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 Accurate energy demand prediction is crucial for efficient grid management 

and resource optimization, particularly across multiple countries with 

varying consumption patterns. However, real-world energy demand data 

often contains outliers that can distort forecasting accuracy. This study 

evaluates the impact of five outlier detection techniques—Z-Score, density-

based spatial clustering of applications with noise (DBSCAN), 

isolation forest (IF), local outlier factor (LOF), and one-class support vector 

machine (SVM)—on the performance of three time-series forecasting 

models: long short-term memory (LSTM) networks, convolutional neural 

network (CNN) Autoencoders, and LSTM with attention mechanisms. The 

models are tested using energy demand data from four European countries—

Germany, France, Spain, and Italy—derived from real-time consumption 

records. A comparative analysis based on root mean squared error (RMSE) 

demonstrates that incorporating outlier detection significantly enhances 

model robustness, reducing forecasting errors caused by anomalous data. 

The findings emphasize the importance of selecting appropriate outlier 

detection strategies to improve the accuracy and reliability of energy demand 

forecasting. This research provides valuable insights into the trade-offs 

involved in outlier removal, with implications for policy and operational 

practices in energy management. 
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1. INTRODUCTION 

Accurate energy demand forecasting is a critical component of modern power system management. 

It facilitates optimal grid operation, ensures the reliability of power distribution, and supports the integration 

of renewable energy sources by predicting fluctuations in energy consumption. With the increasing 

complexity of global energy systems, forecasting models must account for the dynamic nature of energy 

demand across different regions, influenced by factors such as climate, socio-economic activities, and 

technological advancements. In particular, multi-country energy demand prediction presents a unique 

challenge, as each country exhibits its own consumption patterns and responds differently to various 

influencing factors. Effective forecasting models are therefore essential for achieving greater accuracy and 

efficiency in managing energy resources at the regional and international levels. 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5067-5079 

5068 

One significant challenge in time-series forecasting is the presence of outliers, which are abnormal 

data points that deviate significantly from expected patterns. Outliers in energy demand data may arise due to 

measurement errors, system failures, or rare events such as natural disasters or sudden changes in 

consumption patterns. These anomalous values, if left untreated, can severely impact the performance of 

forecasting models, leading to inaccurate predictions and inefficient decision-making. As such, addressing 

outliers is a vital preprocessing step for enhancing the accuracy and robustness of time-series forecasting 

models. Various outlier detection techniques, including statistical methods and machine learning approaches, 

have been developed to identify and mitigate the effects of outliers in time-series data. 

In recent years, the application of machine learning models such as long short-term memory 

(LSTM) networks, convolutional neural networks (CNNs), and attention mechanisms has gained significant 

attention in energy demand forecasting. These models have demonstrated the ability to capture complex 

temporal dependencies and provide highly accurate predictions. However, the performance of these models is 

highly sensitive to the quality of the input data, particularly in the presence of outliers. Despite the advances 

in forecasting techniques, the impact of outlier detection methods on model performance, particularly for 

multi-country energy demand prediction, has not been extensively explored. In this context, the present study 

aims to investigate the role of different outlier detection techniques in improving the accuracy of energy 

demand forecasting for multiple countries. 

This study focuses on evaluating five popular outlier detection techniques—Z-score, density-based 

spatial clustering of applications with noise (DBSCAN), isolation forest (IF), local outlier factor (LOF), and 

one-class support vector machine (SVM)—on their ability to improve the accuracy of energy demand 

predictions using three state-of-the-art time-series forecasting models: LSTM, CNN Autoencoders, and 

LSTM with attention. By analyzing real-time energy consumption data from four European countries—

Germany, France, Spain, and Italy—the study provides insights into the effectiveness of these outlier 

detection methods in enhancing forecasting accuracy. The results of this study are expected to contribute 

valuable knowledge to the field of energy systems, offering a better understanding of the relationship 

between outlier detection and forecasting performance, with implications for both academic research and 

practical applications in the energy sector. The paper is organized as: section 2 reviews related work; section 

3 describes the methodology; section 4 presents and discusses the results discussions; section 5 concludes the 

paper and suggests future directions. 

 

 

2. LITERATURE REVIEW 

Outlier detection in time series data is a critical component in enhancing the accuracy of forecasting 

models, particularly in applications like energy demand prediction. Many studies emphasize the impact of 

selecting effective outlier detection techniques on the performance of forecasting models. The study by 

Amalou et al. [1] presents the fast incremental support vector data description (FISVDD) algorithm for 

outlier detection, demonstrating its effectiveness in energy time series forecasting. The research highlights 

that choosing the appropriate kernel function for the FISVDD model significantly improves forecasting 

accuracy. This improvement is validated using the mean squared error (MSE) evaluation, which shows that 

FISVDD outperforms other outlier detection techniques. By selecting the right kernel function, the method 

effectively handles irregularities in energy consumption data, leading to superior results in multi-country 

energy demand forecasting. 

Bandhan and Ganapati [2] have discussed outlier detection techniques. The study classifies outlier 

detection techniques into five major categories: statistical methods, distance-based approaches, density-based 

methods, clustering-based techniques, and ensemble methods. Each technique offers unique advantages for 

identifying anomalous data points. The adaptability of the methods for different domains of the study gains 

interest in further investigation. Richard [3] also explores the various techniques and their advantages and 

limitations. The authors in [4] have discussed an enhanced technique, called unsupervised outlier detection 

architecture with graph neural network (UOSC-GNN). 

The authors of reference [5] have discussed anomaly detection techniques and compared the 

methods, IF, gaussian mixture model (GMM), and k-nearest neighbor (kNN) algorithms and concludes that 

IF outperforms both GMM and kNN in effectively isolating outliers from data. Outlier detection based on 

local density and natural neighbors have been discussed in [6], wherein a knowledge of knowing parameter 

K, for addressing challenges in existing methods related to parameter selection. In this work, manual 

parameter setting required for neighborhood parameter K is not required. Another work that integrates 

clustering and outlier scoring schemes, specifically using uncertainty soft clustering based on rough set 

theory is reported in [7]. The work discusses a Kernel Rough Clustering algorithm, demonstrating superior 

detection accuracy compared to five existing methods. 
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A single density network (SDN) and Z-score for outlier detection in analog tests is presented in [8], 

it introduces metrics like self-excluded fail rate (SE fail rate) and normalized area under curve (AUC) to 

quantify and visualize abnormality effectively. The techniques include IFs, which utilize binary decision 

trees to isolate anomalies, crucial for various applications [9], [10]. 

In [11], an electricity price forecasting of Danish electricity market, utilizing a GMM-lightweight 

gradient boosting machine hybrid detector and LSTNet-kernel density estimation (LSTNet-KDE) method, 

which enhances forecasting accuracy by effectively isolating and predicting outlier sequences is presented. 

On the other hand, RF algorithm for outlier detection is presented in [12]. Single-valued metric prediction is 

presented in [13], which enhances the accuracy of time-series forecasting [14], [15] in various applications, 

including energy demand prediction. Another algorithm, called fast incremental FISVDD is discussed in [16] 

for enhancing the forecasting accuracy. 

Another significant contribution to this field is the hybrid model proposed by Songhua [17], which 

combines IF with outlier reconstruction (OR), CNN, and random forest (RF) for energy demand forecasting. 

This model, denoted as IF-OR-CNN-RF, demonstrates superior performance metrics, such as mean absolute 

error (MAE) and root mean squared error (RMSE), compared to other CNN-based models. The study 

underscores that integrating outlier detection methods with deep learning techniques enhances the robustness 

of forecasting models, particularly in the presence of outliers. This hybrid approach addresses challenges 

inherent in energy demand prediction by mitigating the influence of abnormal data points, leading to more 

reliable and accurate forecasts. 

In a similar vein, Li et al. [18] proposes the CNN-gated recurrent unit (CNN-GRU) method, coupled 

with a random forest detection model optimized by grid search (CGA-RF), for anomaly detection in energy 

consumption data. Their study reveals significant improvements in performance metrics such as accuracy, 

precision, recall, and F1 score, compared to conventional methods. The use of a self-attentive mechanism in 

the CNN-GRU model helps in capturing dynamic changes in energy consumption, while the random forest 

model excels in detecting anomalies in residuals, ultimately boosting forecasting accuracy. The authors 

emphasize that handling anomalies effectively is crucial for enhancing energy management and operational 

efficiency in energy systems. 

Fu et al. [19] contribute to this area by presenting a tree-based anomaly detection model, which was 

the winning solution in the large-scale energy anomaly detection (LEAD) competition. This method achieved 

a high ROC-AUC score of 0.9866, underscoring its efficacy in identifying outliers in energy time series. The 

study emphasizes the importance of feature engineering, particularly through value-changing features that 

capture variations in time series data. This research highlights the need for effective data preprocessing and 

anomaly detection to ensure the accuracy of energy consumption forecasting models. 

Similarly, Gao et al. [20] explore outlier detection through correlation analysis based on graph neural 

networks (GNNs). Their proposed UOSC-GNN architecture improves anomaly detection by measuring the 

variance between expected and actual data states, showing improvements in accuracy and sensitivity. 

Although the study does not directly address energy forecasting, the techniques discussed are applicable in 

energy demand prediction, especially in identifying anomalous patterns that may influence forecasting models.  

The integration of machine learning techniques for outlier detection in energy time series is further 

explored in the work of Ismaeel et al. [21], which investigates the scientific computing associates (SCA) 

statistical system for outlier detection in the context of water volume forecasting for the Dohuk Dam. While 

the primary focus is on water volume data, the principles of outlier correction in time series analysis can be 

applied to energy forecasting [22]. The paper demonstrates that outlier-adjusted forecasts perform better, 

enhancing the accuracy of time-series models by correcting for abnormal data points that would otherwise 

lead to forecasting errors. 

Kyo [23] have presented a multi-objective optimization approach combining minimum index of 

symmetry and uniformity (ISU) and maximum likelihood autoregressive (AR) modeling for detecting 

outliers in nonstationary time series to decomposes trend and stationary components while balancing outlier 

detection and model selection. A deep learning framework using autoencoders and LSTM networks to detect 

anomalies in time series data is discussed in [24]. The hybrid model captures complex temporal patterns 

through reconstruction errors, enhancing reliability across applications. Kumar et al. [25] developed an 

ARIMA-DCGAN synergy that leverages ARIMA’s linear modeling and DCGAN’s nonlinear capabilities for 

outlier detection in time series. This approach outperforms existing methods, benefiting applications like 

fraud detection and predictive maintenance. Dani et al. [26] developed an ARIMA-DCGAN synergy that 

leverages ARIMA’s linear modeling and DCGAN’s nonlinear capabilities for outlier detection in time series. 

This approach outperforms existing methods, benefiting applications like fraud detection and predictive 

maintenance. Dani et al. [26] employs principal component analysis (PCA) for anomaly detection in time 

series by reducing dimensionality and highlighting deviations. This technique aids in timely risk mitigation 

and informed decision-making in organizational contexts. 
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Current literature typically focuses either on forecasting models (like LSTM or CNNs) or on 

anomaly detection methods in isolation. Our work bridges this gap by demonstrating how outlier detection 

directly improves model performance and quantifying these improvements across models and countries. It 

also reveals model-specific sensitivities — for example, LSTM-Attention models, while powerful, are more 

sensitive to outliers, a nuance not well documented before. Thus, this manuscript adds practical knowledge 

for both researchers and practitioners on how to select and combine anomaly detection and forecasting 

methods effectively, contributing to more resilient and accurate energy system operations. 

 

 

3. METHODOLOGY 

In this work, our methodological framework involves: i) real-world energy consumption datasets 

from four European countries, ii) systematic preprocessing (normalization, interpolation, outlier removal),  

iii) mathematical formulation and implementation of each forecasting and outlier detection technique and iv) 

evaluation metrics mean absolute percentage error (mean absolute percentage error (MAPE), RMSE, MAE) 

to quantify improvements in predictive accuracy. 

The proposed methodology for energy demand forecasting, as illustrated in Figure 1, follows a 

structured approach to process multi-country energy demand datasets efficiently. The process begins with data 

preprocessing, where normalization and train-test splitting are performed to standardize the dataset for model 

training. Subsequently, outlier detection techniques such as Z-score, DBSCAN, IF, LOF, and SVM are applied 

to identify anomalous data points. A decision-making step determines whether outliers are present, influencing 

the choice of forecasting models. If outliers are detected, advanced models such as LSTM, CNN Autoencoder, 

and LSTM with Attention mechanism are utilized to enhance forecasting accuracy. These models leverage deep 

learning techniques to capture temporal dependencies and complex patterns within the dataset. Model 

performance is evaluated using RMSE, MAPE, and MSE to ensure robust predictive accuracy. The final step 

consolidates the forecasting results, providing insights into energy demand trends across multiple regions. 
 

 

 
 

Figure 1. Flow chart of the proposed methodology for energy demand forecasting 
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3.1.  Data collection and preprocessing 

3.1.1. Dataset description 

The dataset used in this study comprises hourly energy consumption data from multiple European 

nations, specifically Germany (DE), France (FR), Spain (ES), and Italy (IT). The data was acquired from the 

open power system data (OPSD) repository, a widely recognized source for energy-related time-series 

datasets. This dataset provides historical electricity demand values recorded at an hourly resolution, ensuring 

a granular understanding of energy consumption trends. Given the dynamic nature of energy demand, factors 

such as seasonal variations, economic activity, and climatic conditions influence consumption patterns. Thus, 

an in-depth exploration of these variations is necessary for enhancing forecasting accuracy and robustness. 

 

3.1.2. Data preprocessing 

Handling missing values: missing timestamps are filled using linear interpolation, while energy 

demand values are imputed using forward and backward filling. Data normalization: to ensure consistency 

across different countries and eliminate scale disparities, the raw time-series data undergoes normalization. 

The Min-Max normalization technique is applied, which scales values between 0 and 1, thereby facilitating 

stable convergence in deep learning models. The transformation of an energy demand value 𝑥𝑖 is computed 

as (1). 

 

𝑥𝑖
′ =

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1) 

 

In (1), 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  represent the minimum and maximum values within the dataset, respectively. This 

normalization mitigates the impact of large-scale discrepancies among different countries while preserving 

the relative magnitude of fluctuations, ensuring optimal model performance. 

 

3.2.  Outlier detection techniques 

Outliers in time-series data arise due to various factors, including sensor malfunctions, erroneous 

recordings, grid failures, or unforeseen spikes in energy consumption. Failure to address these anomalies can 

lead to inaccurate predictions and model instability. This study examines five robust outlier detection 

methods Z-score, DBSCAN, IF, LOF, and one-class SVM. Each technique identifies anomalies based on 

distinct mathematical formulations and underlying principles. 

 

3.2.1. Z-Score method 

The Z-score method is a statistical technique that quantifies the deviation of each data point from the 

mean in terms of standard deviations. This approach assumes that energy consumption data follows a normal 

distribution, allowing the identification of extreme deviations. The Z-score for each value of 𝑥𝑖 is computed 

as (2). 

 

𝑍𝑖 =
𝑥𝑖−µ

𝜎
 (2) 

 

In (2), µ is the mean and 𝜎 is the standard deviation. Data points with |𝑍𝑖| > 3 are classified as outliers. 

 

3.2.2. DBSCAN 

DBSCAN is a clustering-based anomaly detection technique that distinguishes normal and 

anomalous points based on data density. A point is considered an outlier if it does not belong to any high-

density cluster. The algorithm relies on a neighborhood function (3). 

 
(𝑝) = {𝑞 ∈ 𝐷| 𝑑(𝑝, 𝑞) ≤ 𝜀} (3) 

 

In (3), 𝑑(𝑝, 𝑞) denotes the distance between data points, and 𝜀 is a predefined threshold. Points with fewer 

than min samples neighbors are labeled as outliers. This method is particularly effective for detecting 

anomalies in datasets exhibiting nonlinear structures. 

 

3.2.3. IF 

IF is an ensemble learning technique that isolates anomalies by recursively partitioning data points. 

Unlike traditional methods that rely on distance metrics, IF constructs decision trees where anomalous points 

are identified through shorter path lengths. The anomaly score is given by (4). 

 

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))

(𝑐(𝑛))  (4) 
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In (4), ℎ(𝑥) depends on 𝑥 in the forest and 𝑐(𝑛) is the average path length for a dataset of size 𝑛. IF is 

computationally efficient and highly effective for high-dimensional data. 

 

3.2.4. LOF 

LOF assesses outliers by comparing the density of a point with its surrounding neighbors. A low-

density point relative to its neighbors is flagged as an outlier. The LOF score is computed as (5). 

 

𝐿𝑂𝐾𝑘(𝑝) =
∑

𝐿𝑅𝐷𝑘(𝑜)

𝐿𝑅𝐷𝑘(𝑝)𝑜∈𝑁𝑘(𝑝)

|𝑁𝑘(𝑝)|
 (5) 

 

In (5), 𝐿𝑅𝐷𝑘(𝑝) represents the local reachability density, and 𝑁𝑘(𝑝) is the set of k-nearest neighbors. This 

approach is advantageous for detecting subtle anomalies in dynamic environments. 

 

3.2.5. One-class SVM 

One-class SVM constructs a hyperplane that differentiates normal instances from outliers using 

kernel transformations. The objective function for anomaly detection is formulated as (6). 

 

min
𝑤,𝜉,𝜌

1

2
||𝑤||

2
+

1

ν𝑛
∑ ξ𝑖

𝑛
𝑖=1 − 𝜌  (6) 

 

In (6), 𝜈 regulates the proportion of outliers. one-class SVM is particularly useful for datasets with complex 

distributions. 

 

3.3. Forecasting models 

3.3.1. LTSM 

The LSTM networks are an advanced variant of recurrent neural networks (RNNs) specifically 

designed to address the vanishing gradient problem that hinders traditional RNNs in capturing long-term 

dependencies. LSTMs have gained significant traction in time-series forecasting, natural language 

processing, and sequential data modeling due to their ability to retain essential information over extended 

time intervals. Unlike conventional RNNs, LSTMs utilize memory cells and specialized gating mechanisms 

that selectively store or discard information, enabling more effective learning from long-range dependencies. 

The architecture of an LSTM as shown in Figure 2 consists of memory cells regulated by three 

fundamental gates: the forget gate, which determines the retention of past information; the input gate, which 

controls the integration of new information; and the output gate, which dictates the transmission of relevant 

information to the next time step. These gates collectively manage the flow of information within the 

network, thereby mitigating issues associated with long-term dependencies. The mathematical formulation of 

these gates ensures that the model learns and adapts effectively to sequential patterns in the data, making 

LSTMs particularly suitable for applications involving temporal dependencies. 

 

 

 
 

Figure 2. Architecture of LSTM layer 

 

 

Forget gate: the forget gate regulates whether information from previous time steps should be retained 

or discarded based on the current input and the previous hidden state. Mathematically, it is defined as (7). 
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𝑓𝑡 = σ(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (7) 

 

In (7), 𝑓𝑡 represents the forget gate activation, and σ is the sigmoid activation function that constrains values 

between 0 and 1. A value close to 0 results in forgetting past information, while a value near 1 retains it. This 

mechanism ensures that irrelevant information does not accumulate in the memory cell, thereby improving 

model efficiency. 

Input gate: The input gate governs the extent to which new information is incorporated into the cell 

state. It operates by generating a candidate memory value through a 𝑡𝑎𝑛ℎ activation function and scaling it 

using a sigmoid gate to regulate its influence. The corresponding (8) and (9). 
 

𝑖𝑡 = σ(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (8) 
 

𝐶𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (9) 
 

In (8)–(9), 𝑖𝑡 represents the input gate activation, and 𝐶𝑡̃ denotes the candidate memory content. This 

controlled update mechanism ensures that only relevant new information is added to the memory, preventing 

unnecessary fluctuations in the learning process. 

Cell state update: The cell state serves as the memory of an LSTM unit and is updated by combining 

retained past information with new inputs. The update equation is given by (10). 

 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡̃ (10) 

 

In (10), ⊙ represents the element-wise product. The inclusion of the forget gate ensures that long-term 

dependencies are preserved while allowing new, relevant data to be incorporated effectively. This dynamic 

balance between memory retention and update is key to LSTM's superior performance in handling sequential 

data. 

Output gate: the output gate determines how much of the updated cell state contributes to the hidden 

state and, consequently, the final output of the network. This process is governed by (11) and (12). 

 

𝑜𝑡 = σ(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (11) 
 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (12) 

 

In (11) and (12), 𝑜𝑡 are the output gate activation. The tanh activation ensures that the output values remain 

within a manageable range, thereby preventing extreme fluctuations. This selective information transfer 

enhances the model’s ability to generate meaningful representations of sequential data. 

 

3.3.2. CNN Autoencoder 

CNN Autoencoder is a type of neural network that learns efficient representations of input 

sequences through an encoder-decoder structure. The encoder extracts important temporal features from the 

input time-series data and compresses them into a lower-dimensional latent space, while the decoder 

reconstructs the original input from this compressed representation. Given a time-series sequence 𝑋 =
{𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇}, the encoder applies a series of convolutional operations to generate feature maps. The 

convolutional transformation for each filter ℎ𝑘 is given by (13). 

 

ℎ𝑘 = σ(𝑊𝑘 ∗ 𝑋 + 𝑏𝑘) (13) 

 

In (13), 𝑊𝑘 represents the filter weights, 𝑏𝑘 is the bias term, ∗ denotes the convolution operation, and σ is a 

non-linear activation function (e.g., ReLU). The encoded feature representations are further passed through 

max-pooling layers to reduce dimensionality while preserving the most significant features. The latent 

representation, 𝑍, is obtained as (14). In (14), max-pooling helps to retain dominant spatial-temporal features 

and reduces computational complexity. 
 

𝑍 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(ℎ𝑘)  (14) 
 

The decoder reconstructs the input sequence from the latent representation by applying transposed 

convolution (deconvolution) layers, ensuring that the learned features accurately capture underlying time-

dependent patterns. The reconstructed output sequence 𝑋̂ is generated as (15). 
 

𝑋̂ = σ(𝑊𝑑 ∗ 𝑍 + 𝑏𝑑) (15) 
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In (15), 𝑊𝑑 and 𝑏𝑑 are the weights and bias of the decoder network, respectively. To fine-tune the model for 

time-series forecasting, the final layer is modified to predict the future time steps 𝑌̂ based on the learned 

latent features is given by (16). 

 

𝑌̂ = 𝐷𝑒𝑛𝑠𝑒(𝑍) (16) 

 

In (16), the dense layer maps the compressed representation to the output space. By leveraging CNN-based 

feature extraction, the autoencoder improves forecasting accuracy by capturing intricate temporal 

dependencies while effectively handling noise and outliers in the dataset. 

 

3.3.3 LSTM with attention mechanism 

The LSTM networks are widely used for time-series forecasting due to their ability to retain long-

term dependencies while mitigating the vanishing gradient problem. However, traditional LSTMs treat all 

time steps with equal importance, which can lead to suboptimal performance in complex datasets where 

certain past time steps contribute more significantly to future predictions. The attention mechanism enhances 

LSTM by dynamically weighing the importance of past observations is presented in Figure 3, allowing the 

model to focus on the most relevant time steps. Given an input sequence 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇}, the LSTM 

processes the sequence iteratively using the (17). 
 

𝑓𝑡 = σ(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓)
𝑡

= 𝑡𝑎𝑛ℎ(𝑊𝐶ℎ𝑡−1 + 𝑈𝐶𝑥𝑡 + 𝑏𝐶)𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡̃ℎ𝑡 

= 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (17) 
 

In (17), 𝑓𝑡 , 𝑖𝑡 and 𝑜𝑡 denote the forget, input, and output gates, respectively, 𝐶𝑡 is the cell state, ℎ𝑡 is the 

hidden state, and 𝜎 represents the sigmoid activation function. The attention mechanism is then applied to 

enhance the LSTM’s ability to focus on critical time steps. The attention score $\alpha_{t}$ is computed 

using an alignment function that determines the relevance of each hidden state ℎ𝑡 with respect to the target 

output. The attention weights are computed as (18)–(20). 

 

𝑒𝑡 = 𝑣𝑇 tanh(𝑊𝑎ℎ𝑡 + 𝑏𝑎) (18) 
 

α𝑡 =
exp(𝑒𝑡)

  ∑ exp(𝑒𝑡́)𝑡́
 (19) 

 

𝑐𝑡 = ∑ α𝑡ℎ𝑡𝑡   (20) 

 

In (18)–(20), 𝑒𝑡 represents the attention score, 𝑊𝑎 and 𝑣 are learnable parameters, and 𝑐𝑡 is the context vector 

obtained by taking the weighted sum of hidden states. The final output is then computed as (21). 

 

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦[𝑐𝑡; ℎ𝑡] + 𝑏𝑦) (21) 

 

By incorporating attention, the model selectively focuses on informative time steps, leading to 

improved forecasting accuracy. This approach is particularly beneficial for energy demand prediction, where 

external factors such as seasonal variations and peak demand periods exert varying levels of influence on 

future consumption. The attention-enhanced LSTM provides greater interpretability and adaptability, making 

it a robust choice for time-series forecasting tasks in energy management systems. 
 

 

 
 

Figure 3. Architecture of LSTM with attention mechanism 
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4. RESULTS AND DISCUSSION 

The impact of outlier detection techniques on time-series forecasting accuracy was analyzed using 

three deep learning models—LSTM, CNN-Autoencoder, and LSTM with attention—across multiple 

countries, including Germany (DE), France (FR), Spain (ES), and Italy (IT). The experimental results 

revealed that outlier removal significantly improved model performance by reducing error metrics such as 

RMSE and MAE. Among the five outlier detection techniques applied, IF and LOF demonstrated superior 

capability in detecting anomalous patterns, leading to the most noticeable improvements in forecasting 

accuracy. Specifically, in the case of Germany, the RMSE for LSTM without outlier removal was  

17.34 MW, which reduced to 12.21 MW after applying IF. Similarly, Spain exhibited a substantial reduction 

in forecasting error, where the RMSE improved from 19.87 to 14.02 MW post outlier removal. These results 

indicate that eliminating outliers effectively mitigates noise, enabling the models to learn more representative 

energy consumption patterns. 

The comparative analysis of various forecasting methods with and without outlier detection 

techniques demonstrates significant variations in predictive accuracy across different countries. The Table 1 

presents MAPE values for Germany (DE), France (FR), Spain (ES), and Italy (IT), employing different 

forecasting approaches such as LSTM, CNN-Autoencoder, and LSTM with attention mechanism. When no 

outlier detection method is applied, the CNN-Autoencoder consistently exhibits the lowest MAPE values 

across all regions, indicating its robustness in handling raw data. Conversely, LSTM-Attention performs the 

worst among the three forecasting models, yielding the highest MAPE values, particularly in Italy (19.70%) 

and Spain (14.08%). This suggests that while attention mechanisms enhance LSTM models in certain 

scenarios, they may be more sensitive to anomalies present in the dataset. 

The implementation of outlier detection techniques leads to a substantial improvement in forecasting 

accuracy, with one-class SVM emerging as the most effective method for noise reduction. Under this 

approach, CNN-Autoencoder attains the lowest MAPE values across all countries, particularly in France 

(2.12%) and Italy (3.17%), underscoring its efficiency in feature extraction and denoising capabilities. 

Similarly, the application of LOF and IF also improves prediction accuracy, albeit to a slightly lesser extent. 

Notably, LSTM's performance significantly benefits from these methods, with MAPE values dropping from 

10.73% (without outlier detection) to as low as 3.18% (one-class SVM) in France. This highlights the 

importance of outlier handling in improving the predictive reliability of recurrent neural networks. 

Among the outlier detection methods, DBSCAN and Z-Score filtering also exhibit promising results, 

though their effectiveness varies by forecasting model. DBSCAN, for instance, helps reduce MAPE values  

in LSTM models considerably, bringing them down to 5.81% (Germany) and 4.47% (France). Likewise, 

CNN-Autoencoder benefits from DBSCAN, attaining a MAPE of 2.88% in Spain, which is a considerable 

improvement from the baseline. However, the LSTM-Attention model, despite some improvements, 

continues to exhibit relatively higher error rates across most countries, suggesting that attention-based 

architectures might require more sophisticated anomaly handling techniques for optimal performance. 

Overall, the findings place crucial role of outlier detection in enhancing forecasting accuracy, with 

one-class SVM and CNN-Autoencoder emerging as the most effective combination. While LSTM-based 

models benefit from anomaly filtering, the choice of forecasting model and outlier detection method must be 

tailored to the specific dataset and application context. Future research could explore hybrid approaches that 

integrate multiple anomaly detection strategies or leverage adaptive filtering mechanisms to further improve 

predictive performance in time series forecasting. 

The effect of individual outlier detection methods varied across countries due to differences in data 

characteristics and energy consumption trends. Z-Score and one-class SVM, while effective in detecting 

extreme deviations, struggled with subtle anomalies present in non-Gaussian distributions. On the other hand, 

DBSCAN, which clusters data based on density, demonstrated mixed results shown in Figures 4, 5 and 6 

performing well in structured datasets like France but underperforming in Italy due to irregular fluctuations 

in demand patterns. Overall, the study confirms that selecting an appropriate outlier detection technique is 

crucial for optimizing forecasting accuracy, and the best choice often depends on the underlying data 

distribution. The findings also highlight the necessity of adaptive anomaly detection strategies that can 

dynamically adjust to seasonal variations and long-term trends in energy consumption. 

The overall improvements in model performance post outlier removal reinforce the importance of 

data preprocessing in time-series forecasting tasks. While deep learning architecture can capture complex 

temporal dependencies, their effectiveness is significantly influenced by data quality. This study 

demonstrates that integrating robust outlier detection mechanisms can substantially enhance forecasting 

reliability, making energy demand prediction models more applicable for real-world energy management and 

grid optimization. Future research should explore the combination of multiple anomaly detection methods 

using ensemble techniques and investigate the impact of incorporating external factors such as weather 

conditions and economic indicators to further refine predictions. 
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Table 1. Comparative results for various forecasting methods with and without outlier methods 
Outlier method Forecasting method Germany (DE)  

MAPE (%) 

France (FR)  

MAPE (%) 

Spain (ES)  

MAPE (%) 

Italy (IT)  

MAPE (%) 

None LSTM 10.73 6.96 10.00 15.49 

CNN-Autoencoder 5.03 4.69 4.13 7.23 

LSTM-attention 14.01 7.63 14.08 19.70 
Z-Score LSTM 9.01 5.36 7.16 12.65 

CNN-Autoencoder 3.70 3.40 3.18 4.48 

LSTM-attention 7.99 6.38 9.45 11.19 
DBSCAN LSTM 5.81 4.47 5.76 8.63 

CNN-Autoencoder 3.60 2.91 2.88 3.74 

LSTM-attention 7.88 5.38 8.59 10.63 
IF LSTM 5.79 3.85 5.49 9.17 

CNN-Autoencoder 3.48 2.78 3.44 5.49 

LSTM-attention 9.35 5.00 8.51 13.41 
LOF LSTM 4.82 3.41 4.66 7.64 

CNN-Autoencoder 3.12 2.70 2.70 3.76 

LSTM-attention 6.48 4.21 6.39 9.03 
One Class SVM LSTM 5.76 3.18 4.71 8.50 

CNN-Autoencoder 2.80 2.12 2.51 3.17 

LSTM-attention 5.27 3.26 4.35 8.11 

 

 

 
 

Figure 4. Load forecasting using LSTM without outliers removed 

 

 

 
 

Figure 5. Load forecasting using CNN autoencoder without outliers removed 
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Figure 6. Load forecasting using LSTM-attention without outliers removed 

 

 

The results indicate that outlier detection significantly enhances forecasting accuracy across all 

models and countries. For example, the CNN-Autoencoder paired with one-class SVM achieved the lowest 

MAPE of 2.12% in France, demonstrating the synergy between robust feature extraction and anomaly 

detection. These findings highlight that ignoring outlier handling can lead to suboptimal model performance, 

underscoring the necessity of robust preprocessing in energy forecasting pipelines. 

 

 

5. CONCLUSION 

This paper investigates the role of outlier detection techniques in improving the accuracy and 

robustness of deep learning-based energy demand forecasting for multiple countries. By integrating five 

prominent outlier detection algorithms with three state-of-the-art forecasting models, the study reveals 

several key findings. 

 Outlier removal significantly reduces forecasting errors, enhancing model reliability, especially in 

real-world, noisy datasets. Among the evaluated techniques, one-class SVM and LOF proved particularly 

effective at identifying anomalous data and improving model performance. The combination of CNN 

Autoencoder and one-class SVM achieved the best predictive accuracy, demonstrating the value of pairing 

strong feature extractors with robust anomaly detectors. 

 The LSTM-Attention model, while designed for capturing complex temporal dependencies, 

exhibited higher sensitivity to outliers, underscoring the need for careful preprocessing when deploying 

attention-based architectures. These findings advance present knowledge by demonstrating the tangible 

benefits of integrating anomaly detection into forecast pipelines, an aspect often overlooked in previous 

studies. The work also offers practical insights into selecting model-method combinations for energy demand 

forecasting, which are directly applicable in operational settings. 

 This research opens several promising directions: developing adaptive or hybrid outlier detection 

methods that respond to dynamic seasonal and regional variations; incorporating exogenous factors such as 

weather or economic indicators for improved forecasting; and extending the framework to other domains like 

various data analysis water resource management or renewable generation forecasting. 
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