analyzes 

traffic patterns and detects anomalies from directional flow behavior. The 

proposed method integrates FDA in LSTM-based threat detection 

frameworks within internet of things (IoT) networks, thereby yielding 

enhanced detection accuracy, as well as a real-time security threat response. 

The experimental evaluation on two benchmark datasets, namely the InSDN 

dataset and a real-time dataset utilizing a Mininet and POX controller setup, 

shows that a detection rate of 99.85% and 99.72%, respectively, thereby 

showcasing the proposed model’s ability to differentiate between legitimate 

and malicious network traffic. 
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1. INTRODUCTION 

Software-defined networking (SDN) is a transformative paradigm that redefines traditional network 

management by decoupling the control plane from the data plane. This separation offers unprecedented 

flexibility, centralized orchestration, and programmability [1]. However, this very flexibility also introduces 

new security vulnerabilities, particularly the risk of distributed denial of service (DDoS) attacks targeting the 

SDN controller [2]. These attacks can exhaust the controller’s resources, disrupt packet forwarding, and lead 

to complete service denial across the network. As SDN becomes a cornerstone in modern enterprise and 

internet of things (IoT) infrastructures, securing it against such dynamic and large-scale attacks has become a 

critical research concern [3].  Conventional signature-based intrusion detection systems (IDS) are often 

ineffective in SDN environments due to their reliance on predefined patterns and inability to adapt to novel 

or evolving threats [4], [5]. To address these limitations, recent research has explored the use of machine 

learning (ML) and deep learning (DL) techniques for anomaly detection [6], [7]. Notably, bidirectional long 

short-term memory (BiLSTM) networks [8], transformer-based architectures such as DDoSViT [9], and 

hybrid SDN-integrated systems like SNORT-SDN [10] have demonstrated promising detection performance. 

However, these models still face critical challenges. They are often static in nature, suffer from high false 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Flow-guided long short-term memory with adaptive directional … (Huda Mohammed Ibadi) 

5485 

positive rates, and fail to dynamically adapt to changes in traffic patterns or attack behaviors—limitations 

that can compromise their effectiveness in real-time SDN deployments [11]. 

To address the above issues, in this paper, we introduce a new hybrid detection framework, flow-

guided long short-term memory (LSTM) with adaptive directional learning (ADL). The model integrates 

three major constituents such as the flow direction algorithm (FDA) that analyzes the bidirectional flow 

anomalies, LSTM network to capture the sequential dependencies in the network traffic, and an adaptive 

dynamic learning mechanism (ADL) that dynamically adjusts its learning parameters according to the 

varying attack landscapes. By combining FDA and ADA combined with LSTM, our approach not only 

enhances the accuracy of the detection, but also improves the resistance to zero-day attacks and false 

positive, which are crucial for a SDN-based security system. This approach differs from previous ones in 

which directional flow characteristics and adaptive learning dynamics are modelled explicitly. While most 

existing methods only consider the temporal or spatial aspect, our model combines these two and introduces 

dynamic adjustment of the threshold through ADL. The system is benchmarked using the well-established 

InSDN benchmark dataset and a real-time Mininet-based SDN scenario. The findings indicate 99.85% 

detection performance, which exceeds existing state-of-the-art models including DDoSNet [12], SNORT-

SDN [10] and DDoSViT [9], thereby validating the effectiveness of our FDA–LSTM–ADL fusion for 

securing SDN infrastructures. The main contributions of this paper are threefold. It introduces a new hybrid 

IDS architecture, which bridges the gap between FDA-driven directional flow analysis and LSTM-based 

sequence modeling and the ADL-based flexibility. Second, it reports an empirical study based on benchmark 

datasets and real-time devised datasets to verify the generalizability and robustness of the model. Third, 

comparison against existing state-of-the-art DDoS detection mechanisms demonstrates the superiority and 

effectiveness of the proposed framework in terms of accuracy, adaptivity, and low false alarm rate. 

The rest of the paper is structured as follows: section 2 discusses the related works while section 3 

introduces the deep learning-based DDoS detection algorithm based on counterfactual reasoning and hopes. 

The proposed FDA-LSTM-ADL is described in section 3, listing formulations of the algorithms and the 

model architectures. Section 4 presents the experimental setup, the datasets, the attack model, the evaluation 

methodology. Section 5 introduces the results and discusses them, followed by conclusions and outlooks in 

section 6. 

 

 

2. RELATED WORK 

The growing acceptance of SDN has led to a burgeoning concern regarding its safety, especially in 

the context of DDoS attacks. In SDN setups, DDoS attacks aim at several network layers at once, with each 

layer presenting a distinct set of problems to solve [13]. At the data plane, for example, one kind of attack 

involves saturating the interfaces between the SDN controllers and the network devices [14]. This is known as 

an attack on the Southbound interface [15]. Another kind of attack involves flooding the network devices with 

so much traffic that they cannot handle it and, as a result, they start dropping packets and create a traffic jam in 

the network. And still another kind of attack aims at the flow tables in the SDN switches themselves [16]. 

At the control plane, the packet-in flooding attack sends excessive message traffic to the SDN 

controller, straining its already limited capacity and at times even causing it to totally lose its ability to serve 

legitimate requests. When this happens, service disruption may well be underway, and the SDN will not be 

able to perform any of its controller functions. Except for the worst-case scenario, the amount of disruption 

served up in the control plane by packet-in flooding is, in fact, quite capable of serving similar amounts of 

disruption that other performative denial-of-service (PDoS) attacks do in traditional networked systems [17]. 

Blocking attacks have a secondary line of targeted victims on the application side, but service denial 

is not their only aim. They are also meant to increase the opportunity for an attacker to perform a data 

exfiltration operation. Table 1 summarizes these attacks and their impacts on the four layers of the SDN [18].  

Different techniques have been suggested to reduce the impact of DDoS attacks. One technique is to 

use in-network defense mechanisms, which are quite different from traditional defense mechanisms that are 

located on the perimeter of the protected network [19]. In-network defense mechanisms require active 

participation from each network switch and have been shown to allow low-rate DDoS attack traffic through 

while blocking the high-rate DDoS traffic at the perimeter. This is helpful in reducing the E/E factor that is 

critical to the DDoS attack from succeeding [20]. 

Other methods merge techniques that are based on entropy with models that result from deep 

learning to enable the detection and mitigation of DDoS attacks that target SDN controllers [21]. These 

models perform calculations of network entropy to enable the identification of anomalous traffic and make 

use of machine learning techniques, such as bidirectional long short-term memory (Bi-LSTM), to enhance 

the accuracy of detection [8]. In addition, approaches that are based on the calculation of Renyi entropy have 

been explored to capture anomalies in network flow and enable the extraction of key traffic features from 

SDN flow tables, which are then used to identify behaviors that are malicious in nature [22]. 
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Table 1. Summary of DDoS attacks targeting different layers of SDN 
Layer Attack type Description Impact 

Data plane Southbound interface 
(SBI) attack 

Disrupts communication between the SDN 
controller and network devices. 

Network disruption and 
control loss. 

 Buffer saturation 

attack 
Floods network devices with excessive traffic, 

causing packet loss and congestion. 
Packet loss and device 

overload. 
 Flow meter overflow Overwhelms the flow table with excessive 

entries, causing network disruptions. 
Resource exhaustion and 

flow table saturation. 
Control plane Packet-in flooding Sends excessive message traffic to the SDN 

controller, overwhelming its processing capacity. 
Service disruption due to 

controller overload. 
 Data channel blocking Blocks communication channels between the 

controller and devices. 
Reduces effective 

communication. 
Application plane Northbound interface 

(NBI) attack 
Exploits vulnerabilities in the communication 

between the SDN controller and applications. 
Resource consumption and 

performance degradation. 
 Application resource 

attack 
Overuses computational resources, degrading the 

overall performance of the application plane. 
System resource exhaustion. 

 

 

Models based on machine learning and deep learning have also been put to use for DDoS detection. 

Support vector machines (SVM) and deep neural networks (DNN) are applied often to classify the patterns of 

network traffic and to distinguish between traffic that is normal and that which is harmful, with a real-time 

detection capability being a major focus of such efforts [23]. Despite some promising results, these models 

are still facing challenges, namely scalability and adaptability, especially when they are up against evolving 

attack strategies and complex network traffic [11]. To sum up, although substantial advancements have been 

achieved in crafting DDoS detection systems specifically for SDN, the very nature of SDN—dynamic and 

ever-changing—demands that detection models be adapted and enhanced continuously to effectively deal 

with the attack techniques that are diverse and numerous.  

 

 

3. PROPOSED METHOD 

This section describes the architecture, algorithms, and procedures used in the design and 

implementation of the proposed intrusion detection model, which integrates FDA, LSTM, and ADL to 

enhance the detection of DDoS attacks in SDN environments. The goal is to ensure high detection accuracy, 

low false positives, and adaptability to evolving attack strategies [24]. The methodology consists of three 

core modules: flow-based feature extraction, sequential analysis, and adaptive learning. This section also 

outlines the implementation pipeline in detail to ensure reproducibility. A detailed workflow of the model is 

illustrated in Figure 1. 

Figure 1 illustrates the overall workflow of the proposed hybrid intrusion detection model. It shows 

how traffic flows are first processed through the FDA for feature extraction, then analyzed by an LSTM 

network enhanced with ADL. The output is classified as benign or malicious behavior based on the learned 

temporal and directional patterns. 

 

 

 
 

Figure 1. Workflow of the proposed hybrid LSTM-based detection model 

 

 

3.1.  Flow direction analysis using FDA 

The FDA is a novel mechanism designed to extract directional characteristics from SDN traffic 

flows. Unlike conventional statistical or flow-based methods, FDA focuses on bidirectional patterns by 

analyzing each flow’s initiation, sequence behavior, termination, and communication consistency. The 

features extracted by FDA include: 

a. Flow initiation frequency: detects unusual spikes in the number of new connections. 
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b. Packet sequence variation: flags reordering or irregular packet flows suggestive of spoofing. 

c. Flow termination anomalies: captures abnormal disconnections or timeouts. 

d. Source-destination consistency: identifies mismatches in expected communication paths. 

The logic of FDA is presented in Algorithm 1, which describes the step-by-step extraction of these 

features from raw traffic flows. Once computed, these features form the input vectors for subsequent 

sequential modeling. As illustrated in Figure 2, the application of FDA results in improved flow uniformity 

and reduced latency, which supports better anomaly visibility and classification. Figure 2 demonstrates the 

effectiveness of the FDA in optimizing network traffic. In Figure 2(a), it shows how packet flow distribution 

becomes more balanced after FDA is applied, reducing traffic spikes. Figure 2(b) highlights the reduction in 

latency, illustrating improved network responsiveness. Together, they validate FDA's role in enhancing flow 

consistency and anomaly detection efficiency. 

 

Algorithm 1. Flow direction analysis using FDA 
Input: Traffic_Flows (network packets), FDA (Flow Direction Algorithm) 

Output: Flow_Characteristics (extracted bidirectional traffic features) 

1. Initialize Flow_Characteristics ← ∅ 
2. For each flow F in Traffic_Flows do: 

      a. Extract Flow_Initiation_Frequency(F) 

      b. Compute Packet_Sequence_Variation(F) 

      c. Identify Flow_Termination_Anomalies(F) 

      d. Assess Source_Destination_Consistency(F) 

3. Store extracted Flow_Characteristics 

4. Apply FDA to analyze bidirectional traffic patterns 

5. Return Flow_Characteristics 

 

 

 

  
(a) (b) 

 

Figure 2. Flow-optimization analysis with (FDA) visualization: (a) packet distribution before vs. after FDA 

and (b) latency comparison before vs, after FDA 

 

 

3.2.  ADL 

To achieve the proposed scheme, in the processing stage, ADL is introduced to improve the 

adaptability of the detection model of rail surface defect, which always adjust the internal parameters in real-

time. ADL does not need static models, while adapting to concept drift, new attack patterns, and traffic 

behaviors, so that the underlying logic can be adjusted automatically. 

The ADL performs its work based on three main missions. It does first, observe pre-pattern errors by 

tracking a sliding window of predicate errors and identifying when the model starts to misclassify data 

because of changing traffic pattern. Second, it selectively updates weights in the LSTM layers with mini-

batch gradient descent, thereby allowing lightweight re-training without resetting the complete model. Third, 

it adopts live traffic feedback to calibrate decision thresholds so that the detection sensitivity and the false 

positive rate can be controlled. 

The formal process of doing distributed ADL is described in Algorithm 2, which specifies the ways 

we identify new patterns, recompute thresholds, and sometimes fine-tune the model weights. It helps in 

retaining the robustness of the model to fast evolving network conditions. 
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Algorithm 1. ADL optimization 
Input: LSTM_Model (trained model), Attack_Patterns (new DDoS variations) 

Output: Optimized_LSTM_Model 

1. Watch for unnoticed assault patterns in currently available network traffic. 
2. In the event that New_Attack_Patterns are detected: 
a. Modify LSTM_Weights through the use of gradient updates. 
b. LSTM_Model with updated dataset to retrain. 
c. Use cross-entropy loss to validate performance. 
3. Keep on with adaptive learning until convergence is reached. 
4. Provide the Optimized LSTM Model as output. 

 

3.3.  LSTM-based sequential learning 

LSTM networks are employed to model the temporal progression of traffic flows. Given that 

network behavior often evolves over time, LSTM is an ideal architecture for identifying long-term 

dependencies and deviations from normal sequence patterns. The LSTM-based architecture begins with an 

input layer that ingests FDA-derived features. This is followed by a hidden LSTM layer comprising 64 units, 

capable of encoding flow dynamics over time. A dropout layer (with a rate of 0.2) is used to reduce 

overfitting. The output layer employs a SoftMax activation function to classify inputs as either benign or 

attack traffic. 

Training is conducted using the Adam optimizer with a learning rate of 0.001 and a batch size of 64, 

over 50 epochs. Categorical cross-entropy is used as the loss function due to its suitability for binary 

classification tasks. The overall sequence of operations, from FDA preprocessing to LSTM classification, is 

encapsulated in Algorithm 3, which outlines the data transformation, training, and inference steps used to 

detect anomalies based on sequential learning. 

 

Algorithm 3. Hybrid LSTM-based anomaly detection 
Input: FD_Features (Flow Direction selected features), Model (CNN+LSTM) 

Output: Predicted_Labels (normal or attack classification) 

1. Preprocess FD_Features for neural network input 

2. Pass FD_Features through CNN_Layer to extract spatial dependencies 

3. Feed CNN output into LSTM_Layer to learn sequential relationships 

4. Apply Softmax_Activation to obtain classification probabilities 

5. Assign Predicted_Labels based on highest probability class 

6. Return Predicted_Labels 

 

3.4.  Data preprocessing and feature engineering 

Preprocessing is a critical stage that prepares raw data for model ingestion. The process involves: 

a. Feature extraction: Selecting key attributes such as source/destination IP, port numbers, protocol type, 

byte/packet count, and flow duration. 

b. Normalization: Applying Min-Max scaling to standardize feature ranges. 

c. Label encoding: Assigning numerical values to class labels (0 for benign, 1 for attack). 

d. Class balancing: Utilizing SMOTE for minority oversampling and random under sampling to handle class 

imbalance and prevent model bias. 

This ensures that input data is consistent, noise-reduced, and appropriately structured for neural network 

training. 

 

3.5.  Implementation environment and reproducibility 

The model is implemented in Python using the TensorFlow framework. Simulations are executed in 

a virtual SDN environment using Mininet v2.3.0 and the POX controller. DDoS attack scenarios—including 

TCP SYN, UDP flood, and ICMP flood—are generated using hping3 and LOIC tools. Experiments are 

conducted on a system equipped with an Intel Core i9-12900K processor, 32GB RAM, and an NVIDIA RTX 

3090 GPU. Traffic is captured using Wireshark, and OpenFlow statistics are used to validate anomaly 

detection. To ensure reproducibility, the full methodology is supported by pseudocode for all key algorithms 

(Algorithms 1–3), publicly available datasets (InSDN and Mininet-generated traffic), and a detailed record of 

hyperparameter settings and training conditions. 

 

 

4. EXPERIMENTAL SETUP AND DATA COLLECTION 

To evaluate the effectiveness of the proposed flow-guided LSTM model with ADL, a comprehensive 

experimental framework was developed, combining benchmark datasets and real-time simulation environments. 

This section outlines the datasets used, attack simulation strategies, preprocessing procedures, model training 

configurations, and evaluation settings to ensure transparency and reproducibility. 
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4.1.  Data collection 

To evaluate the effectiveness and generalizability of the proposed FDA–LSTM–ADL framework, 

two distinct datasets were utilized: a standardized benchmark dataset and a custom real-time dataset. The first 

dataset, known as the InSDN dataset, is a publicly available benchmark specifically curated for SDN-based 

intrusion detection research. It contains well-labeled traffic samples representing both normal and malicious 

network behaviors, including a wide range of DDoS attack scenarios such as TCP floods, UDP floods, and 

ICMP-based attacks [25]. This dataset serves as a baseline for comparative evaluation against existing 

detection models. 

The second dataset was custom-generated using Mininet, a network emulator that simulates real-

time SDN environments. Leveraging the POX controller and programmable switch topology, diverse traffic 

patterns were captured under both benign and adversarial conditions, including dynamically injected DDoS 

attacks. This real-time dataset allows for a practical assessment of the model’s adaptability and robustness in 

dynamic network conditions, where traffic flows and controller responses evolve over time [26]. By 

employing both benchmarked and real-time datasets, the study ensures a comprehensive evaluation of the 

proposed model’s performance across varying conditions and traffic complexities. 

Table 2 presents a comparison of the two datasets used for training and evaluating the proposed 

DDoS detection model: the InSDN benchmark dataset and a custom real-time dataset generated in Mininet. 

The table lists key features extracted from both datasets, such as flow ID, source and destination IP 

addresses, port numbers, protocol types (TCP, UDP, ICMP), packet and byte counts, flow duration, and 

traffic type labels. Each feature is marked as present (✓) in both datasets, confirming that the experimental 

setup maintains consistency in the features extracted across synthetic and real-world network conditions. This 

uniformity is critical for evaluating the model’s generalization ability. The table thus validates that both 

datasets are rich and well-structured, supporting accurate and consistent model training and evaluation. 
 

 

Table 2. Summary of datasets used for DDoS detection 
Feature Description InSDN dataset Mininet dataset 

Flow ID Unique identifier for each network flow ✅ ✅ 

Source IP IP address of the source node ✅ ✅ 

Destination IP IP address of the destination node ✅ ✅ 

Source Port Port number used at the source ✅ ✅ 

Destination Port Port number used at the destination ✅ ✅ 

Protocol Protocol type (TCP, UDP, ICMP) ✅ ✅ 

Packet Count Number of packets transmitted in a flow ✅ ✅ 

Byte Count Total bytes transmitted per flow ✅ ✅ 

Flow Duration Total duration of the network flow ✅ ✅ 

Traffic Type Labeled as Normal or DDoS Attack ✅ ✅ 

 

 

4.2.  Attack simulation in SDN environment 

To replicate realistic DDoS conditions, three major attack types were emulated: 

a. TCP SYN flooding: High-volume SYN packets were generated using hping3, targeting the SDN 

controller to exhaust its resources. 

b. UDP flooding: Random UDP packets were directed toward switch ports, saturating network links and 

inducing packet drops. 

c. ICMP flooding: A stream of ICMP echo requests (ping flood) was used to overload the controller’s 

processing capacity. 

The LOIC tool was used alongside hping3 to intensify traffic volume. Each attack lasted approximately 300 

seconds, simulating a high-pressure intrusion environment. These attacks were launched from multiple 

Mininet hosts targeting SDN switches and the POX controller. 

 

4.2.1.  Attack implementation 

To simulate a realistic attack environment, traffic generators were deployed, including hping3 (used 

on Mininet hosts to generate high-rate TCP, UDP, and ICMP traffic for DDoS scenarios) and LOIC (Low 

Orbit Ion Cannon, which floods SDN components with TCP/UDP packets). The attacks targeted both the 

SDN controller, causing control plane congestion, and SDN switches, testing their resilience under high 

traffic loads. Each attack lasted 300 seconds (5 minutes), with hping3 flooding the network at 1000 packets 

per second and LOIC generating massive TCP/UDP traffic floods targeting random ports. 
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4.2.2.  Attack scenarios 

Three DDoS attack strategies were tested: SYN Flooding, which overwhelmed the SDN controller 

with high-volume TCP SYN requests, exhausting its resources and forcing it into an unresponsive state; UDP 

Flooding, where large bursts of UDP packets targeted random SDN switch ports to deplete bandwidth and 

saturate network links; and ICMP Flooding, which used continuous ICMP echo requests (ping flood) to 

overload the SDN controller, consuming processing power and disrupting normal operations. 

 

4.2.3.  Traffic capture and attack analysis 

To analyze and validate the impact of DDoS attacks, Wireshark and tcpdump were used to capture 

network traffic patterns, while OpenFlow flow tables monitored SDN switches, tracking packet drops and 

rule saturation. Attack intensity was evaluated based on packet throughput, latency, and dropped connections. 

The findings helped assess the effectiveness of the Flow-Guided LSTM with ADL model in mitigating these 

attacks. 

 

4.2.4.  Visual representation of attack impact 

The impact of simulated DDoS attacks on the SDN network was captured using various monitoring 

tools. Mininet terminal output logged attack execution, POX controller logs tracked anomalous activity, 

Wireshark provided packet analysis of high-volume traffic, and OpenFlow flow tables revealed rule 

saturation and flow handling. Figure 3 visualizes these insights, highlighting the real-time effects of attacks 

and demonstrating the Flow-Guided LSTM with ADL model’s effectiveness in detection and mitigation. 

 

 

 
 

Figure 3. DDoS attack impact on SDN: Mininet, POX Logs, Wireshark, and OpenFlow table 

 

 

4.3.  Evaluation metrics 

To assess the effectiveness and reliability of the proposed model, standard evaluation metrics 

commonly used in classification and anomaly detection tasks were employed. These measures provide a 

quantitative grasp of the model performance, specifically in benign/malicious network behavior 

differentiation. The most common evaluation metrics in classification task is accuracy, precision, recall, F1-

score, they give the idea of the trade-off in certain aspects of the classification quality. These metrics are 

defined as follows: 

Accuracy (ACC): Assesses the ratio of correctly classified instances to the overall classifications made. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑦+𝑇𝑁𝑦

𝑇𝑃𝑦+𝑇𝑁𝑦+𝐹𝑃𝑦+𝐹𝑁𝑦
   (1) 
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Precision (P): Works out the part of positive predictions that are right. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛𝑐
∑ (

𝑇𝑃𝑦

𝑇𝑃𝑦+𝐹𝑃𝑦
)𝑦    (2) 

 

Recall (sensitivity, true positive rate - TPR): Measures how well the model identifies all positive instances. 

 

𝑅𝑒 𝑐 𝑎𝑙𝑙 =
1

𝑛𝑐
∑ (

𝑇𝑃𝑦

𝑇𝑃𝑦+𝐹𝑃𝑦
)𝑦  (3) 

 

F1-score (precision and recall's harmonic mean): This score is used when you need a balance between 

precision and recall; it is especially useful in situations when you have imbalanced datasets. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒 𝑐𝑎𝑙𝑙)

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
 (4) 

 

 

5. RESULTS AND DISCUSSION  

This section presents the evaluation results of the proposed Flow-Guided LSTM with ADL model, 

highlighting its detection performance on both the InSDN benchmark dataset and the Mininet-generated real-

time dataset. The discussion includes an in-depth comparison with state-of-the-art methods, interpretation of 

results, and implications for SDN-based security systems. 

 

5.1.  Anomaly detection performance 

Performance of the model in capturing DDoS attacks was first evaluated by comparing the 

calculated anomaly scores with the true labels on test sets. Anomaly scores produced by LSTM and the 

ground truth attacks instances are compared to each between normal and abnormal states in Figure 4 where 

the blue line represents scores of our LSTM model, and the red dashed line shows ground truth attack 

instances. The close correspondence between the pair reflects the model’s ability to capture temporal 

aberrations very accurately. Small deviations are there but it does not affect the performance in a large scale. 

These results validate the model’s capacity to generalize to both benchmark and real-time traffic. The 

integration of FDA contributed to more discriminative feature representation, while ADL enabled the model 

to maintain robustness under evolving traffic patterns. 

 

 

 
 

Figure 4. LSTM – anomaly score vs. ground truth labels 

 

 

5.2.  Mininet-based SDN simulation and network architecture 

The Mininet network topology with the POX Controller reflects an SDN-based architecture. In it, a 

centralized controller manages traffic flow throughout the network. Switches handle data forwarding, and 

hosts communicate with each other using dynamic routing. This topology makes scalability, intrusion 

detection, and security policy enforcement among other things much better than the alternative. And those 

many improvements make it ideal for experimenting with techniques from the nascent field of AI-driven 

anomaly detection and flow optimization. 
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Figure 5 shows the SDN network topology constructed within Mininet and managed by a POX 

controller. In this topology, green nodes denote end-hosts, blue nodes represent OpenFlow switches, and the 

red node symbolizes the centralized SDN controller. The figure captures the core structure and 

communication flow of the simulation environment, showcasing how the controller orchestrates packet 

routing and policy enforcement across the network. This topology enables dynamic interaction among hosts 

and supports the simulation of DDoS scenarios for real-time detection analysis. 

 

 

 
 

Figure 5. Mininet network topology using POX controller 

 

 

5.3.  Final performance metrics 

This section presents the comprehensive evaluation of the proposed Hybrid LSTM-Based Detection 

Model. The model was trained on the InSDN dataset and tested in a controlled SDN environment using 

Mininet and a POX controller. The goal is to assess the model’s ability to detect and classify malicious 

network behaviors with high accuracy and reliability. Figure 6 is composed of two subfigures. Figure 6(a) 

shows the training and validation accuracy curves over 50 epochs. The model demonstrates a stable and rapid 

convergence, reaching high accuracy by the eighth epoch, with no overfitting behavior observed. Figure 6(b) 

depicts the receiver operating characteristic (ROC) curve for the proposed model, indicating an area under 

curve (AUC) score of 0.99. This near-perfect classification performance confirms the model's strong ability 

to distinguish between attack and normal traffic. 

 

 

  
(a) (b) 

 

Figure 6. Comprehensive evaluation of the proposed hybrid LSTM-based detection model (a) accuracy trends 

over epochs and (b) ROC curve of hybrid model performance 
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Figure 7 illustrates the loss function behavior during model training on different datasets.  

Figure 7(a) corresponds to the InSDN benchmark dataset and shows a consistent decrease in training and 

validation loss over time, with minimal divergence between the two curves and Figure 7(b) illustrates a 

similar trend for the Mininet-generated real-time dataset. Although the real-time dataset initially exhibits 

higher loss values due to unpredictable traffic patterns, the model eventually adapts and converges, 

highlighting its resilience and generalization capacity. 

Figure 8 visualizes the confusion matrices for both datasets. Figure 8(a) displays the classification 

outcomes for the InSDN dataset, where the model achieves high precision and recall, with only 10 false 

positives and 5 false negatives among 1,990 samples. Figure 8(b) shows the results for the Mininet dataset, 

which has slightly more misclassifications—20 false positives and 8 false negatives—yet still maintains 

strong overall detection performance. These matrices confirm that the model performs reliably in both 

controlled and real-time environments. 

 

 

  
(a) (b) 

 

Figure 7. The loss function analysis illustration (a) InSDN and (b) Mininet dataset 

 

 

 
(a) (b) 

 

Figure 8. The confusion matrix of hybrid LSTM-based model illustration (a) InSDN and (b) Mininet dataset 

 

 

In Figure 9 we summarize the final performance metrics, including accuracy, precision, recall, and 

F1-score, for both datasets. The values indicate that the model maintains a balanced performance, with high 

scores across all evaluation metrics. This suggests that the integration of FDA and ADL mechanisms 

effectively enhances detection accuracy while minimizing false alarms. 

The accuracy of detection of the proposed hybrid FDA–LSTM–ADL model is compared with three 

recent state-of-the-art DDoS detection approaches, namely DDoSNet, SNORT-SDN, and DDoSViT as 

shown in Table 3. All of the models in these works were based on their own training sets and approaches—

like optimization-based echo state networks, machine learning-aided SDN detection, and transformer-based 

deep learning models. Our proposed model has accuracy of 99.85% better than all the detailed methods and 

tested over InSDN and Mininet datasets. This table also supports the empirical observation that FFlow 
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directional analysis bundled with adaptive directional learning in an LSTM framework is much superior for 

detection. Que context that in the general research area to place readers a reference of the rather the solution 

is in relation to the state of the art. 

In Figure 10, a bar chart is presented that compares the detection accuracy of the proposed model 

against three state-of-the-art DDoS detection frameworks: DDoSNet, SNORT-SDN, and DDoSViT. The 

proposed model outperforms all others, achieving an accuracy of 99.85%. This comparative analysis 

underscores the superiority of the hybrid FDA–LSTM–ADL architecture in identifying DDoS threats with 

higher reliability and robustness than existing solutions. 

 

 

 
 

Figure 9. The final performance evaluation metrics illustration 

 

 

Table 3. Comparison of accuracy across studies 
Study Type of Dataset Approach Accuracy 

DDoSNet (1st Study) [12] IoT DDoS dataset African buffalo optimization + Echo state 

network 

98.98% 

SDN-based detection (2nd study) [10] Smart home IoT traffic ML-based SDN detection with SNORT IDS 99% 

DDoSViT (3rd study) [9] CICIoT2023 & 
CICIoMT2024 

Vision transformer (ViT)-based DDoS 
Detection 

99.50% 

Proposed model InSDN & Mininet real-time Hybrid LSTM with FDA & ADL 99.85% 

 

 

 
 

Figure 10. Comparative analysis of detection accuracy across state-of-the-art DDoS detection models 

 

 

5.4.  Discussion 

The experimental results clearly demonstrate the effectiveness of the proposed Flow-Guided LSTM 

with ADL model in the task of DDoS attacks detection for SDN environments. With the incorporation of the 

directional traffic analysis technique using FDA as well as ADL for the dynamic threshold setting, the model 
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depicts better detection results than the existing detection frameworks over both benchmark (InSDN) and real 

time (Mininet) datasets. This performance is reflected in confusion matrices, ROC curves, and overall 

accuracy metrics, all of which consistently exhibit a high true positive rate and a low false positive rate. The 

model achieves up to 99.85% detection accuracy, while in previous best studies, such as DDoSNet and ViT-

based IDS methods, have detection rates of 97%–99%. This enhancement may be due to the fact that the 

model can capture the directional flow effect and the advanced model can adjust its parameters automatically 

as the traffic fluctuates over time, a feature which some earlier static models lack. For example, standard 

LSTM approaches work quite well on structured data, yet they fail when applied to efficient real-time 

processing of volatilities. ADL is designed for this by the one’s ability to model the drift attack patterns and 

provide the model with the reactivity capacity. This research fills the gap in the literature by presenting an 

efficient and practical accurate for real-time SDN deployment hybrid IDS frame.  

The FDA introduces a new feature engineering layer regarding flow behavior, and the ADL 

strengthens adaptability, making the model resistant to high-load and unpredicted attack situations. These 

implications of these findings are profound; network administrators can trust in a model that generalizes well 

over various data sets and that is introduced with reduced detection latency. Our model represents a step 

forward in implementing the system in real-world SDN networks vulnerable to DDoS attacks. While it shows 

slight precision loss in irregular traffic scenarios, it maintains high detection performance with strong 

robustness and generalization. 

In summary, we fill in the gap between deep learning and flow-aware network security by providing 

a model that is theoretically novel and practically efficient. The discussion confirms that the suggested 

method improves detection accuracy and reinforces adaptive defense mechanism in programmable networks. 

 

 

6. CONCLUSION  

This paper presented a flow-guided LSTM framework enhanced with ADL for the detection of 

DDoS attacks in SDN environments. The proposed model addresses key limitations in existing approaches 

by introducing FDA-based flow feature extraction and adaptive learning mechanisms that respond to real-

time network changes. Experimental results on both benchmark (InSDN) and real-time (Mininet) datasets 

demonstrate that the model achieves superior accuracy (up to 99.85%), maintains low false positive rates, and 

exhibits strong generalization capability across different traffic scenarios. 

The research makes three primary contributions: i) the introduction of FDA to capture flow 

directionality in SDN traffic; ii) the use of ADL to improve adaptability to traffic drift; and iii) a validated 

implementation that works on real-time emulated networks using POX and Mininet. These findings 

underscore the effectiveness of combining flow semantics with sequence modeling to improve the reliability 

of intrusion detection systems in programmable networks. 

Future research could explore the integration of federated learning for distributed deployment, 

blockchain for secure alert sharing, and explainable AI (XAI) to enhance model interpretability. These 

directions will help transform robust SDN detection systems into trustworthy and scalable solutions suitable 

for real-world deployment in smart cities, 5G cores, and industrial IoT environments. 
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