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Accurate energy demand prediction is crucial for efficient grid management
and resource optimization, particularly across multiple countries with
varying consumption patterns. However, real-world energy demand data
often contains outliers that can distort forecasting accuracy. This study
evaluates the impact of five outlier detection techniques—Z-Score, density-
based spatial clustering of applications with noise (DBSCAN),
isolation forest (IF), local outlier factor (LOF), and one-class support vector
machine (SVM)—on the performance of three time-series forecasting
models: long short-term memory (LSTM) networks, convolutional neural
network (CNN) Autoencoders, and LSTM with attention mechanisms. The
models are tested using energy demand data from four European countries—
Germany, France, Spain, and Italy—derived from real-time consumption
records. A comparative analysis based on root mean squared error (RMSE)
demonstrates that incorporating outlier detection significantly enhances
model robustness, reducing forecasting errors caused by anomalous data.
The findings emphasize the importance of selecting appropriate outlier
detection strategies to improve the accuracy and reliability of energy demand
forecasting. This research provides valuable insights into the trade-offs
involved in outlier removal, with implications for policy and operational
practices in energy management.
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1. INTRODUCTION

Accurate energy demand forecasting is a critical component of modern power system management.
It facilitates optimal grid operation, ensures the reliability of power distribution, and supports the integration
of renewable energy sources by predicting fluctuations in energy consumption. With the increasing
complexity of global energy systems, forecasting models must account for the dynamic nature of energy
demand across different regions, influenced by factors such as climate, socio-economic activities, and
technological advancements. In particular, multi-country energy demand prediction presents a unique
challenge, as each country exhibits its own consumption patterns and responds differently to various
influencing factors. Effective forecasting models are therefore essential for achieving greater accuracy and
efficiency in managing energy resources at the regional and international levels.
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One significant challenge in time-series forecasting is the presence of outliers, which are abnormal
data points that deviate significantly from expected patterns. Outliers in energy demand data may arise due to
measurement errors, system failures, or rare events such as natural disasters or sudden changes in
consumption patterns. These anomalous values, if left untreated, can severely impact the performance of
forecasting models, leading to inaccurate predictions and inefficient decision-making. As such, addressing
outliers is a vital preprocessing step for enhancing the accuracy and robustness of time-series forecasting
models. Various outlier detection techniques, including statistical methods and machine learning approaches,
have been developed to identify and mitigate the effects of outliers in time-series data.

In recent years, the application of machine learning models such as long short-term memory
(LSTM) networks, convolutional neural networks (CNNs), and attention mechanisms has gained significant
attention in energy demand forecasting. These models have demonstrated the ability to capture complex
temporal dependencies and provide highly accurate predictions. However, the performance of these models is
highly sensitive to the quality of the input data, particularly in the presence of outliers. Despite the advances
in forecasting techniques, the impact of outlier detection methods on model performance, particularly for
multi-country energy demand prediction, has not been extensively explored. In this context, the present study
aims to investigate the role of different outlier detection techniques in improving the accuracy of energy
demand forecasting for multiple countries.

This study focuses on evaluating five popular outlier detection techniques—Z-score, density-based
spatial clustering of applications with noise (DBSCAN), isolation forest (IF), local outlier factor (LOF), and
one-class support vector machine (SVM)—on their ability to improve the accuracy of energy demand
predictions using three state-of-the-art time-series forecasting models: LSTM, CNN Autoencoders, and
LSTM with attention. By analyzing real-time energy consumption data from four European countries—
Germany, France, Spain, and Italy—the study provides insights into the effectiveness of these outlier
detection methods in enhancing forecasting accuracy. The results of this study are expected to contribute
valuable knowledge to the field of energy systems, offering a better understanding of the relationship
between outlier detection and forecasting performance, with implications for both academic research and
practical applications in the energy sector. The paper is organized as: section 2 reviews related work; section
3 describes the methodology; section 4 presents and discusses the results discussions; section 5 concludes the
paper and suggests future directions.

2. LITERATURE REVIEW

Outlier detection in time series data is a critical component in enhancing the accuracy of forecasting
models, particularly in applications like energy demand prediction. Many studies emphasize the impact of
selecting effective outlier detection techniques on the performance of forecasting models. The study by
Amalou et al. [1] presents the fast incremental support vector data description (FISVDD) algorithm for
outlier detection, demonstrating its effectiveness in energy time series forecasting. The research highlights
that choosing the appropriate kernel function for the FISVDD model significantly improves forecasting
accuracy. This improvement is validated using the mean squared error (MSE) evaluation, which shows that
FISVDD outperforms other outlier detection techniques. By selecting the right kernel function, the method
effectively handles irregularities in energy consumption data, leading to superior results in multi-country
energy demand forecasting.

Bandhan and Ganapati [2] have discussed outlier detection techniques. The study classifies outlier
detection techniques into five major categories: statistical methods, distance-based approaches, density-based
methods, clustering-based techniques, and ensemble methods. Each technique offers unique advantages for
identifying anomalous data points. The adaptability of the methods for different domains of the study gains
interest in further investigation. Richard [3] also explores the various techniques and their advantages and
limitations. The authors in [4] have discussed an enhanced technique, called unsupervised outlier detection
architecture with graph neural network (UOSC-GNN).

The authors of reference [5] have discussed anomaly detection techniques and compared the
methods, IF, gaussian mixture model (GMM), and k-nearest neighbor (kNN) algorithms and concludes that
IF outperforms both GMM and kNN in effectively isolating outliers from data. Outlier detection based on
local density and natural neighbors have been discussed in [6], wherein a knowledge of knowing parameter
K, for addressing challenges in existing methods related to parameter selection. In this work, manual
parameter setting required for neighborhood parameter K is not required. Another work that integrates
clustering and outlier scoring schemes, specifically using uncertainty soft clustering based on rough set
theory is reported in [7]. The work discusses a Kernel Rough Clustering algorithm, demonstrating superior
detection accuracy compared to five existing methods.
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A single density network (SDN) and Z-score for outlier detection in analog tests is presented in [8],
it introduces metrics like self-excluded fail rate (SE fail rate) and normalized area under curve (AUC) to
quantify and visualize abnormality effectively. The techniques include IFs, which utilize binary decision
trees to isolate anomalies, crucial for various applications [9], [10].

In [11], an electricity price forecasting of Danish electricity market, utilizing a GMM-lightweight
gradient boosting machine hybrid detector and LSTNet-kernel density estimation (LSTNet-KDE) method,
which enhances forecasting accuracy by effectively isolating and predicting outlier sequences is presented.
On the other hand, RF algorithm for outlier detection is presented in [12]. Single-valued metric prediction is
presented in [13], which enhances the accuracy of time-series forecasting [14], [15] in various applications,
including energy demand prediction. Another algorithm, called fast incremental FISVDD is discussed in [16]
for enhancing the forecasting accuracy.

Another significant contribution to this field is the hybrid model proposed by Songhua [17], which
combines IF with outlier reconstruction (OR), CNN, and random forest (RF) for energy demand forecasting.
This model, denoted as IF-OR-CNN-RF, demonstrates superior performance metrics, such as mean absolute
error (MAE) and root mean squared error (RMSE), compared to other CNN-based models. The study
underscores that integrating outlier detection methods with deep learning techniques enhances the robustness
of forecasting models, particularly in the presence of outliers. This hybrid approach addresses challenges
inherent in energy demand prediction by mitigating the influence of abnormal data points, leading to more
reliable and accurate forecasts.

In a similar vein, Li ef al. [18] proposes the CNN-gated recurrent unit (CNN-GRU) method, coupled
with a random forest detection model optimized by grid search (CGA-RF), for anomaly detection in energy
consumption data. Their study reveals significant improvements in performance metrics such as accuracy,
precision, recall, and F1 score, compared to conventional methods. The use of a self-attentive mechanism in
the CNN-GRU model helps in capturing dynamic changes in energy consumption, while the random forest
model excels in detecting anomalies in residuals, ultimately boosting forecasting accuracy. The authors
emphasize that handling anomalies effectively is crucial for enhancing energy management and operational
efficiency in energy systems.

Fu et al. [19] contribute to this area by presenting a tree-based anomaly detection model, which was
the winning solution in the large-scale energy anomaly detection (LEAD) competition. This method achieved
a high ROC-AUC score of 0.9866, underscoring its efficacy in identifying outliers in energy time series. The
study emphasizes the importance of feature engineering, particularly through value-changing features that
capture variations in time series data. This research highlights the need for effective data preprocessing and
anomaly detection to ensure the accuracy of energy consumption forecasting models.

Similarly, Gao et al. [20] explore outlier detection through correlation analysis based on graph neural
networks (GNNs). Their proposed UOSC-GNN architecture improves anomaly detection by measuring the
variance between expected and actual data states, showing improvements in accuracy and sensitivity.
Although the study does not directly address energy forecasting, the techniques discussed are applicable in
energy demand prediction, especially in identifying anomalous patterns that may influence forecasting models.

The integration of machine learning techniques for outlier detection in energy time series is further
explored in the work of Ismaeel et al. [21], which investigates the scientific computing associates (SCA)
statistical system for outlier detection in the context of water volume forecasting for the Dohuk Dam. While
the primary focus is on water volume data, the principles of outlier correction in time series analysis can be
applied to energy forecasting [22]. The paper demonstrates that outlier-adjusted forecasts perform better,
enhancing the accuracy of time-series models by correcting for abnormal data points that would otherwise
lead to forecasting errors.

Kyo [23] have presented a multi-objective optimization approach combining minimum index of
symmetry and uniformity (ISU) and maximum likelihood autoregressive (AR) modeling for detecting
outliers in nonstationary time series to decomposes trend and stationary components while balancing outlier
detection and model selection. A deep learning framework using autoencoders and LSTM networks to detect
anomalies in time series data is discussed in [24]. The hybrid model captures complex temporal patterns
through reconstruction errors, enhancing reliability across applications. Kumar et al. [25] developed an
ARIMA-DCGAN synergy that leverages ARIMA’s linear modeling and DCGAN’s nonlinear capabilities for
outlier detection in time series. This approach outperforms existing methods, benefiting applications like
fraud detection and predictive maintenance. Dani et al. [26] developed an ARIMA-DCGAN synergy that
leverages ARIMA’s linear modeling and DCGAN’s nonlinear capabilities for outlier detection in time series.
This approach outperforms existing methods, benefiting applications like fraud detection and predictive
maintenance. Dani et al. [26] employs principal component analysis (PCA) for anomaly detection in time
series by reducing dimensionality and highlighting deviations. This technique aids in timely risk mitigation
and informed decision-making in organizational contexts.
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Current literature typically focuses either on forecasting models (like LSTM or CNNs) or on
anomaly detection methods in isolation. Our work bridges this gap by demonstrating how outlier detection
directly improves model performance and quantifying these improvements across models and countries. It
also reveals model-specific sensitivities — for example, LSTM-Attention models, while powerful, are more
sensitive to outliers, a nuance not well documented before. Thus, this manuscript adds practical knowledge
for both researchers and practitioners on how to select and combine anomaly detection and forecasting
methods effectively, contributing to more resilient and accurate energy system operations.

3. METHODOLOGY

In this work, our methodological framework involves: i) real-world energy consumption datasets
from four European countries, ii) systematic preprocessing (normalization, interpolation, outlier removal),
iii) mathematical formulation and implementation of each forecasting and outlier detection technique and iv)
evaluation metrics mean absolute percentage error (mean absolute percentage error (MAPE), RMSE, MAE)
to quantify improvements in predictive accuracy.

The proposed methodology for energy demand forecasting, as illustrated in Figure 1, follows a
structured approach to process multi-country energy demand datasets efficiently. The process begins with data
preprocessing, where normalization and train-test splitting are performed to standardize the dataset for model
training. Subsequently, outlier detection techniques such as Z-score, DBSCAN, IF, LOF, and SVM are applied
to identify anomalous data points. A decision-making step determines whether outliers are present, influencing
the choice of forecasting models. If outliers are detected, advanced models such as LSTM, CNN Autoencoder,
and LSTM with Attention mechanism are utilized to enhance forecasting accuracy. These models leverage deep
learning techniques to capture temporal dependencies and complex patterns within the dataset. Model
performance is evaluated using RMSE, MAPE, and MSE to ensure robust predictive accuracy. The final step
consolidates the forecasting results, providing insights into energy demand trends across multiple regions.

[I! Energy Demand Dataset {Multi Counr.ry]]

|

‘ & Data Preprocessing (Normalization, Train-Test Split)

l

‘A Outlier Detection (Z-score, DBSCAN, Isolation Forest, LOF, SVM) ‘
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@ Perform Energy Forecast
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Figure 1. Flow chart of the proposed methodology for energy demand forecasting
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3.1. Data collection and preprocessing
3.1.1. Dataset description

The dataset used in this study comprises hourly energy consumption data from multiple European
nations, specifically Germany (DE), France (FR), Spain (ES), and Italy (IT). The data was acquired from the
open power system data (OPSD) repository, a widely recognized source for energy-related time-series
datasets. This dataset provides historical electricity demand values recorded at an hourly resolution, ensuring
a granular understanding of energy consumption trends. Given the dynamic nature of energy demand, factors
such as seasonal variations, economic activity, and climatic conditions influence consumption patterns. Thus,
an in-depth exploration of these variations is necessary for enhancing forecasting accuracy and robustness.

3.1.2. Data preprocessing

Handling missing values: missing timestamps are filled using linear interpolation, while energy
demand values are imputed using forward and backward filling. Data normalization: to ensure consistency
across different countries and eliminate scale disparities, the raw time-series data undergoes normalization.
The Min-Max normalization technique is applied, which scales values between 0 and 1, thereby facilitating
stable convergence in deep learning models. The transformation of an energy demand value x; is computed
as (1).

’ Xi—Xmin (1)

xi =
Xmax~Xmin

In (1), Xpmin and X4, represent the minimum and maximum values within the dataset, respectively. This
normalization mitigates the impact of large-scale discrepancies among different countries while preserving
the relative magnitude of fluctuations, ensuring optimal model performance.

3.2. Outlier detection techniques

Outliers in time-series data arise due to various factors, including sensor malfunctions, erroneous
recordings, grid failures, or unforeseen spikes in energy consumption. Failure to address these anomalies can
lead to inaccurate predictions and model instability. This study examines five robust outlier detection
methods Z-score, DBSCAN, IF, LOF, and one-class SVM. Each technique identifies anomalies based on
distinct mathematical formulations and underlying principles.

3.2.1. Z-Score method
The Z-score method is a statistical technique that quantifies the deviation of each data point from the
mean in terms of standard deviations. This approach assumes that energy consumption data follows a normal
distribution, allowing the identification of extreme deviations. The Z-score for each value of x; is computed
as (2).
Xi

z; =% ©)

g

In (2), p is the mean and o is the standard deviation. Data points with |Z;| > 3 are classified as outliers.

3.2.2. DBSCAN

DBSCAN is a clustering-based anomaly detection technique that distinguishes normal and
anomalous points based on data density. A point is considered an outlier if it does not belong to any high-
density cluster. The algorithm relies on a neighborhood function (3).

() ={q€eD|dp,q) <&} 3)

In (3), d(p, q) denotes the distance between data points, and ¢ is a predefined threshold. Points with fewer
than min samples neighbors are labeled as outliers. This method is particularly effective for detecting
anomalies in datasets exhibiting nonlinear structures.

3.2.3.1F

IF is an ensemble learning technique that isolates anomalies by recursively partitioning data points.
Unlike traditional methods that rely on distance metrics, IF constructs decision trees where anomalous points
are identified through shorter path lengths. The anomaly score is given by (4).

_E(h(x))
s(x,n) =2 () 4)
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In (4), h(x) depends on x in the forest and c(n) is the average path length for a dataset of size n. IF is
computationally efficient and highly effective for high-dimensional data.

3.2.4. LOF
LOF assesses outliers by comparing the density of a point with its surrounding neighbors. A low-
density point relative to its neighbors is flagged as an outlier. The LOF score is computed as (5).

LRD(0)
L0€N k() LRD (p)

[Ny

LOKy(p) = )

In (5), LRDy (p) represents the local reachability density, and Ny is the set of k-nearest neighbors. This
approach is advantageous for detecting subtle anomalies in dynamic environments.

3.2.5. One-class SVM
One-class SVM constructs a hyperplane that differentiates normal instances from outliers using
kernel transformations. The objective function for anomaly detection is formulated as (6).

o1 2 1
MrflsngI)EHWH + Y &P (6)

In (6), v regulates the proportion of outliers. one-class SVM is particularly useful for datasets with complex
distributions.

3.3. Forecasting models
3.3.1.LTSM

The LSTM networks are an advanced variant of recurrent neural networks (RNNs) specifically
designed to address the vanishing gradient problem that hinders traditional RNNs in capturing long-term
dependencies. LSTMs have gained significant traction in time-series forecasting, natural language
processing, and sequential data modeling due to their ability to retain essential information over extended
time intervals. Unlike conventional RNNs, LSTMs utilize memory cells and specialized gating mechanisms
that selectively store or discard information, enabling more effective learning from long-range dependencies.

The architecture of an LSTM as shown in Figure 2 consists of memory cells regulated by three
fundamental gates: the forget gate, which determines the retention of past information; the input gate, which
controls the integration of new information; and the output gate, which dictates the transmission of relevant
information to the next time step. These gates collectively manage the flow of information within the
network, thereby mitigating issues associated with long-term dependencies. The mathematical formulation of
these gates ensures that the model learns and adapts effectively to sequential patterns in the data, making
LSTMs particularly suitable for applications involving temporal dependencies.

Yr

v Input 7 Forget v Output ¥
Gate, Gute Gate
tanh o G [

he g
h
Cr ] —'>

Input

Xt

Figure 2. Architecture of LSTM layer

Forget gate: the forget gate regulates whether information from previous time steps should be retained
or discarded based on the current input and the previous hidden state. Mathematically, it is defined as (7).
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fe = G(Wf- [he—1, %] + bf) @)

In (7), f; represents the forget gate activation, and o is the sigmoid activation function that constrains values
between 0 and 1. A value close to 0 results in forgetting past information, while a value near 1 retains it. This
mechanism ensures that irrelevant information does not accumulate in the memory cell, thereby improving
model efficiency.

Input gate: The input gate governs the extent to which new information is incorporated into the cell
state. It operates by generating a candidate memory value through a tanh activation function and scaling it
using a sigmoid gate to regulate its influence. The corresponding (8) and (9).

iy = o(Wi.[he—q, x] + by) (®
Ce = tanh(Wg. [he_1, x¢] + b¢) ©)

In (8)~(9), i, represents the input gate activation, and C, denotes the candidate memory content. This
controlled update mechanism ensures that only relevant new information is added to the memory, preventing
unnecessary fluctuations in the learning process.

Cell state update: The cell state serves as the memory of an LSTM unit and is updated by combining
retained past information with new inputs. The update equation is given by (10).

Ce =ftOCt—1+it®Et (10)

In (10), © represents the element-wise product. The inclusion of the forget gate ensures that long-term
dependencies are preserved while allowing new, relevant data to be incorporated effectively. This dynamic
balance between memory retention and update is key to LSTM's superior performance in handling sequential
data.

Output gate: the output gate determines how much of the updated cell state contributes to the hidden
state and, consequently, the final output of the network. This process is governed by (11) and (12).

0; = o(W,.[he_1, x¢] + bo) (11)
he = o, © tanh(C,) (12)

In (11) and (12), o, are the output gate activation. The tanh activation ensures that the output values remain
within a manageable range, thereby preventing extreme fluctuations. This selective information transfer
enhances the model’s ability to generate meaningful representations of sequential data.

3.3.2. CNN Autoencoder

CNN Autoencoder is a type of neural network that learns efficient representations of input
sequences through an encoder-decoder structure. The encoder extracts important temporal features from the
input time-series data and compresses them into a lower-dimensional latent space, while the decoder
reconstructs the original input from this compressed representation. Given a time-series sequence X =
{1, x5, X3, ..., X7}, the encoder applies a series of convolutional operations to generate feature maps. The
convolutional transformation for each filter h; is given by (13).

hk = G(Wk * X + bk) (13)

In (13), W, represents the filter weights, b, is the bias term, * denotes the convolution operation, and o is a
non-linear activation function (e.g., ReLU). The encoded feature representations are further passed through
max-pooling layers to reduce dimensionality while preserving the most significant features. The latent
representation, Z, is obtained as (14). In (14), max-pooling helps to retain dominant spatial-temporal features
and reduces computational complexity.

Z = MaxPool(hy) (14)

The decoder reconstructs the input sequence from the latent representation by applying transposed
convolution (deconvolution) layers, ensuring that the learned features accurately capture underlying time-
dependent patterns. The reconstructed output sequence X is generated as (15).
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In (15), W, and b, are the weights and bias of the decoder network, respectively. To fine-tune the model for
time-series forecasting, the final layer is modified to predict the future time steps ¥ based on the learned
latent features is given by (16).

Y = Dense(Z) (16)

In (16), the dense layer maps the compressed representation to the output space. By leveraging CNN-based
feature extraction, the autoencoder improves forecasting accuracy by capturing intricate temporal
dependencies while effectively handling noise and outliers in the dataset.

3.3.3 LSTM with attention mechanism

The LSTM networks are widely used for time-series forecasting due to their ability to retain long-
term dependencies while mitigating the vanishing gradient problem. However, traditional LSTMs treat all
time steps with equal importance, which can lead to suboptimal performance in complex datasets where
certain past time steps contribute more significantly to future predictions. The attention mechanism enhances
LSTM by dynamically weighing the importance of past observations is presented in Figure 3, allowing the
model to focus on the most relevant time steps. Given an input sequence X = {xy, X3, X3, ..., X7}, the LSTM
processes the sequence iteratively using the (17).

ff = G(thf—l + fof + bf)t = tanh(Wcht_l + cht + bC)Cf = ft @ Cf—l + if @ aht
= 0, © tanh(C,) 17)

In (17), f; , i; and o, denote the forget, input, and output gates, respectively, C; is the cell state, h; is the
hidden state, and o represents the sigmoid activation function. The attention mechanism is then applied to
enhance the LSTM’s ability to focus on critical time steps. The attention score $\alpha {t}$ is computed
using an alignment function that determines the relevance of each hidden state h; with respect to the target
output. The attention weights are computed as (18)—(20).

e, = v" tanh(W,h, + b,) (18)
__exp(er)

% = Trexp(ep) (19

€t = X achy (20)

In (18)—(20), e; represents the attention score, W, and v are learnable parameters, and c; is the context vector
obtained by taking the weighted sum of hidden states. The final output is then computed as (21).

Ve = softmax(Wy[ct; h] + by) (21)

By incorporating attention, the model selectively focuses on informative time steps, leading to
improved forecasting accuracy. This approach is particularly beneficial for energy demand prediction, where
external factors such as seasonal variations and peak demand periods exert varying levels of influence on
future consumption. The attention-enhanced LSTM provides greater interpretability and adaptability, making
it a robust choice for time-series forecasting tasks in energy management systems.

T

‘ Attention H Attention H Attention ‘ Attention

1 i I
LSTM }——{ LSTM H LSTM }—.

e

Figure 3. Architecture of LSTM with attention mechanism
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4. RESULTS AND DISCUSSION

The impact of outlier detection techniques on time-series forecasting accuracy was analyzed using
three deep learning models—LSTM, CNN-Autoencoder, and LSTM with attention—across multiple
countries, including Germany (DE), France (FR), Spain (ES), and Italy (IT). The experimental results
revealed that outlier removal significantly improved model performance by reducing error metrics such as
RMSE and MAE. Among the five outlier detection techniques applied, IF and LOF demonstrated superior
capability in detecting anomalous patterns, leading to the most noticeable improvements in forecasting
accuracy. Specifically, in the case of Germany, the RMSE for LSTM without outlier removal was
17.34 MW, which reduced to 12.21 MW after applying IF. Similarly, Spain exhibited a substantial reduction
in forecasting error, where the RMSE improved from 19.87 to 14.02 MW post outlier removal. These results
indicate that eliminating outliers effectively mitigates noise, enabling the models to learn more representative
energy consumption patterns.

The comparative analysis of various forecasting methods with and without outlier detection
techniques demonstrates significant variations in predictive accuracy across different countries. The Table 1
presents MAPE values for Germany (DE), France (FR), Spain (ES), and Italy (IT), employing different
forecasting approaches such as LSTM, CNN-Autoencoder, and LSTM with attention mechanism. When no
outlier detection method is applied, the CNN-Autoencoder consistently exhibits the lowest MAPE values
across all regions, indicating its robustness in handling raw data. Conversely, LSTM-Attention performs the
worst among the three forecasting models, yielding the highest MAPE values, particularly in Italy (19.70%)
and Spain (14.08%). This suggests that while attention mechanisms enhance LSTM models in certain
scenarios, they may be more sensitive to anomalies present in the dataset.

The implementation of outlier detection techniques leads to a substantial improvement in forecasting
accuracy, with one-class SVM emerging as the most effective method for noise reduction. Under this
approach, CNN-Autoencoder attains the lowest MAPE values across all countries, particularly in France
(2.12%) and Italy (3.17%), underscoring its efficiency in feature extraction and denoising capabilities.
Similarly, the application of LOF and IF also improves prediction accuracy, albeit to a slightly lesser extent.
Notably, LSTM's performance significantly benefits from these methods, with MAPE values dropping from
10.73% (without outlier detection) to as low as 3.18% (one-class SVM) in France. This highlights the
importance of outlier handling in improving the predictive reliability of recurrent neural networks.

Among the outlier detection methods, DBSCAN and Z-Score filtering also exhibit promising results,
though their effectiveness varies by forecasting model. DBSCAN, for instance, helps reduce MAPE values
in LSTM models considerably, bringing them down to 5.81% (Germany) and 4.47% (France). Likewise,
CNN-Autoencoder benefits from DBSCAN, attaining a MAPE of 2.88% in Spain, which is a considerable
improvement from the baseline. However, the LSTM-Attention model, despite some improvements,
continues to exhibit relatively higher error rates across most countries, suggesting that attention-based
architectures might require more sophisticated anomaly handling techniques for optimal performance.

Overall, the findings place crucial role of outlier detection in enhancing forecasting accuracy, with
one-class SVM and CNN-Autoencoder emerging as the most effective combination. While LSTM-based
models benefit from anomaly filtering, the choice of forecasting model and outlier detection method must be
tailored to the specific dataset and application context. Future research could explore hybrid approaches that
integrate multiple anomaly detection strategies or leverage adaptive filtering mechanisms to further improve
predictive performance in time series forecasting.

The effect of individual outlier detection methods varied across countries due to differences in data
characteristics and energy consumption trends. Z-Score and one-class SVM, while effective in detecting
extreme deviations, struggled with subtle anomalies present in non-Gaussian distributions. On the other hand,
DBSCAN, which clusters data based on density, demonstrated mixed results shown in Figures 4, 5 and 6
performing well in structured datasets like France but underperforming in Italy due to irregular fluctuations
in demand patterns. Overall, the study confirms that selecting an appropriate outlier detection technique is
crucial for optimizing forecasting accuracy, and the best choice often depends on the underlying data
distribution. The findings also highlight the necessity of adaptive anomaly detection strategies that can
dynamically adjust to seasonal variations and long-term trends in energy consumption.

The overall improvements in model performance post outlier removal reinforce the importance of
data preprocessing in time-series forecasting tasks. While deep learning architecture can capture complex
temporal dependencies, their effectiveness is significantly influenced by data quality. This study
demonstrates that integrating robust outlier detection mechanisms can substantially enhance forecasting
reliability, making energy demand prediction models more applicable for real-world energy management and
grid optimization. Future research should explore the combination of multiple anomaly detection methods
using ensemble techniques and investigate the impact of incorporating external factors such as weather
conditions and economic indicators to further refine predictions.
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Table 1. Comparative results for various forecasting methods with and without outlier methods
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Outlier method  Forecasting method  Germany (DE)  France (FR)  Spain (ES) Italy (IT)
MAPE (%) MAPE (%) MAPE (%) MAPE (%)
None LSTM 10.73 6.96 10.00 15.49
CNN-Autoencoder 5.03 4.69 4.13 7.23
LSTM-attention 14.01 7.63 14.08 19.70
Z-Score LSTM 9.01 5.36 7.16 12.65
CNN-Autoencoder 3.70 3.40 3.18 4.48
LSTM-attention 7.99 6.38 9.45 11.19
DBSCAN LSTM 5.81 4.47 5.76 8.63
CNN-Autoencoder 3.60 291 2.88 3.74
LSTM-attention 7.88 5.38 8.59 10.63
IF LSTM 5.79 3.85 5.49 9.17
CNN-Autoencoder 348 2.78 3.44 5.49
LSTM-attention 9.35 5.00 8.51 13.41
LOF LSTM 4.82 341 4.66 7.64
CNN-Autoencoder 3.12 2.70 2.70 3.76
LSTM-attention 6.48 421 6.39 9.03
One Class SVM LSTM 5.76 3.18 4.71 8.50
CNN-Autoencoder 2.80 2.12 2.51 3.17
LSTM-attention 5.27 3.26 4.35 8.11
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Figure 4. Load forecasting using LSTM without outliers removed
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Figure 5. Load forecasting using CNN autoencoder without outliers removed
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Figure 6. Load forecasting using LSTM-attention without outliers removed

The results indicate that outlier detection significantly enhances forecasting accuracy across all
models and countries. For example, the CNN-Autoencoder paired with one-class SVM achieved the lowest
MAPE of 2.12% in France, demonstrating the synergy between robust feature extraction and anomaly
detection. These findings highlight that ignoring outlier handling can lead to suboptimal model performance,
underscoring the necessity of robust preprocessing in energy forecasting pipelines.

5. CONCLUSION

This paper investigates the role of outlier detection techniques in improving the accuracy and
robustness of deep learning-based energy demand forecasting for multiple countries. By integrating five
prominent outlier detection algorithms with three state-of-the-art forecasting models, the study reveals
several key findings.

Outlier removal significantly reduces forecasting errors, enhancing model reliability, especially in
real-world, noisy datasets. Among the evaluated techniques, one-class SVM and LOF proved particularly
effective at identifying anomalous data and improving model performance. The combination of CNN
Autoencoder and one-class SVM achieved the best predictive accuracy, demonstrating the value of pairing
strong feature extractors with robust anomaly detectors.

The LSTM-Attention model, while designed for capturing complex temporal dependencies,
exhibited higher sensitivity to outliers, underscoring the need for careful preprocessing when deploying
attention-based architectures. These findings advance present knowledge by demonstrating the tangible
benefits of integrating anomaly detection into forecast pipelines, an aspect often overlooked in previous
studies. The work also offers practical insights into selecting model-method combinations for energy demand
forecasting, which are directly applicable in operational settings.

This research opens several promising directions: developing adaptive or hybrid outlier detection
methods that respond to dynamic seasonal and regional variations; incorporating exogenous factors such as
weather or economic indicators for improved forecasting; and extending the framework to other domains like
various data analysis water resource management or renewable generation forecasting.
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