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 Research has demonstrated that artificial intelligence (AI) techniques have 

shown tremendous potential over the past decade for analyzing and detecting 

anomalies in the fetal heart during ultrasound tests. Despite their potential, 

the adoption of these algorithms remains limited due to concerns over 

patient privacy, the scarcity of large well-annotated datasets and challenges 

in achieving high accuracy. This research aims to overcome these limitations 

by proposing an optimal solution. Two methods such as deterministic image 

augmentation techniques and Wasserstein generative adversarial network 

with gradient penalty (WGAN-GP) showcase the framework's capacity to 

seamlessly and effectively expand original datasets to 14 times and 17 times 

respectively, thereby effectively tackling the problem of data scarcity. It uses 

an annotation tool to precisely categorize anomalies identified in the 

echocardiogram dataset. Segmentation of the annotated data is done to 

highlight region of interest. Nine distinct fetal heart anomalies are identified 

with respect to the fewer covered in existing research. This study also 

investigates the state-of-the-art architectures and optimization techniques 

used in deep learning models. The results clearly indicate that the ResNet-

101 model demonstrated superior precision accuracy of 99.15%. To ensure 

the reliability of the proposed model, its performance underwent thorough 

evaluation and validation by certified gynecologists and fetal medicine 

specialists. 
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1. INTRODUCTION 

Fetal heart anomalies encompass a wide spectrum of structural and functional disorder, from 

relatively simple defects such as septal abnormalities to complex congenital malformations like hypoplastic 

left heart from the left syndrome and transposition of the great arteries. Early and precise identification 

through prenatal ultrasound is essential, ensuring diagnoses align with standardized protocols. Guidelines 

established by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) offer a 

structured approach to fetal cardiac assessment, promoting consistency in clinical practice [1]. The American 

Institute of Ultrasound in Medicine (AIUM) highlights that fetal echocardiography focuses on the evaluation 

of the fetal heart using ultrasound imaging, which is recognized as reliable, secure and non-invasive [2]. 

However, healthcare professionals encounter obstacles related to fetal heart abnormalities, such as constraints 

in ultrasound resolution, variability in fetal positioning, gestational age-dependent visibility of cardiac 
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structures and limited diagnostic capabilities in certain regions [3]. Deep learning (DL) plays a crucial role in 

medical imaging by enabling automated image segmentation, helping to identify and isolate fetal heart 

structures for precise analysis. It enhances classification, improves image reconstruction. Through image 

synthesis, it generates high-quality synthetic fetal heart images for training and research [4], [5]. In medical 

imaging, deep learning models often face challenges due to the limited availability of annotated datasets. 

This scarcity can lead to overfitting [6] where models fail to generalize to new unseen data [7]. Additionally, 

small datasets may not capture the full variability of medical conditions, limiting the model's robustness and 

diagnostic accuracy. For sensitive healthcare domain, synthetic data can be used to artificially increase the 

size of training datasets and it can help deep learning models become more adaptable, reliable, and resilient 

to variations [8]. Multi-task deep learning applications have achieved significant success in fetal heart 

assessments, aiding in the detection of neonatal conditions from ultrasound scans [9]–[12]. The existing 

research [13] introduces a domain-specific data augmentation strategy for medical imaging tasks. It 

demonstrates how context-preserving augmentation can enhance model performance in fetal ultrasound 

classification. Miskeen et al. [14] highlights extensive investigation of several methods for identifying 

prenatal heart disease. Nowak et al. [15] provides a systematic strategy to ultrasound data augmentation with 

the goal of improving classification performance for fetal standard plane detection. It emphasizes the 

importance of optimal augmentation procedures in medical images. Balaha et al. [16] investigates several 

data augmentation and preprocessing strategies for improving deep learning models for medical applications. 

The findings show that rotation is the most successful augmentation approach, increasing in-domain accuracy 

by 10.1%. Tiago et al. [17] focuses on improving X-ray categorization for necrotizing enterocolitis (NEC), 

an uncommon but dangerous infant illness. Due to scarcity of images, the authors examined how various 

image adjustments and preparation techniques can overcome data scarcity and artificial intelligence (AI) 

models' ability for better detection [18], [19]. 

This research addresses the challenge of data scarcity in the study of fetal heart abnormalities. 

Although this area has been extensively explored, it was found that relatively little work had been dedicated 

to enhancing model training through data augmentation techniques, particularly those based on Wasserstein 

generative adversarial networks with gradient penalty (WGAN-GP) and deterministic image augmentation. 

Using deterministic image augmentation, two augmentation levels were applied, expanding the original 

datasets around 14 times and around 17 times using WGAN-GP. With this enlarged dataset, the deep 

learning model achieved higher accuracy and able to detect five complex congenital heart anomalies: 

hypoplastic heart syndrome (HLHS), transposition of the great arteries (TGA), aberrant right subclavian 

artery (ARSA), echogenic intracardiac focus (ECIF), and dilated cardiac sinus (DCS) within a single study. 

This advancement enhances the model's utility for medical professionals in fetal cardiac assessment. 

ResNet-101 was selected for its ability to address the gradient loss issue and deliver optimal results. Prior to 

utilizing ResNet-101, echocardiography images were examined using several other models, including 

ResNet-50, DenseNet169, VGG16, and EfficientNetB0. However, the results were unsatisfactory. Therefore, 

the transition to ResNet-101, coupled with deterministic and WGAN-GP augmentation, yielded significantly 

improved outcomes. Also, six out of nine classes achieved full performance accuracy using ResNet-101. 

The structure of this paper is as follows: Section 2 elaborates on proposed model adopted for 

artifacts development. Section 3 discuss the result that compare the proposed framework's outcomes to earlier 

studies, highlighting the effectiveness of the chosen techniques in achieving accurate disease diagnosis with 

minimum data. Section 4 concludes the paper and future scope of this work. 

 

 

2. METHOD  

2.1.  Conceptual diagram 

The comprehensive workflow for the proposed system is shown in Figure 1. It consists of the 

following steps:  

a. Data preparation: The most sighted data was selected, followed by data cleaning and preprocessing on the 

chosen images  

b. Defect identification: Under the supervision of experts, each defect was given a name and labelled using 

LabelMe in Anaconda.  

c. The segmentation technique involves partitioning an image into distinct regions to effectively identify the 

region of interest (ROI), which is crucial for precise analysis and interpretation.  

d. The implementation and assessment of deep learning algorithms for data analysis 

 

2.2.  Dataset  

In this research, openly accessible dataset fetal echocardiography (FECG) was used [20]. Thirteen 

structures have been identified namely left ventricular outflow tract (LVOT), right ventricle (RV), left 

ventricle (LV), aorta (Ao), right atrium (RA), left atrium (LA), right ventricle (RV), left ventricle (LV), right 
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hypoplastic heart syndrome (HLHS), atrial septal defect (ASD), ventricular septal defect (VSD), 

transposition of the great arteries (TGA), normal heart (NH), Dilated Cardiac Sinus (DCS) and echogenic 

intracardiac focus (ECIF). Subsequently, Certified Gynecologist and Fetal Medicine Specialist examined 

each individual image that was taken from the FECG recordings and recommended that the higher sighted 

images to be taken into consideration. The raw, unstructured data was organized and normalized to improve 

quality, consistency, and reduce redundancy. Normalization included removing duplicates, standardizing 

formats, handling missing values, and scaling numerical features. These preprocessing tasks ensured the data 

was clean, consistent, and ready for analysis The pixels are normalized as per given equation. 

 

𝑥` =
𝑥.𝑊

𝑤
 𝑎𝑛𝑑 𝑦` =

𝑦.𝐻

ℎ
  (1) 

 

where (𝑥, 𝑦) are original coordinates, (𝑥`, 𝑦`) are new coordinated after resizing and (𝑤, ℎ) are the original 

width and height of the image and 𝑊, 𝐻 are new width and height of the image. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒: 𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥, 𝑦)  =  
𝐼(𝑥,𝑦)

255
  (2) 

 

For RGB images, each channel is normalized as:  

 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑐, 𝑥, 𝑦)  =  
𝐼(𝑐,𝑥,𝑦) − 𝜇𝑐

𝜎𝑐
   (3) 

 

where 𝐼(𝑐, 𝑥, 𝑦) is the pixel intensity at channel c and 𝜎𝑐  and 𝜇𝑐 are the standard deviation and mean of the 

channel 𝑐. 

 

 

 
 

Figure 1. Functional architecture and interrelations within the system 

 

 

The distribution of echocardiogram data for performance evaluation is seen in Table 1. The 

procedure for segmenting relies on the anatomical structures of the heart. Using the data labeling tool 

LabelMe, exact boundaries are drawn around the heart images which will spot the precise position of 

anomalies. Table 2 gives an illustration of a feature map derived from LabelMe and segmentation. 

 

 

Table 1. Original dataset summary without augmentation 
Class Training Testing Validation Tot 

3VT 41 12 6 59 
ARSA 3 1 1 5 

DCS 1 1 0 2 

LVOT 30 9 4 43 
HLHS 9 3 1 13 

TGA 8 2 1 11 

VSD 4 2 1 7 
AVSD 4 2 1 7 

ECIF 15 4 3 22 

NH 55 16 8 79 
Total 170 52 26 248 
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2.3.  Data augmentation 

Data augmentation is applied to increase dataset size [21]. The choice of the best image 

augmentation technique relies on the particular task being performed, dataset and model being used. The 

techniques such as flipping(horizontal/vertical): 𝐼’(𝑥, 𝑦) = 𝐼(𝑊 − 𝑥 − 1, 𝑦) , rotation: 𝑥’ = 𝑥𝑐𝑜𝑠(𝜃) −
𝑦𝑠𝑖𝑛(𝜃) and 𝑦’ = 𝑥𝑠𝑖𝑛(𝜃) + 𝑦𝑐𝑜𝑠(𝜃) and cropping are used in deep learning for image augmentation. After 

exhaustive research and in-depth analysis, deterministic image augmentation and WGAN-GP are used in this 

research work. 

 

2.3.1. Deterministic image augmentation 

Deterministic image augmentation applies fixed, predefined transformations to images, ensuring 

consistent and reproducible results as shown in Table 2. In the image preprocessing pipeline, a comprehensive 

data augmentation strategy was implemented that evolved in two distinct phases to optimize model 

performance. The affine transformations were carefully calibrated to preserve the essential characteristics of 

the images. While introducing meaningful variations rotations were constrained within -30° to 30° to maintain 

feature orientation. Scaling operations were applied with factors between 0.8 and 1.2 to ensure realistic size 

variations and horizontal/vertical flips were implemented with a 50% probability to double the effective 

dataset size. Elastic transformations were particularly valuable as they simulated natural deformations by 

applying random displacement fields, creating realistic variations that could occur in real-world scenarios. To 

further enhance the model's reliability and reduce the risk of overfitting, the augmentation pipeline was 

expanded with additional sophisticated techniques. Controlled noise was introduced through salt and pepper 

injection, which helped the model become more resistant to image artifacts and sensor noise. The final layer of 

augmentation included random cropping and padding operations within ±10% of the original dimensions, 

effectively teaching the model to handle varying object scales and positions. Two levels of deterministic 

augmentation were carried out. With single level augmentation dataset size was increased from 248 to 552 and 

with second level augmentation it has increased to 3518. This approach significantly increased the size of 

training data while maintaining the semantic integrity of the images. 

 

 

Table 2. Dataset summary for deterministic image augmentation 
Single-level Augmentation  Bi-level Augmentation 

Class Training Testing Validation Tot  Class Training Testing Validation Tot 

3VT 41 12 6 59  3VT 247 72 35 354 

ARSA 38 12 5 55  ARSA 248 72 35 355 

DCS 36 11 5 52  DCS 211 61 30 302 

LVOT 30 9 4 43  LVOT 240 70 34 344 

HLHS 36 11 5 52  HLHS 245 71 35 351 

TGA 32 10 6 48  TGA 247 72 35 354 

VSD 34 10 5 49  VSD 247 72 35 354 

AVSD 34 10 5 49  AVSD 249 72 36 357 

ECIF 46 14 6 66  ECIF 246 71 35 352 

NH 55 16 8 79  NH 276 80 39 395 

Total 382 115 55 552  Total 2456 713 349 3518 

 

 

2.3.2. Wasserstein GAN with gradient penalty  

Wasserstein GAN with Gradient Penalty (WGAN-GP) was used [22]–[24] to generate images 

conditioned on class labels. Generator uses random noise and class labels to produce class-specific images. 

The discriminator (critic) compares actual and generated images, using the Wasserstein loss with gradient 

penalty to assure Lipschitz continuity. During training, the model updates the discriminator and the generator 

alternately. The gradient penalty stabilizes training by penalizing gradients. The generator learns to produce 

high-quality, diversified images, while the discriminator develops its ability to tell the difference between 

real and fake. Both use a Wasserstein loss to optimize the generative process. Finally, class conditioning 

enables the creation of images that belong to specified classes and expanded the dataset to 4264 as shown in 

Table 3. 

 

 

Table 3. Dataset after WGAN generating 

Classes Train Test Validation Total 
Normal Heart 545 154 76 775 

Abnormal Heart 2442 698 349 3489 
Total 2987 852 425 4264 
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2.4.  The proposed healthcare architectural framework  

In each implemented model, raw FECG images are annotated using an annotation tool (LabelMe) to 

highlight areas of interest. These labeled images undergo data augmentation to enhance the dataset. The 

images are segmented to isolate key regions using deep learning models. 

 

2.4.1. ResNet-101 architecture 

The ResNet-101 model in Figure 2, a deeper variant of ResNet [25], [26], is pre trained on ImageNet 

and fine-tuned on the segmented ultrasound dataset. The pipeline consists of four main stages with a total of 

101 layers, including initial and final layers. Stage 2 has 3 residual blocks, contributing to 9 layers, while 

stage 3 includes 4 residual blocks, making up 12 layers. Stage 4 is the deepest with 23 residual blocks, 

totaling 69 layers, and stage 5 contains 3 residual blocks with 9 layers. Final layers include average pooling 

layer, flattening, and a fully connected layer (FC) for classification. 

 

 

 
 

Figure 2. Proposed model with ResNet-101 architecture 

 

 

2.4.2. WGAN-GP architecture 

WGAN-GP is a stabilized GAN version that enhances training by introducing a gradient penalty for 

more consistent and authentic generation [27], [28]. The generator and critic compete in a minimax game. 

The critic aims to maximize the Wasserstein distance between real and generated images. The generator tries 

to minimize the distance to fool the critic. Gradient Penalty to enforce the Lipschitz constraint required by 

WGAN. A gradient penalty term is computed and added to the critic's loss function. The critic is updated 

multiple times per generator update to ensure strong feedback as shown in Figure 3. The generator 𝐺(𝑧) maps 

a random noise vector 𝑧 ∼ 𝑝𝑧(𝑧) to the data space. The generator's goal is to maximize the critic’s estimation 

Wasserstein distance 𝑚𝑎𝑥𝐸|𝑧 ∼ 𝑝𝑧(𝑧)[𝐷(𝐺(𝑧))]|. 
 

 

 
 

Figure 3. Proposed WGAN-GP with ResNet-50 architecture  
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2.4.3. Discriminator (critic) objective 

Unlike traditional GANs, WGAN-GP does not use a sigmoid activation for the discriminator. Instead, 

it learns a function D(x) that estimates the Wasserstein distance between real and generated distributions. The 

critic's objective is 

 

𝑚𝑖𝑛𝐸𝑥^~ 𝑝𝑔[𝐷(𝑥^)] − 𝐸𝑥^~ 𝑝𝑟[𝐷(𝑥)] + 𝜆𝐸𝑥^~ 𝑝𝑥𝐸[(∥ 𝛻𝑥~𝐷(𝑥~) ∥2− 1)2]  (4) 

 

where 𝑝𝑟(𝑥) is the real data distribution. 𝑃𝑔(𝑥) is the generated data distribution. 𝑥~ is a linear interpolation 

between real and fake samples 𝜆 is the penalty coefficient. The gradient penalty term 𝐸[(∥ 𝛻𝑥~𝐷(𝑥~) ∥2−
1)2] enforces the Lipschitz constraint by penalizing gradients to ensure stability during training. 

 

 

3. RESULTS AND DISCUSSION  

In this research, aim was to understand and examine fetal heart defects. The initial stride involved 

the procurement of a comprehensive dataset comprising fetal echocardiographic images which was curated to 

encapsulate diverse cardiac conditions. Employing domain expertise, various anomalies within the dataset 

were assigned appropriate nomenclature. Utilizing modern annotation techniques like LabelMe, areas of 

interest in the images are identified, establishing the way for segmentation. To improve diagnosis precision, 

the deterministic image augmentation and WGAN GP data augmentation method were used. Through 

segmentation, the images were categorized into distinct anatomical areas, each of which is crucial for 

identifying irregularities in the heart. Then, we utilized modern deep learning architectures. tailored to our 

dataset, ensuring optimal performance. According to the findings, which are summed up in the Table 4 data 

augmentation becomes crucial for enhancing model. We examined the various model's performances across a 

range of data sizes and augmentation methods including deterministic and WGAN for data enhancement. 

According to the findings, which are summed up in the Tables 4 and 5 data augmentation becomes crucial for 

enhancing model. 

 

 

Table 4. Comparison of the models on deterministic augmented dataset 
Single-level Augmentation  Bi-level Augmentation 

Models Accuracy Precision Specificity  Models Accuracy Precision Specificity 

ResNet-101 91.30 92.57 98.95  ResNet-101 99.15 99.16 99.91 

ResNet-50 91.30 92.91 99.06  ResNet-50 96.49 96.75 99.60 

DenseNet169 86.09 88.08 98.40  DenseNet169 92.99 93.55 99.19 
VGG16 79.13 81.58 97.55  VGG16 82.47 83.30 98.02 

EfficientNetB0 64.35 69.37 95.37  EfficientNetB0 71.53 72.85 96.84 

 

 

3.1.  Error metrics 

Root mean square error (RMSE) is the metric used to measure the difference between true values and 

predicted values as shown in Figure 4, first image original image second one predicted value of image resulting 

from deterministic augmentation and last Image resulting from WGAN-GP. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛  
 ∑ (𝑦𝑖 −𝑛

𝑖=1 y^)𝟐     (5) 

 

where 𝑦𝑖 − 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒, 𝑦^ − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 and n – Number of samples. For ResNet-101 model, the 

RMSE was found to be 0.0300 as shown in Table 5.  

 

 

   
 

Figure 4. The difference between true values and the predicted values 
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Table 5. ResNet-101 Model performance 
Augmentation Accuracy RMSE 
Deterministic 99.15 0.0300 
WGAN-GP 89.90 0.3075 

 

 

The results and findings of earlier studies are compared. Table 6 shows that although deep learning 

methods are very successful in classifying, segmenting, and predicting complex medical images, the use of 

suitable augmentation techniques further improves model performance and greatly enhances accuracy. 

 

 

Table 6. Comparison relation to data augmentation and fetal-safe imaging techniques 
Ref Classifier Dataset Performance matrix 

[17] GAN The synthetic dataset is five times larger than 
the original data 

Dice score achieved is 0.81, with a 
standard deviation of approximately 0.09 

[14] ResNet-50 The synthetic dataset increased by 13 times the 

size of the original dataset 

Two datasets were used FETAL-125 and 

OB-125 Accuracy - 94.4% and 91.5% 
respectively 

[29] ResNet-50 Echocardiography Around 75% accuracy 

[18] GAN-generated via 
IAGAN 

The synthetic dataset increased by 9 times the 
size of the original dataset 

Accuracy - 80% 
AUC - 0.90 

[28] ResNet-50 and 

Xception 

The synthetic dataset increased by 3 times the 

size of the original data. 

ResNet-50, Accuracy - 84.78% 

Xception Accuracy - 86.98% 
Proposed 

work 

ResNet-101 The two methods: i) Deterministic image 

augmentation techniques, ii) WGAN-GP 

expanded original datasets to 14 times and  
17 times respectively. 

Deterministic image augmentation 

Accuracy-99.15 

WGAN-GP 
Accuracy-89.90 

 

 

4. CONCLUSION 

The data augmentation techniques can help us address the challenge of data scarcity and ensure that 

our system functions effectively across a range of patient demographics and clinical circumstances. Six out of 

nine classes achieved full performance accuracy using ResNet-101 with an average precision accuracy of 

99.15%. The significance of this finding lies in the possibility of achieving high-quality outcomes with less 

data using two methods, deterministic image augmentation techniques and WGAN-GP. The results obtained 

have demonstrated superior performance compared to existing systems. The improvements in overall 

detection accuracy for fetal heart abnormalities have been validated by certified gynecologist and fetal 

medicine specialist confirming that our research approach outperforms traditional methods. Optimizing the 

proposed system for real-time deployment and seamless integration into existing clinical workflows is 

essential for its practical utility. Collaboration with healthcare institutions and industry stakeholders will be 

pivotal in developing user-friendly interfaces and interoperable systems. The limitation of this research is that 

images need to be labeled under expert guidance. 
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