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1. INTRODUCTION

The semiconductor industry is moving toward faster, smaller, and more energy-efficient integrated
circuits. This progress follows Moore’s law, which predicts that the transistor count on very-large-scale
integration (VLSI) chips doubles about every two years as transistor size decreases as shown in Figure 1. As
scaling continues, traditional MOSFETs face major drawbacks like higher leakage currents and stronger
short-channel effects. Leakage becomes significant below the 14 nm technology node, increasing by about
30 percent when scaled under 10 nm [1]. Device performance also degrades as the node size shrinks [2].
FinFETs yield improved scalability, better electrostatic control and lower leakage, making them suitable for
high-performance circuits [3].

This review connects FiInFET materials, gate stacks, spacer design, device geometry, and fabrication
flows to measurable figures of merit, including Ion /lor F, subthreshold swing, drain-induced barrier
lowering, variability, and electrothermal limits, and it provides a normalized comparison to bulk
complementary metal oxide semiconductor (CMOS) so that the operating regions where FinFETs lead or lag
are explicit for measurement and control applications. To do this, we followed a structured narrative
approach, curating recent peer-reviewed articles from reputable journals lectin studies with explicit device
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context, geometry, bias, and target metrics, extracting reported and plot-read values, and comparing FinFET
and bulk CMOS under matched bias and contacted gate pitch.
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Figure 1. Last 30 years chronological depiction of Moore’s Law, demonstrating the transistor count on VLSI
chips doubling approximately every two years as transistor dimensions continually shrink. Adapted from
Petrosyants et al. [4]

At nanoscale dimensions, FInFETs use a 3D gate that cloaks a narrow fin made of silicon reducing
short-channel effects [5]. FinFETs supply higher drive current while keeping leakage low making them
suitable for both low-power and high-performance devices. Careful design of the source-drain extension
(SDE) region, improves cutoff frequency intrinsic gain. The spacer width and lateral straggle design
optimizations make FinFETs effective for ultra-low-voltage analog applications [6].

Many multi-gate transistor structures have been developed to reduce short-channel effects and gain
better electrostatic control, but they are harder to fabricate than standard planar or silicon-on-insulator (SOI)
devices [7]. Examples include double-gate FinFETs, tri-gate FinFETs, and gate-all-around (GAA) nanowire
MOSFETSs. Advanced types such as GAA nanosheet and GAA nanowire FETs offer better gate control and
scaling; nanosheet FETs use stacked horizontal channels, while nanowire FETs use cylindrical gates that
fully surround the channel, improving electrostatic integrity and scalability. A key limitation of standard
MOSFETs is the subthreshold swing (SS), which is limited to 60 mV/decade [8]. To overcome this,
ferroelectric field-effect transistors (Fe-FETs) use negative capacitance (NC) from a ferroelectric (FE) layer
added to the gate oxide stack. This approach allows Fe-FETs to achieve a sub-60 mV/decade SS, improving
power efficiency and increasing the Ion /Ior F ratio [8].

Modern semiconductor manufacturing companies such as Apple, Intel, AMD, TSMC, NVIDIA, and
Samsung use FinFETs in chips, advanced processors, graphics units, and memory devices. These
manufacturers have successfully applied FinFETs in nodes at 7 nm and below [9]. Recent improvements in fin
shape and material selection have enhanced electrostatic control and subthreshold performance, making FinFETSs
effective for ultra-low-voltage applications [10]. However, scaling below the 5 nm node introduces new
challenges, leading the industry to explore advanced architectures such as nanosheet transistors and gate-all-
around FETs (GAAFETs) [11], [12]. These reviews list major process and device developments but also
highlight remaining issues in variability, integration, and electrothermal behavior that are not consistently
compared under the same bias, geometry, or pitch conditions. The connection between fabrication factors—such
as atomic-layer-deposited high-k gate stacks, inner and outer spacer design, and fin or sheet shape—and device-
level performance like electrostatics and thermal stability is still not well established [13], [14].

The goal of this review is to study how FinFET materials, gate stacks, spacer design, device geometry,
and fabrication steps affect key performance parameters, including Ion / Ior r, subthreshold swing (SS), drain-
induced barrier lowering (DIBL), threshold voltage ( Vin), and electro-thermal behavior. It also aims to provide
a normalized comparison with bulk CMOS under similar bias and pitch conditions to identify where FinFETs
perform better or worse. The analysis also provides fabrication-based guidance for measurement and device
control. This study also includes a review of logic MOSFET structures to show how transistor designs have
evolved over time to follow Moore’s law 1. Figure 2 illustrates how each new transistor generation has
improved the ratio of drive current (Ion) to leakage current (Ior F), supporting the ongoing trend of device
scaling. The major contributions of this research include but not limited to:
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a. Thermal behavior.

b. It defines a normalized comparison framework against bulk CMOS under matched bias and contacted-
gate-pitch to enable fair, reproducible benchmarking.

c. It quantifies FinFET versus bulk CMOS performance across I-V behavior, lox /lor r versus Vpp, DIBL,
SS, Vi, and temperature dependence using the conditions reported in the sources.

d. It converts these results into process aware guidance by linking specific fabrication levers to metric shifts
and by identifying operating regions where FinFETs lead or lag.

In this paper, section 2 presents the detailed review methods approach, section 3 reviews FinFET
structure and design considerations, Section 4 describes materials, deposition techniques, and fabrication
including ALD, bulk-Si flow, and SOI device specifications, section 5 presents operation and performance
metrics, section 6 reports the results and discussions, and section 7 provides the conclusions.

FinFET for increasing  Multi-bridege FET ~ NWFET for
drive current and  further redaction of gate lengths
reducing leakage

MOS High K Metal Gate
v to increase field
Current drive effect

(mA/um)
Strain to increase

B iotrinsic pert B ote mater B son Technology node (nm)

Figure 2. Retrospective review of MOSFET structure scaling, illustrating a consistent increase in the ratio of
drive current (Ion) to leakage current (Iorr) with each successive transistor generation. Adapted from
Petrosyants et al. [4]

2. METHOD

This paper follows a structured narrative review approach. It studies recent progress in FinFET
technology. The focus is on materials, structures, fabrication steps, and device performance. The goal is to
summarize and explain the main findings from previous research. Journal articles and conference papers
were collected from reliable databases. These include IEEE Xplore, ScienceDirect, SpringerLink, and MDPI.
The search covered studies published between 2015 and 2025. The selected papers discussed FinFET
materials, fabrication methods, and device modeling. Studies that reported key parameters such as
subthreshold swing (SS), drain-induced barrier lowering (DIBL), and on/off current ratio (Ion /Ior F) were
included. About 150 papers were checked, and 70—80 of the most relevant were used for this review.

The information from these papers was organized and compared. Data trends were studied based on
fin size, gate length, dielectric materials, and channel design. The results helped to understand how these
factors affect device control and leakage. Figures showing simulation and fabrication setups, such as oxide-
isolated Bulk-Si FinFETs and 3-Fin SOI FinFETs, were taken or redrawn from existing studies. These help
make the process clear and reproducible. All figures and schematics were properly cited. This paper does not
include new experiments. It does not involve any living subjects. Therefore, no ethical approval was needed.
The findings come only from trusted and published research to ensure honesty and accuracy.

3.  DESIGN AND STRUCTURAL CHARACTERISTICS OF FINFETS
In the three-dimensional FinFET structure, the fin-shaped semiconductor channel rises above the
substrate and is covered by the gate on three sides. The main parts of a FinFET are the fin-shaped channel,
source/drain contacts, and gate dielectric.
a. Fin Geometry: Fin is the gateway for the drain and source current. A thinner fin reduces short-channel
effects and improves electrostatic control. A taller fin increases the drive current [15]. Figure 3 shows
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that DC performance depends on both fin width and channel length. Shortening the channel length
boosts efficiency but increases the risk of isolation and short-channel issues at 7 nm.

b. Gate: In FinFETs, the gate wraps around three sides of the fin. This structure gives stronger control of
the channel compared to planar transistors. The tri-gate design allows better modulation of the channel,
reducing leakage current and increasing drive current. Depending on the design, the gate can be tri-gate,
double-gate, or single-gate, based on how many sides it covers.

c. Parasitics: Parasitic resistance and capacitance in FinFETs depend on the fin geometry. Variations in fin
height, fin width, and gate spacing affect these parasitic elements. High parasitics can lower
performance, especially in advanced nodes. Proper optimization of these dimensions helps reduce
parasitic effects, improving speed, power efficiency, and high-frequency performance.

d. Fin Spacing and Layout Density: Transistor performance and integration density are affected by ’fin
pitch’. It is the distance between fins. Smaller spacing allows more fins per chip, increasing device
density. However, it can also raise parasitic capacitance, which lowers efficiency. Balancing fin spacing
and parasitic control is important for FinFET design. At very small nodes, such as 15 nm, junction-
based isolation becomes less effective. To prevent leakage, a dielectric layer is often added below the
channel for better isolation and stable operation.
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Figure 3. Drive current variation with length of the gate and width of the fin in bulk Silicon FETs. Adapted
from Maszara et al. [16]

FinFETs are mainly available in two types: SOI and bulk. Bulk FETs are fabricated directly on a
substrate made of silicon [17]. At smaller nodes, bulk FinFETs can face substrate coupling and higher
parasitic capacitance [1]. SOI FinFETs, on the other hand, have a thin silicon layer over oxide layer
insulation, usually silicon dioxide. The insulation lowers leakage current and parasitic effects. It also
improves power efficiency and supports faster operation. The extra thermal isolation in SOI FinFETs makes
them suitable for high-performance and low power designs at advanced nodes.

Many multi-gate transistor designs have been created to improve electrostatic control and reduce
short-channel effects. However, these designs are more complex to fabricate than planar or SOI technologies
[18]. Common multi-gate types include double-gate FinFETs, tri-gate FinFETs, and gate-all-around (GAA)
nanowire MOSFETs. Figure 4 shows two advanced multi-gate structures: i) GAA nanosheet FETSs, which use
stacked horizontal channels to improve electrostatic control, and ii) GAA nanowire FETs, which use a
cylindrical gate to surround the channel for better control and scalability.

A major limitation of standard MOSFETs is that the subthreshold swing (SS) cannot go below
60 mV/decade [19]. To solve this issue, ferroelectric field-effect transistors (Fe-FETs) use the negative
capacitance (NC) effect from a ferroelectric (FE) layer placed inside the gate oxide stack. This design helps
Fe-FETs achieve an SS of less than 60 mV/decade, which improves efficiency and reduces power
consumption [20]. Figure 5(a) shows a 3D schematic of an Fe-FinFET and Figure 5(b) shows a 2D cross-
sectional view of the same device.
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Figure 4. Device structures of advanced gate-all-around (GAA) technologies (a) Nanosheet FETs and
(b) Nanowire FETs. Adapted from Reddy et al. [8]
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Figure 5. Illustration of Fe-FinFET structure (a) 3D schematic view and (b) 2D cross-sectional view.
Adapted from Reddy et al. [8]

4. MATERIALS, DEPOSITION METHODS, AND FABRICATION OF FINFETS
4.1. Materials used in FinFET construction

For ease of fabrication and good electrical properties, Silicon is still the main construction material.
Nevertheless, as devices scale down to a smaller level, silicon dioxide (SiO;) faces problems like short-
channel effects and high leakage current when used as a gate material. To solve this issue, hafnium oxide
(HfO,) are now used [21]. It permits for a wider gate insulator while keeping high capacitance. This reduces
leakage and

improves gate control without further scaling [22]. For modern chips, it helps maintain better
performance and lesser power use. Metal gates made of titanium nitride (TiN) provide a tunable work
function, which helps ad-just the threshold voltage (Vt). The gate material’s tunability supports low-power
designs and improves overall efficiency [23]. The combination of metal gates and high-k dielectrics reduces
gate leakage and improves scalability. Indium gallium arsenide (InGaAs) is also being explored as
alternatives to silicon. InGaAs has higher electron mobility, which allows faster charge transport, higher
speed, and lower power use [22]. Since silicon properties reaches its limits at nanoscale dimensions, InGaAs
automatically becomes the better choice [5].

4.2. Thin-film deposition techniques for FinFETs

One of the widely used method to deposit thin films on multiplex three-dimensional surfaces is
chemical vapor deposition (CVD). It produces uniform and conformal coatings that are important to yield
fine fin geometry. Plasma-enhanced chemical vapor deposition, also known as PECVD, allows lower
temperature film growth that helps create uniform dielectric layers while reducing thermal damage to the
layout below [24]. Atomic layer deposition (ALD) gives atomic-level film thickness control. It is mainly
used for high-k materials such as HfO,. This precise control improves the quality of the gate dielectric,
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reduces leakage, and enhances device performance. Figure 6 shows a model structure of a bulk FinFET [25]
that helps explain source/drain (SD) doping. At present, the incidence angle of beam limits for doping top fin
regions are not severe. However, taller fins designed to increase on-current may require smaller grazing
angles of 10° or less. Shadowing from nearby resist masks can also reduce acceptable angles, making doping
uniformity harder to maintain without the precision offered by ALD.
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Figure 6. Schematic of a 22 nm bulk FinFET model with 60 nm fin pitch, 35 nm channel and source/drain
height, and 100 nm deep etched fins. Adapted from Seidel ef al. [25]

4.3. Fabrication process and characteristics of Bulk-Si FinFETs

Figure 7 shows the construction steps of Bulk-Si FinFETs that are oxide-isolated. The process starts
with a Bulk-Si wafer designated p-type (100). N-well and P-well regions are doped at different densities
to study the effects of body doping. Device isolation is then performed, followed by the deposition of a
Si0,/SisN4/TEOS sandwich layer. This stack protects the fin during oxidation and etching. Trenches are
created using anisotropic dry etching and electron-beam lithography. Si3zN4 (Silicon Nitride) spacers protect
the fin. Dry oxidation form the isolation oxide around the fin. Quasi-isotropic etching method is also used in
this process. A thin gate oxide is then deposited, and a polysilicon gate is patterned using reactive ion etching
(RIE). Electron-beam lithography plays a vital role in patterning. Two of the TEOS sidewall steps create the
drain and source regions, followed by dopant activation using rapid thermal annealing (RTA). Nickel silicide
reduces contact resistance. The thick sidewalls minimize parasitic capacitance. This process concludes with
typical back-end fabrication steps [26].
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Figure 7. Illustration of the Bulk-Si FInFET fabrication process following a quasi-planar CMOS flow.
Adapted from Zhou et al. [26]
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4.4. Fabrication process and characteristics of SOI FinFETSs

Silicon-on-insulator also known as SOI FinFET is shown in Figure 8(a). A tri-gate 3D structure uses
three fins and a 08 nm long channel. The gate stack is composed of a high-k dielectric material along with SiO».
Figure 8(b) displays the device’s internal channel region, highlighting both the inverted channel and the silicon
body [27]. Each SOI FinFET is built on a combined BOX and substrate layer about 30 nm thick. A SiO» layer
of 1 nm depth coats three sides of every channel, forming the base oxide. Over this, a SiO» gate oxide of 0.5 nm
thickness and a high-k dielectric layer of 0.5 nm depth are applied. Materials such as HfO2, ZrO2, Al2O3, and
Si3N4 are used for this outer high-k layer, with dielectric constants of 28, 20, 9, and 7.8, respectively. Together,
these layers form a stacked gate structure over the fin. Table 1 lists values for each material combination
equivalent oxide thickness also known as EOT. The fin dimensions are designed for symmetry, with 08 nm
source/drain lengths and 06 nm height and width, giving the device a square geometry. This aspect ratio helps
maintain consistent electrical behavior and stable performance. Table 2 provides a complete summary of the
device parameters and design specifications.

(a) (b)
Figure 8. SOI FinFET structure (a) 3-Fin SOI FinFET featuring a SiO2/high-k gate stack, and (b) internal

channel region cross-sectional view. Adapted from Nanda et al. [27]

Table 1. Gate-stack materials and their equivalent oxide thickness (EOT)
Gate-stack materials  Physical thickness  Dielectric constant of the high-k  EOT (nm)

Si0, 1.0 nm - -
Si;N; + Si0, (0.5+0.5) nm 738 0.75
ALO; + SiO, (0.5+0.5) nm 9 0.722
710, + Si0; (0.5+0.5) nm 20 0.597
HfO, + SiO, (0.5+0.5) nm 28 0.569

Table 2. Device parameters for the SOI FinFET with 3-Fins and 08 nm length

Parameter Description Values
L, Ly L Gate, Drain & Source Length 8 nm
H,, H, Drain and Source Height 6 nm
TSub + TBox p-Substrate + Buried oxide (10 +20) nm
Np Doping Concentration at Drain 1 x10" N type
Ns Doping Concentration at Source 5x 10" N type
Nch, NSub Doping for channel and substrate 110" P type
fox Oxide thickness EOT

5.  OPERATIONAL BEHAVIOR AND PERFORMANCE METRICS OF FINFETS

FinFET operation depends on two main voltages. These are: the drain-source voltage (Vps) and the
gate-source voltage (Vas). The transistor source terminal is usually grounded in FETs. The gate voltage (Vas)
regulates the development of a conductive channel between source and drain along the fin-shaped
semiconductor [7]. A positive Vas pulls electrons in n-type transistors, creating a conductive path and
turning the device “on.” In a p-type FinFET, a negative Vs attracts holes, which also turns the device “on.”
When no gate voltage is applied, the device stays “off” [9]. For a significant Vs above threshold, the drain-
source voltage (Vps) drives charge carriers through the channel path, producing a drain current (Ip).

At low Vps, the transistor works in the linear region. Here, Vps and Ip are proportional. Vap
advances toward threshold voltage (Vi) with increasing Vps, reaching pinch-off region. At higher Vps, it
reaches saturation, where Ip becomes nearly constant. FinFETs provide stronger electrostatic control through
their multi-gate design, improving efficiency in sub-10 nm devices [28].

FinFET technology: a comprehensive review on materials, structures ... (Yead Rahman)
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Figure 9 and Figure 10 illustrates Ip- Vps correlation for bulk CMOS and finFETs. as Vas increases
from 0 V to 0.9 V. The FinFETs Iow is higher than that of bulk CMOS due to the three-dimensional structure
leading to better gate control. This design also increases output resistance, which means lesser modulation
channel length and better overall efficiency. Recent studies show that FinFETs reduce channel length
modulation by about 25% compared to planar transistors, improving linearity and stability in analog and RF
applications [30]-[32]. The strong gate control of the tri-dimensional structure further limits channel length
modulation, giving FinFETs better control and efficiency.
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Figure 9. FinFET current-voltage (I-V) Figure 10. Bulk CMOS transistors current-voltage
characteristics. Adapted from Farkhani et al. [29] (I-V) characteristics. Adapted from Farkhani ef al.

[29]

(Ion /IoF F) is an important performance metric for FinFETs. When Vs is high, the current flow
Ion indicates the device is fully turned on in conducting state. Vas being almost zero, the current flow Ior F
is called leakage current depicting non-conducting state. FinFETs have a greater Ion /Ior F ratio comparing
to the planar FETs, especially when the supply voltage is low. They keep Ior r low while maintaining a high
Ion, making them suitable for low-power circuits. Studies comparing FinFET and planar CMOS devices
confirm that FinFETs achieve much higher Ion /Ior r ratios below 0.7 V, showing their advantage in high-
performance applications at low-voltages [6], [29], [33], [34].

Figure 11 shows that at lower supply voltages, FinFETs have a greater ratio of Ion /Ior r than bulk
CMOS. At low voltages, Iorr in both devices is similar, but Ion is higher in FinFETs. At voltages above
0.72 V, the bulk CMOS transistor starts to exhibit a greater Ion /Ior r ratio. It occurs because the on current
of the bulk CMOS transistor approaches FinFETs Ion while keeping a lower Ior r, making it slightly more
efficient at higher voltages [29].
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Figure 11. Ion/IorF ratio with respect to supply voltage for bulk CMOS transistors and FinFETs.
Adapted from Farkhani et al.[29]
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Figure 12 shows how the drain current (Ip) changes with gate-source voltage (Ves) for FinFETs and
bulk CMOS transistors at Vps: 0.1 V and 1.1 V. Drain-Induced Barrier Lowering also known as DIBL is one of
the key differences seen in the figure. Bulk CMOS has a 124 mV/V DIBL, while FinFETs have a much lower
value of around 58 mV/V. FinFETs also have a steeper subthreshold slope, which improve switching speed,
reduce leakage current, and increase power efficiency. Simulation results confirm that FinFETs offer better
reliability and stability in scaled technologies [35], [36]. Studies also report that FinFET circuits have
lower leakage variability and more stable subthreshold slopes across temperatures from -40 °C to 125 °C,
which is essential for reliable operation [37]-[39]. Figure 12 illustrates FinFETs having a lower Vin 0f 0.36 V,
compared to 0.55 V in bulk CMOS.

Figure 12 illustrates subthreshold swing (SS) for FinFETs being about 21% smaller for bulk CMOS
subthreshold swing at room temperature [29]. Figure 13 shows SS variation for temperature from -40 °C to
125 °C. A linear increase in SS in seen with increasing temperature for both devices. However, increase rate is
greater for bulk CMOS. Recent studies show that FinFETs maintain stable switching performance, with only
small SS changes (around 5%) even under extreme temperature conditions. This confirms their strong thermal
stability and reliability for harsh environments [8], [40]—[42].
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Figure 12. Ip- Vs characteristics for FinFET and Figure 13. Temperature dependence of subthreshold
bulk CMOS devices measured at Vps=0.1 V and swing in FInFET and bulk CMOS devices. Adapted
1.1 V Adapted from Farkhani et al. [29] from Farkhani et al. [29]

6. RESULTS AND DISCUSSION

The comprehensive review presented in this manuscript synthesizes pivotal advancements and
performance benchmarks in FinFET technology, offering significant insights into device scalability,
efficiency, and reliability compared to conventional planar MOSFET architectures. By evaluating the
literature on structures, fabrication methods, materials, and device performance metrics, this study provides
an integrated perspective essential for both academic researchers and semiconductor industry professionals.
These conclusions are further supported by recent technology roadmaps, which highlight the transition from
FinFET to gate-all-around (GAA) architectures at the 2-nm node, emphasizing electrostatics-driven scaling
as the primary enabler of continued CMOS advancement [12], [43].

FinFETs demonstrate superior electrostatic control due to their tri-gate geometry, which effectively
suppresses short-channel effects in aggressively scaled nodes. Studies on junction-less and gate-engineered
FinFET variants confirm that fin geometry and spacer design are decisive levers for leakage suppression, as
they improve drain-induced barrier lowering (DIBL) resilience and stabilize subthreshold behavior under
scaling [44], [45]. Another critical advantage of FinFETs lies in their high on/off current ratio (Ion/IoF F),
which supports both low-power logic and analog/RF circuits. Recent analyses of multifin configurations and
careful gate work-function selection demonstrate that these strategies can boost current drive while
maintaining off-state control and linearity, reinforcing the circuit-level applicability of FinFET devices [46],
[47].

The suppression of short-channel effects also translates into reduced DIBL and steeper subthreshold
swing (SS), thereby improving switching efficiency at low supply voltages. Modeling studies on temperature
dependence clarify how SS trends evolve with scaling and operating conditions, while experimental I1I-V/III-
N FinFET demonstrations report sub-60-65 mV/dec SS alongside stable threshold control, consistent with
our comparative analysis [48], [49]. Sustaining FinFET performance further depends on process innovations,
particularly in dielectric engineering. The use of atomic layer deposition (ALD) for high-K gate stacks has
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proven essential for achieving tight equivalent oxide thickness control, improved interface quality, and
enhanced threshold stability. Recent reports confirm that ALD-deposited HfO, films offer superior
electrostatics and reproducibility, making this technique a cornerstone of future FinFET scaling [50], [51].

Thermal reliability also remains a decisive factor for device applicability. High-temperature studies
on SiC-based CMOS FinFETs demonstrate stable thresholds and competitive SS up to 700 K, while new
self-heating characterization work quantifies how layout and geometry, such as underlap, overlap, and fin
thickness, directly influence reliability. These results highlight the importance of electro-thermal co-design
strategies for robust FinFET integration [52]-[54]. In the context of emerging technology nodes, the insights
synthesized here provide a foundation for the evolution from FinFETs to nanosheet-based GAA devices.
Comparative benchmarking indicates stronger electrostatic integrity and reliability in nanosheets, while
recent self-heating and quantum-transport studies reveal both the performance potential and thermal
challenges associated with stacked GAA structures. These findings explain why FinFET design and
fabrication guidelines remain highly relevant as the industry transitions toward GAAFET nodes [13], [55],
[56].

This review consolidates how structural design, material selection, and fabrication strategies have
shaped FinFET performance, while also outlining the boundaries that remain for continued scaling.
Challenges such as variability from process imperfections, self-heating in densely integrated fins, and the
integration of high-k dielectrics with emerging channel materials highlight the limits of current approaches.
As the transition toward nanosheet and nanowire GAA architectures accelerates, the lessons drawn from
FinFET design and reliability remain indispensable, serving not as an endpoint but as a framework for
addressing the electrostatic, thermal, and quantum transport constraints that define future semiconductor
technologies.

7. CONCLUSION

In conclusion, FinFETs represent a major improvement over traditional planar MOSFETs. Their
three-dimensional design and strong electrostatic control help overcome scaling challenges. This study
highlights FinFET structure, fabrication process, reduced short-channel effects, high Iox /Ior r ratios, and
low-power operation. By analyzing design, materials, and performance metrics, the paper shows that
FinFETs are well suited for modern high-performance circuits. As device scaling continues, FinFETs and new
technologies like GAAFETs will play an important role in future semiconductor development.
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