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 DC-DC boost converters are essential for stabilizing the voltage output of 

photovoltaic (PV) modules. This paper analyzes a unique 50 W high-gain 

DC-DC flyback boost converter for various input voltage PV applications. 

Scientific analysis was employed to determine suitable parameters for 

critical circuit components. Simulations were conducted to evaluate the 

proposed high-gain DC-DC boost converter's performance. Subsequently, a 

prototype of the high-gain DC boost converter was fabricated with a printed 

circuit board (PCB) size of 100×100 mm. The proposed prototype's 

performance is compared to that of conventional boost converters based on 

criteria such as input voltage, output voltage, component count, voltage 

stress, voltage gain, efficiency, and rated power. The results indicate that the 

proposed converter can achieve a 300 V output voltage with a 50 W power 

rating from variable input voltages ranging between 12 V and 36 V. The 

highest gain achieved was 25 with a 12 V input voltage, though at a lower 

power rating of 15 W. A peak efficiency of 84.30% was measured with a 24 

V DC input voltage. The proposed converter's features, particularly its high 

step-up voltage gain, make it suitable for industrial and renewable energy 

applications. 
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1. INTRODUCTION 

Photovoltaic (PV) systems are instrumental in advancing global sustainable and clean energy 

initiatives. These systems directly convert solar radiation into electricity, thereby mitigating greenhouse gas 

emissions and decreasing reliance on fossil fuels. The rapid expansion of the PV industry underscores its 

critical role in transitioning towards a greener energy landscape [1]. However, a core challenge lies in the 

efficient harvesting and conversion of solar energy [2]. PV panels inherently generate direct current (DC) 

power. For seamless integration into existing energy infrastructure [3], this DC power necessitates efficient 

conversion, typically facilitated by a DC-DC boost converter. The efficacy of this converter is fundamental to 

maximizing solar energy utilization and ensuring the commercial viability of PV systems, as it elevates the 

voltage to levels suitable for grid interconnection or energy storage. Technically, DC-DC boost converters 

provide a stable power supply through output voltage regulation and overall system performance 

optimization. They also integrate maximum power point tracking (MPPT) algorithms, which adjust input 
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voltage to maximize power extraction from PV panels, thereby enhancing energy harvest and system 

efficiency [4]. While traditional DC-DC boost converters have found extensive application in power 

electronics, including within PV systems, they face limitations when applied to the unique characteristics of 

PV-generated electricity. Specifically, PV panels often produce low-voltage DC power with highly variable 

output, contingent upon factors such as solar irradiance and electrical loads. This inherent voltage fluctuation 

poses a significant challenge for conventional DC-DC boost converters, as their efficiency can be compromised 

when handling these low-voltage inputs. Consequently, there is a compelling need for advanced, high-gain DC-

DC boost converters explicitly designed for PV applications. The literature proposes various approaches to 

achieve high-voltage gain in DC-DC converters, including single-ended primary-inductor converters (SEPIC) 

[5], Cuk converters [6], voltage multiplier cells [7], coupled inductors [8], switched inductors [4], and switched 

capacitors [9]. These cutting-edge converters are meticulously engineered to achieve substantial voltage 

amplification while maintaining operational efficiency, even under dynamic environmental conditions. As such, 

they emerge as a critical component in enhancing the performance and efficiency of PV systems, a paramount 

concern in a world striving to maximize renewable energy utilization. 
This research introduces a unique approach by optimizing the converter's design for enhanced 

efficiency and scalability under fluctuating input conditions. By thoroughly analyzing the converter's 

performance across various operational parameters, we provide new insights into its efficiency, stability, and 

practical application in real-world renewable energy setups. This research fills a gap in the literature where 

few studies have systematically explored high-gain boost converters for low-power photovoltaic systems, 

offering valuable data that can guide future design improvements and implementations. Table 1 summarizes 

relevant research undertaken by previous researchers.  
 

 

Table 1. A comparative analysis of the proposed research work differs from prior studies  
Reference Published year Topology Advantage Drawbacks 

[10] 2024 Two-switch flyback 
microinverter 

Single control signal, galvanic 
isolation, and simplicity 

Not suitable for high power 
ratings above 400 W 

[11] 2024 Multilevel current-driven 

DC-DC converter 

High efficiency with any input 

voltage input 

High complexity, high cost 

[12] 2024 Quadratic boost converter Continuous conduction mode, 

compact converter design 

High complexity, high 

component count 

[13] 2023 High-voltage gain step-up Low voltage stress on diodes 
and switches 

High component count, high 
complexity 

[14] 2023 Magnetic coupling and 

voltage multiplier 

Low duty cycle, high 

efficiency, long lifetime 
components with low ripple 

Soft switching operation 

absent, low output voltage 

[15] 2022 Modified Buck-Boost 

Converter 

Low duty cycle, continuous 

input current 

High component count 

[16] 2022 Series LC-based single-

stage boost converter with 

switch capacitors 

Continuous conduction mode, 

high efficiency 

Larger overall size of the 

system 

[17] 2022 Flyback microinverter High efficiency, low losses and 

voltage stress 

Complexity, large overall 

size of the system 

[18] 2022 Three-phase single-carrier 
PWM inverter 

Galvanic isolation, small 
passive elements 

Low gain, low efficiency 

[19] 2021 Dual-Mode resonant 

flyback 

High efficiency, low cost Leakage current observed at 

the primary side switch, fixed 
voltage input 

[20] 2021 Multilevel flyback 

converter 

Simple design, galvanic 

isolation, multiple DC outputs 

High number of components, 

low power output 
[21] 2021 Interleaved flyback 

converter 

Low cost, easy control, 

galvanic isolation 

Low power density 

[22] 2020 Flyback micro-Inverter Scalability, isolated DC-DC 
converter 

Low efficiency, two-stage 
boost converter 

 

 

2. PROPOSED METHODOLOGY 

Designing a high-gain DC-DC converter system specifically for PV applications involves a 

systematic approach. Initially, establishing clear system requirements, including input and output 

specifications, efficiency targets, and any constraints, is vital. Various factors need to be considered, such as 

efficiency, control complexity, and component stress. The design requirements and component selection for 

both boost converters are calculated, followed by simulation. The proposed design is simulated using 

software to ensure correct functionality. During the final stage, the hardware will be fabricated to assess the 

performance of both converters. Figure 1 shows a block diagram illustrating the proposed stand-alone PV 

system incorporated with a DC-DC boost converter. 
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This research focuses on the design of a standard stand-alone DC boost converter, as depicted in 

Figure 2, along with an innovative high-gain DC-DC boost converter, both rated for a power output of 50 W. 

As depicted in Figure 3, the flyback boost converter uses a combination of flyback transformer and boost 

converter principles to elevate the voltage. It operates by storing energy in the transformer's magnetic field 

during the initial part of each switching cycle, subsequently transferring this stored energy to the load 

through its secondary winding(s) in the latter half. 
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Figure 1. A block diagram illustrating the proposed stand-alone PV system 

 

 

 
 

Figure 2. Conventional DC-DC boost converter 

 

 

 
 

Figure 3. Flyback boost converter [23] 

 

 

Flyback transformers stand out due to their gapped-core design, which enables them to store 

significant energy without experiencing core saturation. This capability differentiates them from other 

converter types, like forward-mode converters, where energy transfers directly from the primary to the 

secondary winding without substantial energy storage in the core. Often referred to as coupled inductors 

because of this gapped-core construction, flyback transformers are highly efficient at storing and transferring 

energy. This makes them ideal for applications that need efficient voltage conversion and a compact design, 

such as power supplies for consumer electronics and industrial equipment. Table 2 provides the parameters 

necessary to boost a 24 V DC input to a 60 V DC output, maintaining a power rating of 50 W with an output 

voltage ripple of 5%. 
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Table 2. Designated list of parameters for both types of converters 

Parameters 
Type of DC-DC boost converter 

Conventional Proposed flyback 

Duty cycle 0.76 0.55 

Main controller TL494 LT3751 

MOSFET IRF540N IRF4668 
Inductor current 4.17A 2.93 A 

Inductor 47 µH - 

Capacitor 4.70 µF 4.70 µF 
Transformer ratio - 1:10 turn ratio 

Input voltage 24 V 12-36 V 

Output voltage 60 V 300 V 
Output voltage ripple 5% 5% 

Switching frequency 100 kHz 26 kHz 

Power rating 50 W 50 W 

 

 

LTspice, a versatile and free SPICE simulator, features an integrated schematic capture. This allows 

users to directly embed simulation commands and parameters as text on the schematic using standard SPICE 

syntax. Users can easily visualize circuit behavior by plotting waveforms of circuit nodes and device currents 

with a simple click, either during or after a simulation. Initially created by Linear Technology for internal 

high-performance analog product design, LTspice offers a vast library of components and product models 

that enable confident simulation of Analog Devices (ADI) products without licensing restrictions. Figure 4 

shows the final product of the proposed high-gain DC-DC boost converter. For the design, OrCAD Cadence 

is employed for 3D printed circuit board (PCB) design and generating the necessary manufacturing files, as 

depicted in Figure 4(a). Before a PCB goes into production, creating a prototype is crucial for evaluation and 

assessment. This prototyping process, which includes circuit design, PCB fabrication, electronic component 

procurement, and functional testing, is time-consuming and resource-intensive, but essential for timely 

product development. To reduce electromagnetic interference (EMI) on the PCB, several techniques are 

implemented. These include using surface mount devices (SMDs), optimizing power delivery, strategically 

placing ferrite beads and bypass capacitors, applying PCB board zoning, and utilizing via shielding and 

stitching. The completed prototype of the proposed converter is shown in Figure 4(b). 

 

 

  
(a) (b) 

 

Figure 4. Final product of the proposed high-gain DC-DC boost converter (a) 3D layout of proposed boost 

converter and (b) prototype of proposed boost converter 

 

 

3. RESULTS AND DISCUSSION 

Figure 5 displays the output voltage waveforms for both the conventional and proposed DC-DC 

boost converters. The horizontal axis represents time in milliseconds (ms), while the vertical axis indicates 

voltage in volts (V). Figure 5(a) shows the output voltage of the conventional DC-DC boost converter upon 

startup. The voltage rises from 0 V to about 60 V within 4.5 milliseconds, then stabilizes at 60 V, confirming 

the circuit successfully achieved its target output. Conversely, Figure 5(b) illustrates the output voltage of the 

proposed converter. Here, the voltage climbs from 0 V to approximately 300 V within the initial 12 

milliseconds, subsequently stabilizing at 300 V, indicating it also successfully reached its desired output 

voltage. 
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(a) (b) 

 

Figure 5. Output voltage of converters in LTspice environment (a) conventional DC-DC boost converter and 

(b) proposed DC-DC boost converter 

 

 

Next, Figure 6 shows the MOSFET drain-source voltage (Vds) waveform during switching for both 

the conventional and proposed boost converters. The waveform's periodic nature confirms the MOSFET's 

regular switching operation. In Figure 6(a), the conventional boost converter's MOSFET exhibits a Vds of 

nearly 0 V when on, indicated by the flat sections at the bottom of the graph. When the MOSFET is off, Vds 

rises to approximately 63 V. Similarly, Figure 6(b) displays the Vds waveform for the proposed boost 

converter. Here, Vds also drops close to 0 V when the MOSFET is on, and increases to around 54 V when it's 

off. Both MOSFETs operate at a switching frequency of about 26 kHz with a 40% duty cycle under the 

thermal design current load. Based on these findings, it is recommended to use a MOSFET with a Vds rating 

exceeding 70 V to ensure safe operation. 

 

 

  
(a) (b) 

 

Figure 6. MOSFET Vdrain-source voltage of boost converters in LTspice (a) conventional DC-DC boost 

converter and (b) proposed DC-DC boost converter 

 

 

Figure 7 illustrates the relationship between input power, output power, and heat loss in a 

conventional boost converter across different output current levels. This test maintains a constant output 

voltage of 60 V while varying the output current from 0.10 A to 0.90 A. As the output current increases, both 

the input and output power also rise. The difference between the input and output power represents the heat 

generated due to the converter's inefficiency. This power disparity, and thus the heat generated, becomes 

more pronounced at higher output currents. This indicates that more power is wasted as heat when the 

converter operates under heavier current loads. 

Figure 8 illustrates the efficiency of the proposed boost converter across varying load currents for 

three different input voltages, namely 12, 24, and 36 V. For a 12 V input, efficiency starts at approximately 

70% at a 0.025-amp load, climbs to about 75% at 0.05 amps, and then either stabilizes or slightly drops as the 

load reaches 0.075 amps. With a 24 V input, the converter begins with a higher efficiency of around 75% at 

0.025 amps and steadily increases to roughly 85% at 0.075 amps, demonstrating superior performance 
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compared to the 12 V input. The 36V input shows a similar starting efficiency of about 75% at 0.025 amps, 

steadily rising to around 82% at 0.075 amps. Overall, the data clearly indicates that the voltage regulator 

operates more efficiently with higher input voltages (24 V and 36 V) compared to the 12 V input. Generally, 

as the load current increases, efficiency improves across all input voltages. Notably, the 24 V input achieves 

the highest efficiency at maximum load, closely followed by the 36 V input, with the 12 V input trailing 

behind. This chart underscores that utilizing higher input voltages for the voltage regulator leads to improved 

efficiency, especially under increased load currents. 

 

 

 
 

Figure 7. Input power and output power vs current at different input voltages of the proposed boost converter 

 

 

 
 

Figure 8. Efficiency vs load current of the proposed boost converter 

 

 

Table 3 details the experimental results regarding the input and output voltage ripple characteristics 

of both the conventional and proposed converters under varying load conditions. At minimal output voltage 

loads, the conventional boost converter shows a higher output voltage ripple, mainly because its capacitor 

discharges more slowly. In contrast, the proposed design manages to keep the ripple lower through optimized 

control mechanisms. Under the thermal design current load, the proposed converter further reduces ripple by 

improving its energy storage and switching efficiency. Finally, at maximum load, the conventional converter 

experiences increased ripple due to high current demand, while the proposed design ensures better dynamic 

stability. 
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Table 3. Comparison of parameters for both types of converters 
 Conventional boost Proposed boost 

Output voltage ripple at 
minimal load 

  
   

Output voltage ripple at 
thermal design current 

load 

  
   

Output voltage ripple at 

maximum load 

  
   

Input voltage ripple at 

minimal load 

  
   

Input voltage ripple at 

thermal design current 
load 

  
   

Input voltage ripple at 
maximum load 

  
   

MOSFET drain to source 

voltage 
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For input voltage ripple, the conventional converter exhibits higher ripple at minimal loads 

because of reduced inductor current flow. Conversely, the proposed design achieves lower ripple through 

an improved inductor and a more effective control strategy. Under both thermal and maximum load 

conditions, the proposed converter continues to maintain lower ripple, thanks to its efficient power factor 

correction and optimized input current control. Regarding the MOSFET drain-to-source voltage (Vds), the 

conventional boost converter experiences higher voltage spikes and oscillations. These are caused by 

abrupt switching events, which can put significant stress on the components. In sharp contrast, the 

proposed flyback boost converter effectively reduces these spikes. It achieves this by improving its 

transient response and implementing a more controlled switching behavior, ultimately enhancing the 

system's reliability. 

Table 4 offers a comparative analysis of the proposed boost converter against several other 

converters, evaluating factors such as component count, voltage stress, voltage gain, switching frequency, 

peak efficiency, and maximum output voltage across different input voltages. The proposed converter 

distinguishes itself with the lowest total number of components. A key objective for boost converters is 

voltage gain, and here, the proposed design excels by achieving a voltage gain of 25 at a 300 V output, 

surpassing alternatives recently suggested by other researchers. The proposed boost converter was tested with 

input DC voltages of 12, 24, and 36 V, utilizing 6 electronic components. When operating with a 12 V input, 

it generated a 300 V DC output, resulting in a voltage gain of 25, the highest among all tested converters. 

However, this configuration yielded the lowest efficiency at 78.0% and a maximum power rating of only  

25 W due to increased input current at lower input voltages, leading to transformer overheating and high-

power loss. It operated at 26 kHz with a 0.52 duty cycle. Conversely, with a 36 V input, it produced a 300 V 

DC output, yielding a voltage gain of 8.33. This setup achieved an efficiency of 82.2% and a maximum 

power rating of 50 W. However, higher input voltage can lead to increased primary current (due to Ohm's 

law and transformer design), potentially causing core saturation and, over prolonged operation, inefficiencies 

and circuit overheating as the magnetic flux reaches its limit. The 24 V DC input proved to be the optimum 

operating voltage. It delivered a 300 V DC output with a voltage gain of 12.50, operating at 26 kHz with a 

0.39 duty cycle. This configuration achieved a peak efficiency of 84.3% and a maximum rated power of 

50 W. In summary, the proposed boost converter successfully achieved the research objective by 

demonstrating greater voltage gain compared to other boost converters, albeit with a slightly lower efficiency 

in some operating conditions.  

 
 

Table 4. A performance validation of a proposed system with almost similar research work 
Parameters Proposed boost 

converter 12 V 

input 

Proposed boost 
converter 24 V 

input 

Proposed boost 
converter 36 V 

input 

[24] [16] [12] [14] 

No. of switches 1 1 1 2 1 1 1 
No. of diodes 1 1 1 3 1 5 3 

No. of capacitors 3 3 3 3 2 3 4 

No. of inductors 1 1 1 2 1 3 2 
Voltage stress 93.8 V 59.3 V 69.9 V 161 V 106 V 60 V 51 V 

Voltage input 12 V 24 V 36 V 22 V 50 V 20 V 20 V 

Voltage output 300 V 300 V 300 V 110 V 360 V 195 V 150 V 
Voltage gain 25 12.50 8.33 5 7.2 9.75 7.5 

Switching frequency 26 kHz 26 kHz 26 kHz 100 kHz 70 kHz 50 kHz 25 kHz 

Duty cycle 0.52 0.39 0.34 0.54 0.51 0.70 0.61 

Peak efficiency 78.0% 84.3% 82.2% 90% 82.3% 90% 96% 

Maximum rated power 25 W 50 W 50 W 65 W 80 W 130 W 150 W 

 

 

4. CONCLUSION 

This research introduces a unique performance evaluation of a high-gain DC-DC flyback boost 

converter, specifically designed for low-power photovoltaic applications. Through comprehensive theoretical 

analysis, simulations, and experimental validation, the research unveils a distinctive converter design that 

achieves a remarkable voltage gain of 25, offering enhanced efficiency, scalability, and performance even 

under varying input voltages. A prototype of this high-gain DC-DC flyback boost converter was fabricated 

on a 100×100 mm board, designed to generate a voltage output of 300 V with a 50 W power rating, using 

input voltages between 12 V and 36 V. The proposed converter demonstrated a high voltage gain of 25 at  

12 V input, though with a reduced power rating of 15 W, and reached a peak efficiency of 84.30% at 24 V 

input. Unlike traditional designs or those focused on higher-power applications commonly found in the 

literature, this research fills an important gap by optimizing converters for small-scale renewable energy 

systems. The converter’s performance, particularly under fluctuating input conditions, provides crucial 

insights into its efficiency, stability, and real-world applicability in photovoltaic setups. This research offers a 
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fresh perspective on evaluating previous models by demonstrating improved energy conversion, laying the 

groundwork for future advancements in power conversion systems for renewable energy. It redefines the 

understanding of energy conversion efficiency in small-scale photovoltaic applications and paves the way for 

further innovations in the renewable energy field. 
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