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 Hand gesture recognition (HGR) using flexible sensors (flex-sensor) and the 

MPU6050 sensor has proved to be a key area of research in human-machine 

interaction, with major applications in biasing, rehabilitation, and assisted 

robotics. This paper proposes a wearable intelligent glove designed to 

operate a robotics arm in real time, relying on multi-sensor fusion and 

machine learning methods to enhance the system's responsiveness and 

precision. The proposed system enables the intuitive reproduction of hand 

movements and precise control of the robotic arm. In the context of Industry 

4.0 and internet of things (IoT), the classification of gestures is necessary for 

maintaining operational efficiency. To guarantee gesture recognition, data 

signals from the smart glove are collected and trained by a recurrent neural 

network (RNN), which achieves 98.67% accuracy for real-time classification 

of seven gestures. Beyond industrial applications, the wearable smart glove 

can be exploited in a recognized circuit of all systems, including rehabilitation 

exercises that involve recording the progression of muscular activity for the 

assessment of motor functions and serve as a tool for patient recovery. 
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1. INTRODUCTION 

Today, as connectivity, automation and embedded intelligence redefine our relationship with 

interactive systems, the development of advanced human-machine interaction (HMI) solutions is a 

fundamental pillar of technological research. Among these solutions, wearable gesture interfaces are gaining 

in popularity, as they enable intuitive, contactless and adaptive communication between the user and digital 

systems [1]. 

The integration of flexible sensors and inertial measurement units (IMUs) into smart gloves offers a 

promising way to accurately capture hand gestures, while reducing hardware complexity. Recent approaches 

have exploited these sensors to drive robotic arms via sensory object internet of things (IoST) platforms, with 

encouraging results in terms of cost and efficiency [2]. Other works have proposed combinations of micro-

electro-mechanical systems (MEMS) sensors, convolutional neural networks or Bayesian models to improve 

the robustness of the recognition system [3], [4]. A number of limitations remain despite these advances: 

Some flexible gloves are expensive and require frequent calibration [5], IMUs alone are sensitive to temporal 

drift [6], electromyographic (EMG) and piezoresistive devices require precise wearing conditions and 
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complex interpretation [7], Finally, deep learning algorithms on powerful platforms (Jetson, GPU) are not 

easily embedded [8], [9]. Faced with these challenges, the problem of this study is as follows: How can we 

design a lightweight, low-cost, wearable gesture interface combining passive and inertial sensors with real-

time embedded processing to control a robotic arm accurately and robustly? 

This work proposes an answer through the development of a multimodal smart glove combining 

resistive flexion sensors, an MPU6050 IMU, and an ESP32 board for on-board processing. Gesture 

recognition is provided by optimized supervised models, enabling dynamic hand movements to be predicted 

and a robotic arm to be controlled in real time. Our contributions are as follows: The hardware design of a 

low-cost, energy-efficient smart glove, integrating flex sensors and IMU. An embedded software architecture 

on ESP32, capable of processing sensor signals locally and sending gesture commands. A multi-sensor data 

fusion method to improve the accuracy and stability of gesture classification. Integration of the system with a 

robotic arm, validated by experiments reproducing complex gestures in an Industri 4.0 type environment. 

A benchmarking study with existing approaches, demonstrating the relevance of our solution in terms of 

latency, cost and accuracy. 

The experimental results obtained show that our solution provides reliable recognition and smooth 

control, with an angular error of less than ±0.15° on all three axes (roll, pitch, yaw). Compared with more 

complex or costly systems, our approach represents a good compromise between hardware simplicity, 

gestural precision and robotic integration [10]. Some flexible gloves based on soft piezoresistive sensors, 

such as those based on polydimethylsiloxane-carbon black (PDMS-CB), have demonstrated good sensitivity, 

but pose challenges of durability and long-term reproducibility [11]. Recent work has proposed EMG models 

embedded on edge artificial intelligence (AI) architectures, enabling dynamic gesture recognition with good 

performance, but still requiring user-specific tuning [12].  

The remainder of this article is structured as follows: Section 2 presents related work and 

comparative approaches in the literature. Section 3 details the system architecture and proposed 

methodology. Section 4 presents the experimental results and their comparison with existing approaches. 

Finally, section 5 concludes the implications of our solution and proposes avenues for improvement. 

 

 

2. RELATED WORK 

2.1.   Wearable device for manipulator control: human-computer interaction 

Human-computer interaction systems have been revolutionized by wearable sensors, providing an 

intuitive and efficient means of communication between humans and machines. The many applications of 

these sensors help to enhance the user environment through gesture recognition, physiological monitoring, 

and haptic feedback. This section presents the main features of human-machine interaction systems based on 

wearable sensors and their application in the literature review. Recent innovations in sensor technologies 

have significantly improved gesture recognition and human-machine interaction while opening up new 

prospects for ergonomic applications. 

Triboelectric sensors, flex sensors, and dielectric elastomer matrices: Triboelectric sensors, such as 

the triboelectric drum nanogenerator (DS-TENG), have proved particularly effective at detecting light 

pressure signals, with a detection limit set at 3.9 Pa and an accuracy rate of up to 92% in gesture recognition 

[13]. At the same time, the integration of dielectric elastomer matrices in textiles enables continuous 

interaction with the user while achieving a predictive efficiency of at least 80%, thanks to highly 

sophisticated machine learning algorithms [14]. The research for the comfort and personalization of wearable 

devices is greatly focused on the integration of flexible sensors, such as EMG signals [15], IMU sensors [16], 

flex sensors [2], or textile sensors [5]. 

Applications in ergonomics and human-machine interaction: In the field of intelligent wearables, 

artificial intelligence-assisted exo-skeletons make industrial tasks easier by reducing muscular fatigue and 

maximizing posture. Such devices integrate machine-learning models to offer real-time personalized support 

[3], [9]. In addition, enabling systems combining triboelectric sensing and pneumatic feedback enhance the 

user experience by providing realistic touch sensations, with applications in virtual reality (VR) and 

rehabilitation [13]. Despite these advances, challenges remain, particularly in terms of sensor accuracy, 

comfort, and energy efficiency. Further miniaturization and user adaptability are crucial areas of research to 

ensure optimal integration in a variety of application contexts [1]. In addition, the widespread adoption of 

wearable sensors may be hampered by concerns about data privacy, cybersecurity, and over-reliance on 

digital technologies.  

 

2.2.  Hand movement recognition based on signal 

Signal-based recognition of hand gestures, in particular signals from flexion or EMG sensors, has 

attracted growing interest in a variety of applications, especially prosthetics, robotic arm control, and human-

computer interface. The implementation of machine learning technology helped increase the accuracy and 
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efficiency of recognizing hand gestures from signal-based data. This technology not only enhances human-

computer interaction but also serves as a vital tool for individuals with hearing impairments.  

Flex sensor technology: Flex sensors have an important role to play in gesture recognition, 

measuring the degree of finger flexion and providing real-time data on hand movements. Their integration 

with other sensing systems, such as IMUs, significantly enhances the accuracy of gesture recognition [17]. 

Machine learning has optimized gesture classification by exploiting various algorithms, including 

convolutional neural networks (CNN), Gaussian naive Bayes, random forest, k-nearest neighbors (KNN), and 

support vector machine (SVM) [18]. Multimodal data analysis, which combines flexion sensor signals with 

other data sources, has proved a major enhancement to the effectiveness of classification models. These 

advances facilitate interaction with the environment and help to overcome physical limitations. However, 

despite the progress made in the design of flexible sensors and their combination with advanced machine 

learning techniques, gesture recognition still suffers from a certain lack of variety in training datasets. Wider 

data collection on diverse sensors remains essential to improve model robustness and generalization.  

EMG signal acquisition and processing: The acquisition and analysis of EMG signals is an 

important step in the recognition of hand movements. The signals are captured via electrodes attached to the 

skin, allowing detection of the electrical activity generated by muscle contractions [19]. To improve signal 

processing and recognition accuracy, various pre-processing steps are implemented, notably, interference 

filtering, extraction of relevant segments, and feature normalization. In real-time, hand gestures are identified 

by acceleration sensors and gyroscopes, which send the information to control applications via ad-hoc 

wireless communication [20]. Feature extraction constitutes a key phase in signal interpretation in general. 

Various techniques have been adopted, such as time-synchronous averaging [21]–[23], time-domain 

descriptors, and wavelet transformations, to better distinguish the value of each signal. 

 

 

Table 1. Overview of studies on model-based approaches and sensor technologies for gesture recognition 
Year Ref. Model/Classifier Performance metrics Gesture/Purpose Sensors Controlled robotics 

2019 [5] Neural network 
(NN) / 

Dynamic time 

warping (DTW) 

algorithm 

Data from 4 males aged 
24 volunteers, 

Recognition accuracy: 

98.5% for 2000 static 

digits gestures, 98.3% 

for 180 CSL word 

samples. 

Chinese CSL; data 
have 

been collected with 

2000 static digit and 

9 CSL word samples. 

 

RGO-coated textile 
data-glove. 

 

2020 [11] Finite element 

method (FEM) 

Stretchable PDMS-CB 

strain sensors are 

validated to 
accommodate larger 

deformations (>30%) 

Controls the motion 

of robot fingers 

remotely 
 

PDMS-CB strain 

sensors 

✓ 

2021 [15] Teager-Kaiser 
energy operator 

(TKEO) / (mean 

absolute value, zero 
crossings) 

3 EMG signals from 4 
healthy subjects. 

Accuracies: 74–98%. 

The best model had 
96.67% accuracy, 

99.66% recall, and 
96.99% precision. 

Classifying upper 
arm movements using 

EMG signals. 

Controlling a 2-DoF 
robotic arm 

effectively. 
 

Three EMG 
sensors 

✓ 

2022 [24] Bayesian FC-

DenseNets 

4.7% increase in mIoU 

compared with Ego 
hands 

Human-robot 

collaboration (HRC) 
dataset from 3 human 

agents/recorded the 

HRC image data 
using a camera 

-- ✓ 

2023 [16] Gaussian Naive 

Bayes and random 
forest 

3300 samples from 10 

subjects performing 
hand gestures. cascaded 

classifier with high 

accuracy (92%) and low 
latency (7.5 ms recog. 

time) 

Asynchronous hand 

gesture detection and 
recognition method 

6DoF IMUs, data 

glove 

✓ 

2023 [17] Dynamic time 
warping (DTW) 

fusion algorithm 

recognition accuracy 
was 85.21% 

American ASL; data 
have been collected 

with 20 ASL words 

Inertial and 
bending sensors 

 

2024 [25] MOA/SConv/Bi-
LSTM/GRU model 

Accuracy, Precision, 
Recall, F1-Score (≈ 

0.9866) 

16,000 Samples, 4 
Individuals, 20 

Gestures 

-- ✓ 

2025 [26] Integration of 
SWCNTs within 

PDMS matrix. 

Achieving a 70% strain 
range and a gauge 

factor of 73 

Movements of diff. 
Fingers 

SWCNTs/PDMS 
composite strain 

sensors 

✓ 
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2.3.  Real-time robotic arm controlling  

Real-time control of robotic arms via smart gloves or wearable devices uses the power of advanced 

sensor technologies in synergy with machine learning algorithms for natural, intuitive human-machine 

interaction. These systems detect hand gestures, which are interpreted and converted into commands for 

robotic arms in a variety of applications, from rehabilitation and gaming to industrial automation. Smart 

glove systems integrate various technologies to enhance robot command. The integration of multimodal 

tactile perception enables smart gloves to analyze tactile information and build models of the world in the 

sense of object shapes and grip states, using pressure, bending, and also heat sensors [27]. By integrating 

deep learning into flexible smart gloves, it is possible to determine finger movement intentions early on, thus 

reducing communication latency and enhancing robot control [28]. On the other hand, by using surface EMG 

(Electromyogram) signals, it is possible to exceed certain efficiency thresholds in gesture recognition, thus 

enabling a minimal mode of operation to better control robotic arms [15]. Gesture-controlled robotic arms are 

increasingly applied in manufacturing and teaching, streamlining operations and enhancing learning 

experiences. This enables fine-grained recognition to control robotic devices [29]. 

 

 

3. MATERIALS AND METHOD  

Hand gestures have two main functions: to convey information and to enable functional interaction. 

Wearable interfaces can facilitate gesture recognition in both these areas, enabling seamless communication 

between humans and machines and even between individuals. This improves the quality of life and creates 

more intuitive interactions. Humans generally use their hands and fingers to perform specific tasks or express 

ideas. However, keyboards can limit this expression, restricting direct and intuitive communication due to 

hardware constraints. Hand gestures often involve coordinated movements of all five fingers and can be 

complex, involving actions such as finger flexion/extension, abduction/adduction, wrist rotation, deviation, 

and hand positioning. In many applications, it is not necessary to capture every possible hand pose; instead, 

defining a specific set of gestures can provide adequate performance for the intended purpose. 

Figure 1 shows the overall architecture of the proposed system, divided into four main modules: data 

collection, pre-processing, gesture recognition and robotic arm control. The smart glove captures real-time 

data from the flexion sensors and IMU (accelerometer and gyroscope), transmitted wirelessly for processing. 

The data is then normalized, filtered and segmented to extract features useful for training a RNN model. 

Finally, recognized gestures are translated into precise commands for robotic arm control, demonstrating fluid, 

real-time interaction. The ESP32 is a portable card using an ATmega328 CPU with a single 8-bit chip, an 

operating voltage of 5 V, and a processing clock of 16 MHz. The board has 8 analog pins for connecting the 

various types of sensory input used in this work. The second part involves receiving and pre-processing input 

data from the flex sensors, which are processed and digitized in the MCU, where the movements are 

recognized and transmitted to a laptop via the ESP32's built-in Wi-Fi module to control the robotic arm. 

Figure 2 illustrates the operational process of the continuous loop system. After initialization, data 

from the flexion sensors and MPU6050 are acquired and pre-processed (filtered and normalized). Each 

detected gesture is classified in real time, then converted into a specific command transmitted via Wi-Fi to 

the ESP32 to control the robotic arm. The system remains on standby for continuous gesture analysis until a 

stop condition is triggered. 

 

 

 
 

Figure 1. A proposed architecture for the gesture recognition and intelligent glove control system for the 

robotic arm 
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Figure 2. Flowchart of the gesture recognition and robotic arm control process 

 

 

3.1.  Smart glove capturing device 

The wearable technology of the intelligent glove, in which the gesture capture device represents an 

essential advance, is confronted with gesture recognition, enabling intuitive interaction between man and 

machine. Using sensors of all kinds, this device captures upper limb movements and transforms them into 

commands that can be used for a variety of applications, from games to medical rehabilitation. Hand gesture 

data to control the robotic arm is captured using a smart wearable glove. The Smart-Glove assembles hand 

gesture data from 5 bending sensors and an MPU6050, which are mounted to the top of our prototype glove 

as shown in Figure 3(a) shows the temporal evolution of signals from the five flexion sensors (thumb, index 

finger, middle finger, ring finger and little finger), as well as the inertial axes (X, Y, Z), for different gesture 

sequences. Colored areas identify segments corresponding to distinct recognized gestures. Figure 3(b) shows 

the smart glove in actual operation, with sensor wiring visible and the signal visualization interface displayed 

on screen. This experimental configuration validates the glove's ability to capture fine variations in 

movement in real time. 

 

 

 
 

(a) (b) 

 

Figure 3. Smart-glove capturing device: (a) visualization of multisensory data collected, and (b) the smart 

glove during gesture execution 

 

 

3.2.  Robotic arm system 

As the smart glove performs movements, it delivers signals related to the angle of the flex sensors as 

well as acceleration via MPU6050. To characterize this relationship, a wearable sensor glove was designed 

by integrating flexible sensors and an MPU6050 to track hand movements. After calibration, five analog 

values from the flexible sensors and three analog input values from the accelerometer were collected 

simultaneously. These values were converted to digital data (10 bits) via the ESP32's ADC using (1): 
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𝑉𝑖 =
𝑉𝑑

2𝑛
× 𝑉𝑐𝑐 (1) 

 

Here, 𝑉𝑖 represents the input voltage, 𝑉𝑑 corresponds to the digital voltage reading from the ESP32’s, 𝑉𝑐𝑐 

denotes the supply voltage, and 𝑛 is the ADC resolution. The resistance of each flex sensor was then determined 

using the voltage divider formula (2), which is used to estimate the resistance of the flexible sensor Rflex as a 

function of the measured voltage 𝑉𝑖, the reference resistance R𝑑, and the supply voltage 𝑉cc, according to (2): 

 

𝑅𝐹𝑙𝑒𝑥 =
𝑅𝑑

𝑉𝑖−1
× 𝑉𝑐𝑐 (2) 

 

The output voltage Vout is in effect fixed by the circuit configuration, where R2 corresponds to the variable 

resistance of the flex sensor (Rflex), R1 representing a known reference resistance between 33-45 k ohm, and 

Vin the input voltage of 5 V. Vout is recorded using the ESP32's 10-bit ADC (analog-to-digital converter), so 

the resistance of the bending transducers can be directly deduced from the digital values supplied by the 

ADC, by applying (3) previously considered under the assumption that the variations measured correspond to 

variations Flexion degree: 

 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 (
𝑅1

𝑅1+𝑅2
) (3) 

 

The wearable sensor glove also integrates an accelerometer, which converts its Analog input values 

(Axe x, Axe y, and Axe z) into digital values using the esp32's internal 10-bit ADC. These data were used 

directly in the study. Table 2 shows the averages of the values measured (in millivolts) by the five flexible 

sensors and the raw accelerometer values (X, Y, Z axes) for each control gesture. These data provide a useful 

baseline for segmentation and labeling during classification model training. They highlight the distinction 

between gestures through specific signal variations, enabling reliable recognition via machine learning. 

Figure 4 illustrates the complete architecture of the gesture recognition model based on a RNN, 

applied to the temporal data acquired by the smart glove. Flexible sensors measure finger curvature, while the 

MPU6050 sensor provides three-axis acceleration and rotation data. These data are collected continuously 

and organized in time sequences. 

 

 

Table 2. Sensor value ranges corresponding to each action 

#Samples 
Flexible sensors data (mVoltage)  Accelerometer data  

Flex 1 Flex 2 Flex 3 Flex 4 Flex 5 Axe X Axe Y Axe Z 

Grip Pince 639 709 702 959 958 16,208 -824 3,944 

Open Pince 652 801 770 981 976 15,292 1,204 5,916 

Up 657 784 748 926 930 12,348 -7,512 7,972 
Down 661 807 750 975 976 10,560 2,684 11,336 

Move left 644 849 791 953 955 15,980 -1,780 4,128 

Move right 656 786 741 974 971 8,908 11,924 -7,828 
Nothing 665 732 701 965 968 15,536 -1,216 6,436 

 

 

 
 

Figure 4. Visualization of multisensory data collected by the smart glove during gesture execution 
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Each sequence corresponds to a candidate gesture, represented by a multivariate vector entering the 

RNN block, which models temporal dependencies via recurrent cells. The RNN outputs are then aggregated 

and processed by a classifier and a SoftMax activation function to identify the most likely gesture among the 

predefined gestures. This pipeline enables efficient, real-time recognition of dynamic gestures, with the 

accuracy demonstrated in our experimental results as shown in Figures 5 and 6. Its lightweight, sequential 

structure is particularly well suited to resource-constrained embedded systems such as the ESP32. 

 

 

 
 

Figure 5. Classifier performance evaluation for robotic movements 

 

 

 
 

Figure 6. Evolution of loss function and accuracy during training 

 

 

4. RESULTS AND DISCUSSION  

Gesture control has become a very promising approach in the field of human-machine interfaces, 

particularly for rehabilitation, teleoperation, and robotic assistance applications [4]–[7], [10]. However, real-

time gesture recognition still poses challenges due to environmental interference, the variability of human 

movements, and the hardware limitations of on-board sensors. In this research, the performance of the 

suggested and developed solution is assessed by comparing it with works in the literature [10], [15], [16], as 

shown in Table 3. 

The selection of the operating mode for robotic arm control is based on the use of movement 

dictionaries detectable by flexible sensors and an accelerometer MPU6050. Machine learning applied to this 

classification requires a training phase using datasets generated from relevant features in smart glove signals 

extracted for each gesture. In this study, we propose motion dictionaries based on the analysis of signals from 

an MPU6050 accelerometer as well as from five flexion sensors integrated into the smart glove. By 
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exercising movements through our smart glove, we have defined repertoires of usable gestures. Figure 7 

shows the six hand gestures detectable by the smart glove and their direct correspondence with the 

movements of the robotic arm. Each gesture - such as pinching, hand opening, up/down and left/right 

movements - is captured by the flexible sensors and inertial unit (MPU6050), then interpreted into specific 

commands. This gesture dictionary guarantees intuitive, natural control of the robotic arm via wireless 

gesture interaction. 

 

 

Table 3. A performance comparison with other studies 
Publications, Year Type of sensor Learning 

model 

Controlled 

robotics 

Raw Data # Gestures Accuracy 

Lu et al. [16], 2023 IMUs Bi-LSTM ✓ 5 (IMUs) 10 92% 

Laksono et al. [15], 
2021 

EMGs KNN ✓ 3 (EMG) 4 96.67% accuracy, 99.66% 
recall, 96.99% precision. 

Cruz et al. [10], 2023 EMG + IMU DQN ✓ EMG-IMU sensor 6 97.45 ± 1.02% and 

88.05 ± 3.10% 

Proposed approach MPU6050 + Flex RNN ✓ 5 (flex) + 1 (IMU) 7 98.67% 

 

 

 
 

Figure 7. Dictionary of gestures recognized for robotic arm control using flexion and inertial sensors 

 

 

Hand gesture recognition algorithms can be categorized into two main types: i) classification of 

hand poses and trajectories, aimed at identifying specific gestures (for example, recognition of the Grip 

Pence gesture or cyclic hand movement), and ii) continuous parameter regression, enabling variables such as 

finger flexion angle or hand trajectory or wrist deviation to be estimated in real time. 

Figure 8 illustrates the entire processing pipeline, from the acquisition of sensory data by the smart 

glove (flexions + IMU) to the final decision by a classifier based on a deep neural network. After signal 

visualization, normalization and filtering, the extracted features are transmitted to the deep learning module, 

where a neural network and a SoftMax classifier enable real-time gesture prediction. The example presented 

shows recognition of a closed grip with 99% accuracy.  

 

 

 
 

Figure 8. Signal processing chain and gesture classification via deep learning 
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Figure 5 shows two confusion matrices illustrating the performance of the classification model for 

seven gestures: “Move Left”, “Move Right”, “Grip Pince”, “Open Pince”, “Up”, ‘Down’ and “Nothing”. On 

the left, the absolute value matrix shows the number of correct predictions per class, while on the right, the 

normalized percentage matrix shows that the average accuracy of the model reaches 98.67%, with perfect 

recognition for the “Nothing” gestures and rates above 97% for the majority of classes. These results validate 

the robustness of our deep learning approach for real-time control of the robotic arm. 

Figure 6 illustrates the convergence of the model during training over 50 epochs. The left-hand 

curve shows a rapid decrease in loss from the very first iterations, reaching stability at a low level for both 

the training and test sets. The right-hand curve reveals accuracy above 90% as early as the 10ᵉ epoch, and 

reaching almost 98.67% for training, attesting to the network's learning efficiency. This stability indicates a 

good bias-variance compromise, with little overlearning. 

Table 3 comparison highlights that our approach using only low-cost sensors (MPU6050 + flexible 

sensors) achieves accuracy superior or equivalent to other more complex systems based on EMG or deep  

Q-learning (DQN). It combines efficiency, low cost and robustness for real-time robotic control. This study 

presents several limitations that merit further investigation. Firstly, the recognition process was trained and 

validated with data from a single participant, requiring a recalibration and re-training phase for each new 

user, which may affect the generalizability and scalability of the model. In addition, the current 

implementation has not yet been tested in an embedded system for remote classification, a key step in 

assessing its practical integration as well as non-cutting-off during long-distance control. Finally, the study 

was limited to a restricted set of gestures and a single user; future work will need to expand the database by 

integrating a greater diversity of gestures and participants involved in evaluating the adaptability and 

performance of the model in different populations. 

 

 

5. CONCLUSION  

In this study, we designed and implemented a wearable smart glove integrating flexion sensors and 

an MPU6050 inertial sensor, combined with an RNN-based deep learning model for real-time gesture 

recognition. The proposed hardware and software architecture enables fluid and intuitive interaction with a 

robotic arm, achieving a classification accuracy of 98.67% on seven distinct gestures. Experimental results 

demonstrate the robustness and reliability of the proposed system. Multi-sensor fusion, accompanied by a 

pre-processing process including data boundary detection, normalization and learning based on recurrent 

networks, enables accurate interpretation of dynamic gestures. A comparison with other recent approaches 

highlights the high performance of our system, despite its lighter architecture and low-cost hardware. 

This work thus contributes to the advancement of wearable human-machine interfaces, with 

potential applications in the fields of assisted robotics, medical rehabilitation and Industry 4.0. Thanks to its 

ability to interpret gestures in real time, while ensuring precise control of the robotic arm, our solution 

effectively meets the requirements of interactive embedded systems. 
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