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Research has demonstrated that artificial intelligence (AI) techniques have
shown tremendous potential over the past decade for analyzing and detecting
anomalies in the fetal heart during ultrasound tests. Despite their potential,
the adoption of these algorithms remains limited due to concerns over
patient privacy, the scarcity of large well-annotated datasets and challenges
in achieving high accuracy. This research aims to overcome these limitations
by proposing an optimal solution. Two methods such as deterministic image
augmentation techniques and Wasserstein generative adversarial network
with gradient penalty (WGAN-GP) showcase the framework's capacity to
seamlessly and effectively expand original datasets to 14 times and 17 times
respectively, thereby effectively tackling the problem of data scarcity. It uses
an annotation tool to precisely categorize anomalies identified in the
echocardiogram dataset. Segmentation of the annotated data is done to
highlight region of interest. Nine distinct fetal heart anomalies are identified
with respect to the fewer covered in existing research. This study also
investigates the state-of-the-art architectures and optimization techniques
used in deep learning models. The results clearly indicate that the ResNet-
101 model demonstrated superior precision accuracy of 99.15%. To ensure
the reliability of the proposed model, its performance underwent thorough
evaluation and validation by certified gynecologists and fetal medicine
specialists.
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1. INTRODUCTION

Fetal heart anomalies encompass a wide spectrum of structural and functional disorder, from
relatively simple defects such as septal abnormalities to complex congenital malformations like hypoplastic
left heart from the left syndrome and transposition of the great arteries. Early and precise identification
through prenatal ultrasound is essential, ensuring diagnoses align with standardized protocols. Guidelines
established by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) offer a
structured approach to fetal cardiac assessment, promoting consistency in clinical practice [1]. The American
Institute of Ultrasound in Medicine (AIUM) highlights that fetal echocardiography focuses on the evaluation
of the fetal heart using ultrasound imaging, which is recognized as reliable, secure and non-invasive [2].
However, healthcare professionals encounter obstacles related to fetal heart abnormalities, such as constraints
in ultrasound resolution, variability in fetal positioning, gestational age-dependent visibility of cardiac
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structures and limited diagnostic capabilities in certain regions [3]. Deep learning (DL) plays a crucial role in
medical imaging by enabling automated image segmentation, helping to identify and isolate fetal heart
structures for precise analysis. It enhances classification, improves image reconstruction. Through image
synthesis, it generates high-quality synthetic fetal heart images for training and research [4], [5]. In medical
imaging, deep learning models often face challenges due to the limited availability of annotated datasets.
This scarcity can lead to overfitting [6] where models fail to generalize to new unseen data [7]. Additionally,
small datasets may not capture the full variability of medical conditions, limiting the model's robustness and
diagnostic accuracy. For sensitive healthcare domain, synthetic data can be used to artificially increase the
size of training datasets and it can help deep learning models become more adaptable, reliable, and resilient
to variations [8]. Multi-task deep learning applications have achieved significant success in fetal heart
assessments, aiding in the detection of neonatal conditions from ultrasound scans [9]-[12]. The existing
research [13] introduces a domain-specific data augmentation strategy for medical imaging tasks. It
demonstrates how context-preserving augmentation can enhance model performance in fetal ultrasound
classification. Miskeen ez al. [14] highlights extensive investigation of several methods for identifying
prenatal heart disease. Nowak et al. [15] provides a systematic strategy to ultrasound data augmentation with
the goal of improving classification performance for fetal standard plane detection. It emphasizes the
importance of optimal augmentation procedures in medical images. Balaha ef al. [16] investigates several
data augmentation and preprocessing strategies for improving deep learning models for medical applications.
The findings show that rotation is the most successful augmentation approach, increasing in-domain accuracy
by 10.1%. Tiago et al. [17] focuses on improving X-ray categorization for necrotizing enterocolitis (NEC),
an uncommon but dangerous infant illness. Due to scarcity of images, the authors examined how various
image adjustments and preparation techniques can overcome data scarcity and artificial intelligence (Al)
models' ability for better detection [18], [19].

This research addresses the challenge of data scarcity in the study of fetal heart abnormalities.
Although this area has been extensively explored, it was found that relatively little work had been dedicated
to enhancing model training through data augmentation techniques, particularly those based on Wasserstein
generative adversarial networks with gradient penalty (WGAN-GP) and deterministic image augmentation.
Using deterministic image augmentation, two augmentation levels were applied, expanding the original
datasets around 14 times and around 17 times using WGAN-GP. With this enlarged dataset, the deep
learning model achieved higher accuracy and able to detect five complex congenital heart anomalies:
hypoplastic heart syndrome (HLHS), transposition of the great arteries (TGA), aberrant right subclavian
artery (ARSA), echogenic intracardiac focus (ECIF), and dilated cardiac sinus (DCS) within a single study.
This advancement enhances the model's utility for medical professionals in fetal cardiac assessment.
ResNet-101 was selected for its ability to address the gradient loss issue and deliver optimal results. Prior to
utilizing ResNet-101, echocardiography images were examined using several other models, including
ResNet-50, DenseNet169, VGG16, and EfficientNetB0. However, the results were unsatisfactory. Therefore,
the transition to ResNet-101, coupled with deterministic and WGAN-GP augmentation, yielded significantly
improved outcomes. Also, six out of nine classes achieved full performance accuracy using ResNet-101.

The structure of this paper is as follows: Section 2 elaborates on proposed model adopted for
artifacts development. Section 3 discuss the result that compare the proposed framework's outcomes to earlier
studies, highlighting the effectiveness of the chosen techniques in achieving accurate disease diagnosis with
minimum data. Section 4 concludes the paper and future scope of this work.

2. METHOD
2.1. Conceptual diagram
The comprehensive workflow for the proposed system is shown in Figure 1. It consists of the

following steps:

a. Data preparation: The most sighted data was selected, followed by data cleaning and preprocessing on the
chosen images

b. Defect identification: Under the supervision of experts, each defect was given a name and labelled using
LabelMe in Anaconda.

c. The segmentation technique involves partitioning an image into distinct regions to effectively identify the
region of interest (ROI), which is crucial for precise analysis and interpretation.

d. The implementation and assessment of deep learning algorithms for data analysis

2.2. Dataset

In this research, openly accessible dataset fetal echocardiography (FECG) was used [20]. Thirteen
structures have been identified namely left ventricular outflow tract (LVOT), right ventricle (RV), left
ventricle (LV), aorta (Ao), right atrium (RA), left atrium (LA), right ventricle (RV), left ventricle (LV), right
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hypoplastic heart syndrome (HLHS), atrial septal defect (ASD), ventricular septal defect (VSD),
transposition of the great arteries (TGA), normal heart (NH), Dilated Cardiac Sinus (DCS) and echogenic
intracardiac focus (ECIF). Subsequently, Certified Gynecologist and Fetal Medicine Specialist examined
each individual image that was taken from the FECG recordings and recommended that the higher sighted
images to be taken into consideration. The raw, unstructured data was organized and normalized to improve
quality, consistency, and reduce redundancy. Normalization included removing duplicates, standardizing
formats, handling missing values, and scaling numerical features. These preprocessing tasks ensured the data
was clean, consistent, and ready for analysis The pixels are normalized as per given equation.
N X
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where (x,y) are original coordinates, (x',y") are new coordinated after resizing and (w, h) are the original
width and height of the image and W, H are new width and height of the image.

Normalizing pixel value: I, ormatizea (X, V) = I;"T’s') 2)

For RGB images, each channel is normalized as:
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where I(c, x,y) is the pixel intensity at channel ¢ and o, and yu, are the standard deviation and mean of the
channel c.
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Figure 1. Functional architecture and interrelations within the system

The distribution of echocardiogram data for performance evaluation is seen in Table 1. The
procedure for segmenting relies on the anatomical structures of the heart. Using the data labeling tool
LabelMe, exact boundaries are drawn around the heart images which will spot the precise position of
anomalies. Table 2 gives an illustration of a feature map derived from LabelMe and segmentation.

Table 1. Original dataset summary without augmentation
Class Training Testing Validation  Tot

3VT 41 12 6 59
ARSA 3 1 1 5
DCS 1 1 0 2
LVOT 30 9 4 43
HLHS 9 3 1 13
TGA 8 2 1 11
VSD 4 2 1 7
AVSD 4 2 1 7
ECIF 15 4 3 22
NH 55 16 8 79
Total 170 52 26 248
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2.3. Data augmentation

Data augmentation is applied to increase dataset size [21]. The choice of the best image
augmentation technique relies on the particular task being performed, dataset and model being used. The
techniques such as flipping(horizontal/vertical): I'(x,y) = I(W —x —1,y) , rotation: x’ = xcos(6) —
ysin(0) and ¥y’ = xsin(0) + ycos(0) and cropping are used in deep learning for image augmentation. After
exhaustive research and in-depth analysis, deterministic image augmentation and WGAN-GP are used in this
research work.

2.3.1. Deterministic image augmentation

Deterministic image augmentation applies fixed, predefined transformations to images, ensuring
consistent and reproducible results as shown in Table 2. In the image preprocessing pipeline, a comprehensive
data augmentation strategy was implemented that evolved in two distinct phases to optimize model
performance. The affine transformations were carefully calibrated to preserve the essential characteristics of
the images. While introducing meaningful variations rotations were constrained within -30° to 30° to maintain
feature orientation. Scaling operations were applied with factors between 0.8 and 1.2 to ensure realistic size
variations and horizontal/vertical flips were implemented with a 50% probability to double the effective
dataset size. Elastic transformations were particularly valuable as they simulated natural deformations by
applying random displacement fields, creating realistic variations that could occur in real-world scenarios. To
further enhance the model's reliability and reduce the risk of overfitting, the augmentation pipeline was
expanded with additional sophisticated techniques. Controlled noise was introduced through salt and pepper
injection, which helped the model become more resistant to image artifacts and sensor noise. The final layer of
augmentation included random cropping and padding operations within £10% of the original dimensions,
effectively teaching the model to handle varying object scales and positions. Two levels of deterministic
augmentation were carried out. With single level augmentation dataset size was increased from 248 to 552 and
with second level augmentation it has increased to 3518. This approach significantly increased the size of
training data while maintaining the semantic integrity of the images.

Table 2. Dataset summary for deterministic image augmentation

Single-level Augmentation Bi-level Augmentation
Class  Training  Testing  Validation  Tot Class  Training Testing  Validation  Tot
3VT 41 12 6 59 3VT 247 72 35 354
ARSA 38 12 5 55 ARSA 248 72 35 355
DCS 36 11 5 52 DCS 211 61 30 302
LVOT 30 9 4 43 LVOT 240 70 34 344
HLHS 36 11 5 52 HLHS 245 71 35 351
TGA 32 10 6 48 TGA 247 72 35 354
VSD 34 10 5 49 VSD 247 72 35 354
AVSD 34 10 5 49 AVSD 249 72 36 357
ECIF 46 14 6 66 ECIF 246 71 35 352
NH 55 16 8 79 NH 276 80 39 395
Total 382 115 55 552 Total 2456 713 349 3518

2.3.2. Wasserstein GAN with gradient penalty

Wasserstein GAN with Gradient Penalty (WGAN-GP) was used [22]-[24] to generate images
conditioned on class labels. Generator uses random noise and class labels to produce class-specific images.
The discriminator (critic) compares actual and generated images, using the Wasserstein loss with gradient
penalty to assure Lipschitz continuity. During training, the model updates the discriminator and the generator
alternately. The gradient penalty stabilizes training by penalizing gradients. The generator learns to produce
high-quality, diversified images, while the discriminator develops its ability to tell the difference between
real and fake. Both use a Wasserstein loss to optimize the generative process. Finally, class conditioning
enables the creation of images that belong to specified classes and expanded the dataset to 4264 as shown in
Table 3.

Table 3. Dataset after WGAN generating

Classes Train Test Validation Total
Normal Heart 545 154 76 775
Abnormal Heart 2442 698 349 3489

Total 2987 852 425 4264
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2.4. The proposed healthcare architectural framework

In each implemented model, raw FECG images are annotated using an annotation tool (LabelMe) to
highlight areas of interest. These labeled images undergo data augmentation to enhance the dataset. The
images are segmented to isolate key regions using deep learning models.

2.4.1. ResNet-101 architecture

The ResNet-101 model in Figure 2, a deeper variant of ResNet [25], [26], is pre trained on ImageNet
and fine-tuned on the segmented ultrasound dataset. The pipeline consists of four main stages with a total of
101 layers, including initial and final layers. Stage 2 has 3 residual blocks, contributing to 9 layers, while
stage 3 includes 4 residual blocks, making up 12 layers. Stage 4 is the deepest with 23 residual blocks,
totaling 69 layers, and stage 5 contains 3 residual blocks with 9 layers. Final layers include average pooling
layer, flattening, and a fully connected layer (FC) for classification.
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Figure 2. Proposed model with ResNet-101 architecture

2.4.2. WGAN-GP architecture

WGAN-GP is a stabilized GAN version that enhances training by introducing a gradient penalty for
more consistent and authentic generation [27], [28]. The generator and critic compete in a minimax game.
The critic aims to maximize the Wasserstein distance between real and generated images. The generator tries
to minimize the distance to fool the critic. Gradient Penalty to enforce the Lipschitz constraint required by
WGAN. A gradient penalty term is computed and added to the critic's loss function. The critic is updated
multiple times per generator update to ensure strong feedback as shown in Figure 3. The generator G (z) maps
a random noise vector z ~ p,(z) to the data space. The generator's goal is to maximize the critic’s estimation
Wasserstein distance maxE |z ~ p,(z)[D(G(2))]|.
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Figure 3. Proposed WGAN-GP with ResNet-50 architecture
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2.4.3. Discriminator (critic) objective

Unlike traditional GANs, WGAN-GP does not use a sigmoid activation for the discriminator. Instead,
it learns a function D(x) that estimates the Wasserstein distance between real and generated distributions. The
critic's objective is

minEx"~ pg[D(x")] — Ex"~ p,[D(x)] + AEx"~ p,E[(I Vu~D(x~) ll,— 1)?] “)

where p,.(x) is the real data distribution. F;(x) is the generated data distribution. x~ is a linear interpolation
between real and fake samples A is the penalty coefficient. The gradient penalty term E[(ll Vy~D(x~) Il,—
1)?] enforces the Lipschitz constraint by penalizing gradients to ensure stability during training.

3. RESULTS AND DISCUSSION

In this research, aim was to understand and examine fetal heart defects. The initial stride involved
the procurement of a comprehensive dataset comprising fetal echocardiographic images which was curated to
encapsulate diverse cardiac conditions. Employing domain expertise, various anomalies within the dataset
were assigned appropriate nomenclature. Utilizing modern annotation techniques like LabelMe, areas of
interest in the images are identified, establishing the way for segmentation. To improve diagnosis precision,
the deterministic image augmentation and WGAN GP data augmentation method were used. Through
segmentation, the images were categorized into distinct anatomical areas, each of which is crucial for
identifying irregularities in the heart. Then, we utilized modern deep learning architectures. tailored to our
dataset, ensuring optimal performance. According to the findings, which are summed up in the Table 4 data
augmentation becomes crucial for enhancing model. We examined the various model's performances across a
range of data sizes and augmentation methods including deterministic and WGAN for data enhancement.
According to the findings, which are summed up in the Tables 4 and 5 data augmentation becomes crucial for
enhancing model.

Table 4. Comparison of the models on deterministic augmented dataset

Single-level Augmentation Bi-level Augmentation
Models Accuracy  Precision _ Specificity Models Accuracy  Precision _ Specificity
ResNet-101 91.30 92.57 98.95 ResNet-101 99.15 99.16 99.91
ResNet-50 91.30 9291 99.06 ResNet-50 96.49 96.75 99.60
DenseNet169 86.09 88.08 98.40 DenseNet169 92.99 93.55 99.19
VGG16 79.13 81.58 97.55 VGG16 82.47 83.30 98.02
EfficientNetB0 64.35 69.37 95.37 EfficientNetB0 71.53 72.85 96.84

3.1. Error metrics

Root mean square error (RMSE) is the metric used to measure the difference between true values and
predicted values as shown in Figure 4, first image original image second one predicted value of image resulting
from deterministic augmentation and last Image resulting from WGAN-GP.

RMSE = \/ni Y (i —y")? ®)

where yi — True Value, y™ — predicted value and n — Number of samples. For ResNet-101 model, the
RMSE was found to be 0.0300 as shown in Table 5.

Figure 4. The difference between true values and the predicted values
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Table 5. ResNet-101 Model performance

Augmentation Accuracy RMSE
Deterministic ~ 99.15 0.0300
WGAN-GP 89.90 0.3075

The results and findings of earlier studies are compared. Table 6 shows that although deep learning
methods are very successful in classifying, segmenting, and predicting complex medical images, the use of
suitable augmentation techniques further improves model performance and greatly enhances accuracy.

Table 6. Comparison relation to data augmentation and fetal-safe imaging techniques

Ref Classifier Dataset Performance matrix
[17] GAN The synthetic dataset is five times larger than Dice score achieved is 0.81, with a
the original data standard deviation of approximately 0.09
[14] ResNet-50 The synthetic dataset increased by 13 times the =~ Two datasets were used FETAL-125 and
size of the original dataset OB-125 Accuracy - 94.4% and 91.5%
respectively
[29] ResNet-50 Echocardiography Around 75% accuracy
[18] GAN-generated via The synthetic dataset increased by 9 times the Accuracy - 80%
TAGAN size of the original dataset AUC - 0.90
[28] ResNet-50 and The synthetic dataset increased by 3 times the ResNet-50, Accuracy - 84.78%
Xception size of the original data. Xception Accuracy - 86.98%
Proposed ResNet-101 The two methods: i) Deterministic image Deterministic image augmentation
work augmentation techniques, ii) WGAN-GP Accuracy-99.15

expanded original datasets to 14 times and
17 times respectively.

WGAN-GP
Accuracy-89.90

4. CONCLUSION

The data augmentation techniques can help us address the challenge of data scarcity and ensure that

our system functions effectively across a range of patient demographics and clinical circumstances. Six out of
nine classes achieved full performance accuracy using ResNet-101 with an average precision accuracy of
99.15%. The significance of this finding lies in the possibility of achieving high-quality outcomes with less
data using two methods, deterministic image augmentation techniques and WGAN-GP. The results obtained
have demonstrated superior performance compared to existing systems. The improvements in overall
detection accuracy for fetal heart abnormalities have been validated by certified gynecologist and fetal
medicine specialist confirming that our research approach outperforms traditional methods. Optimizing the
proposed system for real-time deployment and seamless integration into existing clinical workflows is
essential for its practical utility. Collaboration with healthcare institutions and industry stakeholders will be
pivotal in developing user-friendly interfaces and interoperable systems. The limitation of this research is that

images need to be labeled under expert guidance.
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