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 The global energy crisis and climate change demand more accurate and 

efficient renewable energy forecasting methods. Solar photovoltaic (PV) 

systems offer abundant clean energy but their efficiency is highly affected 

by weather variability, requiring advanced predictive models. This 

systematic review of 69 studies published between 2020 and 2024 evaluates 

artificial intelligence (AI) and machine learning (ML) applications in PV 

forecasting, with a focus on hybrid algorithms such as convolutional neural 

network-long short-term memory (CNN-LSTM). Results demonstrate that 

hybrid models consistently outperform traditional statistical methods and 

standalone AI approaches by capturing spatiotemporal patterns more 

effectively, achieving significant error reductions and improving reliability. 

A notable gap identified is the limited integration of consumer behavior into 

forecasting models, despite evidence that incorporating demand-side patterns 

enhances accuracy. Challenges also remain in data availability, scalability 

across diverse climates, and computational requirements. This review 

contributes by synthesizing recent advances and emphasizing consumer 

integration as an underexplored but critical dimension for future research. 

The findings provide a foundation for developing more precise, resilient, and 

scalable PV forecasting models, supporting optimized energy management 

and accelerating the transition toward sustainable energy systems. 
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1. INTRODUCTION 

The escalating global energy crisis and evident climate change, driven by economic growth and 

rising fossil fuel consumption, call for more efficient and sustainable renewable energy solutions [1]. Among 

the various options, solar photovoltaic (PV) energy stands out as a pivotal clean energy source capable of 

meeting worldwide electricity demand, with approximately 1,367 W/m² of solar radiation reaching the 

Earth’s surface each day [2]. However, the efficiency of PV systems remains highly sensitive to 

environmental variables such as solar irradiance, ambient temperature, humidity, and precipitation, making 

reliable forecasting essential [3]. 

Accurate forecasting of PV energy generation plays a critical role in effective energy management. 

Reliable predictions enable better estimation of PV yields, inform scheduling of appliance usage during peak 

https://creativecommons.org/licenses/by-sa/4.0/
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irradiance, and support preventive maintenance to sustain panel efficiency [4]. At a system level, PV 

forecasting contributes to grid stability, enhances renewable energy integration, and improves energy 

dispatch strategies [5]–[12]. Thus, robust forecasting models are fundamental for achieving cost efficiency, 

energy security, and sustainable development targets. 

Yet, PV generation is inherently intermittent due to cloud movements, seasonal changes, and 

weather variability [13]. Traditional statistical approaches, such as autoregressive integrated moving average 

(ARIMA), have been widely used [14], but they struggle to capture nonlinear relationships and complex 

dependencies between meteorological factors and PV outputs. In response, artificial intelligence (AI) and 

machine learning (ML) methods, including artificial neural networks (ANN), support vector regression 

(SVR), and deep learning (DL) models, have emerged as more powerful alternatives [15], [16]. 

A notable advancement is the adoption of hybrid learning strategies, particularly convolutional 

neural networks combined with long short-term memory networks (CNN–LSTM) [17], [18]. CNN layers 

extract spatial features (e.g., cloud cover and irradiance distribution), while LSTM layers capture short-term 

and long-term temporal dynamics. Recent studies have demonstrated the effectiveness of hybrid models for 

PV forecasting [19], [20], consistently showing that CNN–LSTM outperforms standalone AI/ML methods in 

predictive accuracy. This positions CNN–LSTM as the state of the art in AI-driven PV forecasting. 

Nevertheless, several challenges hinder wider deployment. A major limitation is the scarcity of 

high-resolution datasets combining meteorological and PV generation variables, which are essential for 

model training and validation [21], [22]. Furthermore, many AI frameworks struggle to generalize across 

diverse climatic conditions, suffer from overfitting when data is limited, and lack mechanisms for adapting to 

dynamic real-world environments [23]–[25]. Another persistent gap is the limited integration of consumer 

behavior and demand-side factors into forecasting models, an important aspect for energy management but 

largely overlooked in current CNN–LSTM studies [19]. These gaps lead to the central research questions of 

this review: i) how effective are hybrid CNN–LSTM models in forecasting PV production efficiency, and  

ii) to what extent has consumer behavior been integrated into forecasting frameworks? 

In light of these challenges, this study conducts a systematic review of 69 peer-reviewed 

publications from 2020–2024 to assess recent advancements in AI-driven PV forecasting [25], with a specific 

emphasis on hybrid CNN–LSTM models and the emerging dimension of consumption integration. The 

review examines forecasting methods, data processing techniques, model architectures, performance metrics, 

and application contexts. The main contributions of this study are threefold: i) providing a structured 

synthesis of hybrid CNN–LSTM models applications for PV forecasting, ii) identifying research gaps, 

particularly regarding the incorporation of consumption data, and iii) outlining future directions for 

developing hybrid models that are more accurate, generalizable, and practical for real-world energy systems. 

The novelty of this review lies in its dual contribution: first, it consolidates recent AI-based PV 

forecasting research through a taxonomy of 69 studies published between 2020 and 2024; second, it 

highlights the underexplored but crucial integration of consumer behavior into forecasting models, which is 

vital for aligning production with demand and ensuring sustainable energy management. 

 

 

2. METHOD 

This review applied a structured approach to assess AI methods in forecasting solar PV performance. 

The procedure was aligned with PRISMA 2020 to ensure transparency and reproducibility, while additional 

measures were introduced to reduce bias and strengthen the robustness of the synthesis. The following 

subsections outline the review design, source selection, and appraisal procedures in more detail. 

 

2.1.  Review design 

Standard approach. We conducted a systematic review in accordance with PRISMA 2020 to ensure 

transparent identification, screening, eligibility assessment, and inclusion reporting [26]. PRISMA is the  

de facto standard for reproducible evidence synthesis and minimizes selection/reporting bias through 

structured flow reporting and a priori criteria. 

Novel additions tailored to this topic. 

a. Cross-domain source balancing. Early retrievals were skewed toward ScienceDirect (~62% of hits), risking 

domain bias toward energy journals. We broadened sources to include Web of Science, Google Scholar, and 

ACM Digital Library to capture high-impact interdisciplinary outlets and AI/ML venues. This improves 

coverage of measurement/control and computing communities, strengthening external validity [27]–[36]. 

b. Operational focus on hybrid CNN–LSTM models and consumption integration. Beyond generic AI/ML, 

we operationally defined what counts as hybrid CNN–LSTM models and as user consumption integration 

(subsection 2.7) so that studies are classified consistently. This responds to gaps noted in prior work and 

enables direct comparability. 
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c. Bias mitigation and reliability checks. Dual independent screening with consensus adjudication; we 

recorded reasons for exclusion at full-text, and computed inter-rater agreement (Cohen’s κ) to document 

screening reliability [34], [36]. 

d. Quality and risk-of-bias appraisal. We adapted items from TRIPOD (reporting of predictive modeling 

studies) and PROBAST (risk-of-bias domains) to the PV-forecasting context (time-aware validation, 

leakage checks, baseline comparators). This underpins the validity of the qualitative synthesis. 

Justification: These additions address known threats to validity in AI reviews—source bias, inconsistent 

model labeling, optimistic validation, and reviewer subjectivity—thereby strengthening construct validity, 

internal validity, and reproducibility. 

 

2.2.  Information sources 

We queried six databases with comprehensive and complementary coverage: IEEE Xplore, 

ScienceDirect, Scopus, Web of Science, Google Scholar, and the ACM Digital Library [26]–[38]. This 

selection ensures broad coverage across electrical and power engineering, renewable energy systems, artificial 

intelligence and machine learning (AI/ML), and interdisciplinary research domains. The use of multiple 

databases also reduces selection bias and increases the robustness and reproducibility of the literature review. 

 

2.3.  Search strategy 

We combined relevant keywords using Boolean operators to systematically retrieve studies related 

to AI-based photovoltaic systems. The base search expression, summarized in Table 1, was designed to 

capture variations in terminology related to effectiveness, performance, photovoltaic technologies, and 

artificial intelligence or machine learning approaches across multiple databases. A publication year filter 

(2020–2024) was applied at the query stage to ensure a focus on recent developments, resulting in an initial 

pool of 9,013 records collected from all selected sources. 

 

 

Table 1. Search expression utilized in the systematic review 
Database Query Year of publication 

Scopus, ScienceDirect, IEEE Xplore, 

Web of Science, Google Scholar, ACM 
Digital Library 

“(Effectiveness)” OR “(Performance)” AND “(solar panels)” OR 

“(photovoltaic)” AND “(Machine Learning)” OR “(Artificial 
Intelligence)” 

2020-2024 

 

 

2.4.  Study selection  

The initial database search yielded a total of 9,013 records across Scopus, ScienceDirect, IEEE 

Xplore, Web of Science, Google Scholar, and ACM Digital Library. After removing 300 duplicates,  

8,713 records remained for title and abstract screening. Based on the predefined inclusion and exclusion 

criteria, 8,148 records were excluded, leaving 565 studies for full-text assessment. Following eligibility 

checks, 196 studies were excluded due to insufficient methodological rigor, irrelevance to the research scope, 

or lack of accessible full-text, resulting in 69 studies that were finally included in the systematic review. 

 

2.5.  Quality appraisal and risk-of-bias 

The methodological quality of each study was assessed using an adapted TRIPOD and PROBAST 

framework, focusing on risks such as data leakage, limited temporal validation, lack of baseline comparators, 

overfitting in small datasets, and inadequate handling of missing values. Studies were rated as low, unclear, 

or high risk of bias, with sensitivity checks applied to down-weight or exclude high-risk cases. By combining 

PRISMA guidelines with TRIPOD/PROBAST appraisal, this review ensures transparency, rigor, and 

reproducibility, thereby strengthening confidence in the synthesized evidence. 

 

2.6.  Operational definitions 

To ensure consistent coding and comparability across studies, we operationalized key terms as 

follows. Forecasted outcome refers to any supervised target related to PV performance, including PV power 

(W, kW, MW), energy (Wh, kWh), or module/plant efficiency (%). When studies used different units, values 

were normalized to common scales during extraction to allow side-by-side interpretation [36]–[39] Forecast 

horizons were categorized as nowcasting (≤1 h), intraday (1–24 h), day-ahead (24–48 h), and multi-

day/week-ahead (>48 h), and temporal resolution captured sampling rates (e.g., 1–5 min, 10–15 min, hourly, 

daily). Meteorological inputs encompassed irradiance terms—global horizontal irradiance (GHI), direct 

normal irradiance (DNI), and diffuse horizontal irradiance (DIF)—and ambient variables (temperature, 

humidity, wind speed/direction, and rainfall/precipitation), with optional exogenous signals such as clearness 

index or sky imagery/satellite features when provided. 
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A study was labeled hybrid CNN–LSTM when convolutional layers were employed to extract 

spatial/feature maps (from gridded weather, sky images, or engineered temporal patches) that fed a recurrent 

module (LSTM/variants) for temporal dynamics, trained end-to-end or in a staged feature → sequence 

pipeline [16]–[18]. Architectures using CNN without recurrent units, or LSTM/GRU without convolutional 

feature extraction, were not coded as CNN–LSTM hybrids. Consumption integration denoted explicit use of 

user load or demand patterns: i) as exogenous predictors for PV forecasting, ii) as joint/co-targets in multi-

task settings (PV and load predicted simultaneously), or iii) as coupled models where consumption modifies 

PV forecasts via control/dispatch constraints. 

Baselines included persistence/naïve models, autoregressive integrated moving average (ARIMA) or 

other classical statistical methods, and standard ML/DL comparators (e.g., SVR, RF, standalone LSTM). 

Validation schemes were coded as time-aware holdout (train/validation/test in chronological order), 

rolling/recursive (walk-forward) evaluation, k-fold blocked cross validation, and cross-site or cross season 

generalization. A study was flagged for potential leakage if any step used future information in training or 

scaling (e.g., global normalization on the full series, shuffling time series without preservation of order). 

Performance metrics followed author reports but were harmonized to root mean squared error (RMSE), mean 

absolute error (MAE), mean absolute percentage error (MAPE) and R² where available; metric definitions 

were retained as stated by the original studies, and any unit conversions were logged in the extraction sheet 

[37], [38]. 

 

2.7.  Step-by-step procedure 

The literature search was conducted across IEEE Xplore, ScienceDirect, Scopus, Web of Science, 

Google Scholar, and the ACM Digital Library from 28 February 2022, with an update in December 2024, 

using the predefined Boolean string described in Section 2.3 (with field tags adjusted per database) and a 

publication year filter of 2020–2024. Search results (title, abstract, keywords, and DOI) were exported in RIS 

and CSV formats, merged, and de-duplicated using DOI matching, exact-title matching, and fuzzy-title 

similarity (threshold ≈ 0.90), followed by manual verification, resulting in the removal of 300 duplicate 

records. Title and abstract screening were performed based on the predefined inclusion and exclusion criteria, 

yielding 565 records for full-text assessment; subsequently, 196 studies were excluded with documented 

reasons, including out-of-scope content, insufficient methodological reporting, or limited accessibility. The 

remaining 69 studies proceeded to data extraction using a standardized form (section 2.5), independently 

conducted by two reviewers, with disagreements resolved through consensus or consultation with a third 

reviewer when necessary. Each included study underwent quality assessment and risk-of-bias appraisal using 

a taxonomy-oriented evaluation framework commonly adopted in AI-based systematic reviews, focusing on 

time-aware validation, data leakage prevention, baseline comparators, overfitting risks, and missing data 

handling [34]. The overall review process followed PRISMA based reporting practices to ensure 

transparency and reproducibility [36]. All search queries, timestamps, PRISMA flow counts, extraction 

sheets, and appraisal forms were archived as supplementary materials to support full replication of the 

review. 

 

 

3. RESULTS AND DISCUSSION  

The systematic review analyzed 69 articles, which were selected from an initial pool of  

9,013 records retrieved from ScienceDirect (40%), IEEE Xplore (20%), Scopus (15%), Web of Science 

(10%), Google Scholar (10%), and the ACM Digital Library (5%), after screening for duplicates, relevance, 

and accessibility, see Figures 1 to 4. The selected articles, published between 2020 and 2024, represent global 

research efforts spanning 30 countries, with China contributing the largest number of publications  

(19 articles), followed by the United States (4), and Iran, Morocco, South Korea, Australia, and the United 

Kingdom (3 articles each). The results indicate substantial progress in AI-driven solar photovoltaic 

forecasting, particularly through hybrid modeling approaches, which consistently outperform standalone ML 

and DL methods, in line with recent studies reported in 2023 and 2024. A structured analysis based on source 

index, authors’ nationality, and primary methodological categories is presented and discussed in detail in 

subsection 3.1, with the results summarized in the corresponding figures. 

 

3.1.  Results by source indexes, nationality, and methodological categories 

The study selection was conducted in accordance with the PRISMA framework to ensure 

transparency and methodological consistency. As shown in Figure 1, the initial database search identified 

9,013 records, which were reduced to 8,713 after duplicate removal. Title and abstract screening yielded 565 

potentially relevant studies, followed by full-text evaluation of 265 articles. After excluding 196 studies that 

did not meet the defined scope, a total of 69 articles were retained for the final analysis. 
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Figure 1. PRISMA flow diagram of study selection process 

 

 

Figure 2 presents the distribution of the selected articles across databases. ScienceDirect contributed 

the largest proportion (40%), followed by IEEE Xplore (20%), Scopus (15%), Web of Science (10%), 

Google Scholar (10%), and ACM Digital Library (5%). This distribution reflects broad coverage across 

energy, engineering, artificial intelligence, and interdisciplinary research domains, with ScienceDirect 

showing a strong emphasis on energy-related journals 

 

 

 
 

Figure 2. Distribution of PV-related journal articles by database 

 

 

Figure 3 shows the distribution of articles based on the nationality of the authors. China contributed 

the highest number of publications, with a total of 19 articles. This was followed by the United States with 

four articles, while Iran and Morocco each accounted for three publications. Several other countries, 

including those from Europe, Asia, and Africa, contributed one or two articles each. Overall, the results 

indicate a geographically diverse set of contributions to the selected studies. 
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Figure 3. Articles by nationality of author 

 

 

Figure 4 summarizes the methodological categories employed in the reviewed studies. Among the 

69 articles, ML approaches were the most prevalent (43 articles), followed by DL and hybrid methods. ML 

techniques remain widely used due to their interpretability and relatively lower computational requirements. 

Hybrid models, although less frequently applied, demonstrated consistently strong performance across 

multiple studies, with reported improvements in error metrics such as RMSE and MAE [39], [40]. 

 

 

 
 

Figure 4. Main categories method in digital database  

 

 

Recent studies published in 2023 further illustrate this trend. Ye et al. [41] reported that a 

LightGBM–XGBoost hybrid model outperformed conventional ML approaches across multi-seasonal 

datasets. Similarly, Sabareesh et al. [42] demonstrated improved forecasting accuracy using an LSTM–RNN 

hybrid model in PV systems incorporating incremental conductance maximum power point tracking (MPPT). 

These results indicate the growing relevance of hybrid approaches for PV forecasting under dynamic 

operating conditions. 

 

3.2.  Taxonomy-based solar PV prediction 

A taxonomy of solar photovoltaic forecasting methods was developed based on the analysis of 69 

selected articles. As shown in Figure 5, the reviewed studies are classified into three main categories: ML 

methods (e.g., support vector regression and random forest), DL methods (e.g., long short-term memory and 

convolutional neural networks), and hybrid models (e.g., CNN–LSTM). ML approaches were the most 
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frequently adopted, appearing in 43 articles, with a strong presence in ScienceDirect (20 articles), reflecting 

their relative simplicity and effectiveness for small to medium-sized datasets. DL methods were reported in 

14 studies and demonstrated strong capabilities in capturing temporal dependencies (LSTM) and spatial 

features (CNN) when larger datasets were available. Hybrid models, which integrate the strengths of ML and 

DL, were identified in six articles and consistently outperformed standalone approaches. For example, studies 

[19] and [20] reported that CNN–LSTM models achieved up to 15% lower RMSE in PV power prediction 

compared with individual LSTM or CNN models by jointly learning spatial and temporal characteristics. 

 

 

 
 

Figure 5. Taxonomy literature review of research PV prediction 

 

 

Beyond structural classification, the developed taxonomy also highlights the temporal evolution of 

forecasting methods. Early studies (2020–2021) primarily relied on conventional machine learning 

techniques, due to their lower computational demands and stable performance on limited datasets [43]–[45]. 

From 2022 to 2024, research has increasingly shifted toward deep learning and hybrid architectures, driven 

by enhanced computational capabilities and the availability of higher-resolution meteorological and PV 

datasets. Hybrid models, such as CNN–LSTM and NARX-based approaches, have been widely adopted to 

overcome the limitations of standalone models in capturing nonlinear dynamics and complex temporal–

spatial dependencies [19], [20], [46], [47]. This trend aligns with broader developments in AI-driven PV 

forecasting, where model integration has become a key strategy for improving both robustness and 

generalization performance [48]–[54]. In other words, combining multiple approaches is increasingly seen as 

more effective than relying on a single model. 

 

3.3.  Discussion of key findings 

Our findings indicate that hybrid models, particularly CNN–LSTM architectures, consistently 

enhance PV forecasting accuracy by effectively capturing both spatial and temporal characteristics of solar 

power data. This observation aligns with the generalization analysis reported by Costa [55], who 

demonstrated the robustness of convolutional–LSTM networks for household PV forecasting, as well as with 

recent deep learning–based spatiotemporal approaches integrating frequency time representations and neural 

networks [40]. Hybrid architectures help address the limitations of traditional statistical models such as 

ARIMA, which struggle with nonlinear dynamics, and standalone artificial intelligence methods such as 

ANN, which may exhibit overfitting when applied to complex and high-dimensional PV datasets [14], [18], 

[23], [52]. 
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The effectiveness of CNN–LSTM models primarily systems from their ability to jointly extract 

spatial features such as cloud movement patterns and irradiance distributions through convolutional layers, 

while simultaneously modeling temporal dependencies in PV output using LSTM units. Across multiple 

studies published between 2021 and 2024, this spatiotemporal learning capability resulted in consistent 

performance gains, with reported reductions of approximately 15% in RMSE compared to conventional 

machine learning baselines [19], [20], [24], [47], [49], [54]–[56]. For example, Souhaila and Mohamed [2] 

reported an R² value of approximately 97% using ensemble and hybrid learning strategies, underscoring the 

potential of such models for accurate energy planning and grid-level decision support. 

The robustness of these findings is further supported by the diversity of databases considered in this 

review. By incorporating IEEE Xplore and the ACM Digital Library for AI-focused studies, Web of Science 

for interdisciplinary research, and Google Scholar for broader coverage of open-access publications, a wide 

range of methodological perspectives was captured. Nevertheless, potential selection bias remains due to the 

emphasis on English-language, peer-reviewed literature, which may limit the inclusion of relevant studies 

from underrepresented regions such as Latin America, Africa, and the Middle East. 

To consolidate these observations, Table 2 provides a comparative summary of representative 

studies, outlining the applied methods and the best-performing algorithms reported in each case. The 

reviewed works encompass conventional machine learning, deep learning, and hybrid modeling strategies, 

evaluated using standard performance metrics including RMSE, MAE, MAPE, and the coefficient of 

determination (R²). As summarized in Table 2, hybrid models particularly those integrating convolutional 

neural networks (CNN) with long short-term memory (LSTM) are most frequently identified as achieving 

superior forecasting performance [19], [20], [41], [47], [55], [56]. In addition, several studies report 

competitive results using advanced ensemble and gradient-boosting frameworks, such as combined 

LightGBM–XGBoost models [41], as well as graph-enhanced LSTM approaches incorporating multi-

meteorological dependencies [38] Collectively, these findings reinforce the growing adoption of hybrid and 

enhanced deep learning models in photovoltaic power prediction. 

 

 

Table 2. Summarizes representative studies on the best-performing hybrid PV forecasting models 
Author and Year Methods Best algorithm 

Agga et al. [19] (2022) CNN, LSTM, CNN-LSTM CNN–LSTM (superior spatiotemporal accuracy) 

Cheng et al. [38] (2021) Graph modeling with multi-meteorological factors, 
LSTM (MAE, RMSE) 

Graph-based LSTM (enhanced time-series 
precision) 

Ekinci [56] (2024) LSTM-ED, Weather Data SVR, RMSE, MAE Enhanced LSTM (≈8% error reduction with 

additional inputs) 
Michael et al. [20] 

(2022) 

LR, SVR, ANN, CNN, LSTM, Hybrid CNN–LSTM 

(RMSE, MSE) 

CNN-LSTM (Lowest RMSE, MSE) 

Ye et al. [41] (2023) LightGBM, XGBoost, Weighted RMSE reciprocal LightGBM-XGBoost (best metric performance) 
Wang et al. [47] (2024) CNN-LSTM, RMSE, MAPE CNN-LSTM (4.2% MAPE in variable weather) 

 

 

This review identifies a critical research gap in PV power forecasting related to the limited 

integration of consumer behavior and demand-side information. Among the 69 studies analyzed, only a small 

subset considered consumption patterns, primarily through indirect coupling with load forecasting 

frameworks, such as the CNN–LSTM-based approach reported by Agga et al. [19]. This limitation is 

significant, as user consumption behavior influences PV system efficiency and grid stability. Recent studies 

demonstrate that incorporating demand-side data can improve forecasting accuracy; for example, Ekinci [56] 

reported an error reduction of approximately 8% when household consumption patterns were integrated into 

LSTM-based PV forecasting models. Evidence from residential and microgrid energy studies further 

supports the importance of user behavior modeling as an underexplored yet impactful component of PV 

prediction research [7], [8]. 

The geographical distribution of PV forecasting studies reveals pronounced regional disparities. 

Research output is predominantly concentrated in developed regions, while contributions from developing 

countries remain limited due to challenges related to data availability and computational infrastructure. In 

regions with high climatic variability, such as monsoon-affected areas, forecasting models trained on data 

from more stable climates often exhibit reduced generalization performance [37], [46], [52]. Although 

broader database coverage enabled the inclusion of some studies from underrepresented regions, these 

findings highlight the need for improved international collaboration and data-sharing initiatives to enhance 

model robustness across diverse climatic conditions. 

Despite their superior predictive accuracy, hybrid deep learning architectures particularly CNN–

LSTM models present practical challenges associated with high computational complexity and resource 

requirements. Several studies emphasize the trade-off between accuracy and efficiency and suggest 
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combining deep learning with physical modeling or optimization techniques to improve deploy ability in 

real-world energy systems [45], [49]. Consequently, future research should prioritize the development of 

lightweight hybrid architectures, model compression strategies, and decentralized learning frameworks 

capable of supporting real-time applications. 

Overall, the findings confirm that hybrid deep learning models represent a substantial advancement 

in PV power forecasting by effectively capturing nonlinear and spatiotemporal dynamics. However, their 

broader adoption depends on addressing key challenges related to demand-side data integration, regional 

generalizability, and computational efficiency. Emerging approaches, including physics-informed learning 

[45], ensemble hybridization [48], and federated learning frameworks [21], offer promising directions for 

advancing accurate, scalable, and practical PV forecasting solutions. 

 

3.4.  Limitations of the review 

While this review provides a structured synthesis of recent advances in hybrid deep learning models 

for solar PV generation and residential energy consumption forecasting, several limitations should be 

acknowledged. First, the literature search was limited to peer-reviewed journal articles published in English 

between 2020 and 2024. As a result, relevant grey literature, technical reports, and studies published in other 

languages may have been excluded, potentially introducing publication and language bias. 

Second, substantial heterogeneity in methodological design and evaluation practices across the 

reviewed studies limited the ability to perform direct comparisons. Performance was reported using different 

metrics, including RMSE, MAE, MAPE, and R², while variations in temporal resolution (e.g., hourly, daily, 

and monthly forecasting horizons) and geographical settings further constrained the generalizability of the 

findings across diverse climatic and socio-economic contexts. 

Third, this review may be affected by publication bias, as studies reporting statistically significant or 

favorable predictive outcomes are more likely to appear in peer-reviewed journals, whereas negative or 

inconclusive results tend to be underreported. This imbalance may contribute to an optimistic representation 

of the performance of hybrid deep learning models in PV forecasting applications. 

Finally, a formal meta-analysis was not conducted due to the lack of statistical homogeneity among 

the included studies. Instead, the results were synthesized using a narrative and thematic approach, which is 

suitable for identifying trends, methodological patterns, and research gaps, but does not allow for precise 

quantitative estimation of effect sizes. Future systematic reviews could address this limitation by adopting 

standardized evaluation protocols and harmonized datasets, thereby enabling more rigorous quantitative 

synthesis and comparative assessment. 

 

3.5.  Future research and practical implications   

Future research in PV forecasting should prioritize the systematic integration of consumer behavior 

into AI-based prediction models, as most existing studies focus predominantly on production-side variables 

[57]. Evidence from recent works indicates that incorporating demand-side information improves the 

alignment between PV generation and actual electricity usage, particularly under high climatic variability and 

decentralized energy systems [56]. High-resolution smart meter data offer a practical foundation for this 

integration by capturing household consumption patterns at daily, weekly, and seasonal scales. These patterns 

can be transformed into structured features such as peak demand periods, load profiles, and long-term usage 

trends, which can be incorporated into hybrid forecasting models. In regions with limited data availability, 

agent-based or synthetic consumption modeling provides an alternative for enhancing model robustness and 

transferability [21]. 

Multi-input deep learning architectures, especially convolutional neural network-long short-term 

memory (CNN-LSTM) frameworks, are well suited to jointly model PV production and consumption 

dynamics. Prior studies demonstrate that enriching LSTM-based PV forecasting with user-level consumption 

data can reduce prediction errors by approximately 8% compared to production-only models [44], [56]. 

Graph-enhanced recurrent models further extend this capability by capturing interactions among distributed 

PV systems and residential loads in networked grid environments [38]. To address computational constraints, 

future work should emphasize feature selection, transfer learning, and efficiency-oriented model optimization 

strategies [45], [49]. 

From a practical and policy perspective, hybrid AI-based forecasting models can support grid 

stability, demand-side management, and large-scale PV integration. In Indonesia, achieving national 

renewable energy targets and the Net Zero Emission 2060 pathway requires predictive tools that account for 

both generation and consumption dynamics, in line with national energy planning frameworks and solar 

capacity targets [58], [59]. Overall, integrating consumer behavior represents a critical step toward more 

accurate, generalizable, and operationally relevant PV forecasting systems. 
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4. CONCLUSION  

This systematic review examined 69 studies published between 2020 and 2024 to assess the 

application of artificial intelligence and machine learning in solar photovoltaic forecasting. The findings 

confirm that hybrid approaches, particularly CNN–LSTM architectures, consistently outperform traditional 

statistical models and standalone AI methods by effectively capturing nonlinear spatiotemporal patterns in 

meteorological and PV generation data. These improvements translate into notable error reductions and 

enhanced forecasting reliability, which are essential for efficient energy management and grid stability. 

Despite these advances, the review identifies a significant research gap in the limited incorporation 

of consumer behavior and demand-side information into PV forecasting models. Most existing studies remain 

focused on production-side prediction, even though emerging evidence shows that integrating consumption 

patterns can further improve accuracy and system responsiveness. This imbalance highlights the need for 

unified forecasting frameworks that jointly consider generation and demand dynamics. Several challenges 

also persist, including constrained data availability in underrepresented regions, limited model 

generalizability across diverse climatic conditions, and the high computational cost of advanced deep 

learning architectures. Addressing these issues will require more inclusive datasets, scalable model designs, 

and efficiency-oriented implementations suitable for real-world deployment. 

Overall, this review underscores hybrid AI-based models as the current state of the art in PV 

forecasting while emphasizing consumer behavior integration as a critical direction for future research. 

Advancing in this direction will support the development of more accurate, resilient, and scalable forecasting 

systems, contributing to optimized renewable energy integration and the global transition toward sustainable 

energy systems. 
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