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 Seismometers are crucial in earthquake and tsunami early warning systems, 

since they record ground vibrations due to significant seismic events. The 

health condition of a seismometer is strongly related to the measurement of 

seismic data quality, making seismometer health condition maintenance 

critical. Predictive maintenance is the most advanced control or 

measurement system maintenance method, since it informs about the faults 

that have occurred in the system and the remaining lifetime of the system. 

However, no research has proposed a seismometer predictive maintenance 

framework. Thus, this article reviews general predictive maintenance 

methods and seismic data quality analysis methods to find the feasibility of 

developing a predictive maintenance framework for seismometers in seismic 

stations. Based on the review, it is found that such a framework can be built 

under particular challenges and requirements. Finally, machine learning is 

the best approach to build the classification and regression models in the 

predictive maintenance framework due to its robustness and high prediction 

accuracy. 
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1. INTRODUCTION 

Seismometers serve as the primary measurement instrument of global earthquake monitoring 

systems, recording ground vibrations that enable early warning systems and scientific analysis for 

earthquakes, tsunamis, or other major seismic events [1]–[3]. The force-feedback seismometer, featuring a 

suspended reference mass and sophisticated feedback mechanism, represents modern seismic networks' most 

widely deployed sensor technology [4]. However, the reliability of seismic data fundamentally depends on 

the health condition of these sensitive instruments, as faulty sensors can generate spurious signals, leading to 

false earthquake detections or missed critical events [5]. 

Current seismometer maintenance practices in Indonesia exemplify the limitations of traditional 

approaches. The Indonesian Meteorological, Climatological, and Geophysical Agency (BMKG), which 

manages hundreds of seismic observation stations in the Indonesian-Tsunami Early Warning System (Ina-

TEWS) still employs seismometer maintenance procedures that rely predominantly on reactive or scheduled 

approaches, where repairs occur after equipment failure or at predetermined intervals regardless of actual 

device condition [6]. Previous studies in industrial maintenance concluded that both reactive and preventive 

repair strategies result in unnecessary downtime, increased operational costs, and potential data quality 

degradation during undetected fault periods [7], [8]. While these limitations have encouraged seismic 

https://creativecommons.org/licenses/by-sa/4.0/
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network technicians to develop additional maintenance procedures for assessing seismometer health 

conditions, including sensitivity shift measurement using sensor calibration and performance degradation 

detection using seismic time-series or frequency-domain data comparisons, these approaches remain far from 

ideal as they lack in automation and the predictive capabilities of modern maintenance paradigms [9], [10]. 

Predictive maintenance has emerged as the most advanced maintenance paradigm across various 

industrial sectors, leveraging real-time condition monitoring and machine learning algorithms to forecast 

equipment failures before they occur [11], [12]. Modern predictive maintenance frameworks integrate fault 

diagnosis capabilities, which encompass detection, isolation, and identification, along with prognostic models 

that estimate remaining useful life (RUL) [13], [14]. Machine learning techniques, particularly classification 

and regression models, have demonstrated superior performance to traditional statistical approaches, 

achieving lower downtime and significantly higher prediction accuracies in various applications [15]. 

However, despite the proven effectiveness of predictive maintenance in industrial automation and control 

systems, no comprehensive framework has been developed specifically for seismometer health monitoring in 

seismic networks. 

Despite the mission-critical nature of continuous seismic monitoring for seismological early 

warning systems, the application of modern predictive maintenance methodologies to seismological 

instrumentation remains largely unexplored. While extensive research has addressed seismic data quality 

analysis methods, these approaches remain disconnected mainly from systematic equipment health 

assessment and failure prediction capabilities. This study explores this intersection by providing a 

comprehensive review of relevant methodologies to investigate the feasibility of developing a machine 

learning-based predictive maintenance framework designed explicitly for seismometers in seismic 

monitoring networks, thereby bridging the domains of advanced maintenance engineering and seismological 

instrumentation. 

Four fundamental research questions collectively bridge the gap between advanced predictive 

maintenance methodologies and seismological instrumentation. First, we investigate what established 

methods exist for predictive maintenance across industrial applications and how these approaches can be 

adapted for sensor-based monitoring systems. Second, we examine the criteria most appropriate for seismic 

data quality assessment that can serve as reliable health indicators for machine learning-based fault diagnosis 

algorithms. Third, we synthesize findings from both industrial health monitoring and seismic data quality 

criteria domains to explore what constitutes a feasible machine learning-based predictive maintenance 

framework for seismometers in seismic monitoring stations. Finally, we assess what practical requirements, 

implementation challenges, and operational constraints must be addressed to deploy such a framework in 

real-world seismological networks successfully. These research questions provide the foundation for our 

systematic literature analysis and guide the development of our proposed predictive maintenance 

architecture. 

To address these research questions systematically and provide comprehensive guidance for 

seismometer predictive maintenance development, this review is structured to facilitate theoretical 

understanding and practical implementation considerations across diverse seismic observation networks. 

Section 1 establishes the research background by examining the critical role of seismometer reliability, 

identifying current maintenance limitations, and positioning predictive maintenance as an essential tool in the 

seismic sensor maintenance system. Section 2 provides the theoretical foundation by reviewing fundamental 

concepts of seismic data analysis, seismometer fault schemes, and general predictive maintenance 

architecture. Section 3 presents the review methods for comprehensive literature coverage, including 

database selection criteria, search strategies, and analytical frameworks used to synthesize findings from 

diverse engineering and seismological domains. Section 4 delivers comprehensive results and critical 

discussion by analyzing fault detection, isolation, and identification methods, assessing seismic data quality 

criteria as health indicators, and synthesizing these findings into a unified predictive maintenance framework 

architecture. Finally, section 5 concludes with implications for future research directions, practical 

implementation strategies, and potential challenges. 

 

 

2. BACKGROUND AND THEORETICAL FOUNDATION 

2.1.  Seismic signal analysis 

Effective seismometer health monitoring requires a comprehensive understanding of seismic signal 

characteristics that reflect instrument condition [16]. Thus, seismic signal analysis forms the foundation for 

extracting meaningful health indicators from seismometer measurements, as instrument condition directly 

influences the characteristics of recorded ground motion data [17]. Modern seismological practice employs 

two complementary analytical domains to characterize seismic signals and assess data quality 

comprehensively. Understanding these analytical approaches is essential for developing practical predictive 
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maintenance algorithms, distinguishing between genuine seismic phenomena and instrument-related 

anomalies. 

Time-domain analysis provides essential diagnostic capabilities for detecting temporal anomalies in 

seismometer performance. It focuses on the temporal characteristics of seismic waveforms and examines the 

physical parameters of earth motion, including displacement, velocity, and acceleration amplitudes as 

functions of time [18], [19]. This analytical approach enables extracting critical temporal features such as 

signal offsets, peak amplitudes, and waveform patterns, making it ideal to detect signals from earthquakes or 

other major seismic events.  

The second analytical type is the frequency-domain analysis, which transforms temporal seismic 

data into spectral representations, most commonly expressed as power spectral density (PSD) [20], [21]. The 

spectral analysis of seismic data can be used to characterize signals based on their power levels and also 

compare them with the well-known ambient spectral noise models (e.g., new low noise model and new high 

noise model) [22], [23]. In order to obtain seismic signal PSD representation, a Fourier Transform must be 

applied to the autocorrelation sequence of the time-series signal [24], [25]. 

 

2.2.  Possible seismometer fault schemes 

Predictive maintenance systems require a comprehensive understanding of potential failure modes 

to effectively diagnose system faults and predict remaining useful life based on fault type and severity [26]. 

Therefore, systematic classification of possible fault schemes is crucial before designing a predictive 

maintenance architecture for seismometers in seismic monitoring networks. Table 1 shows 16 possible 

ground seismometer fault scenarios that can be indicated by the seismic signal patterns [10]. These fault 

categories encompass a broad spectrum of failure mechanisms based on their underlying root causes, ranging 

from complete sensor failure scenarios such as "dead sensors" with no response to ground motions, to 

complex internal mechanical issues including force-feedback mechanism failures leading to "mass-lock" and 

"free oscillation" conditions, as well as electrical circuitry defects that manifest as "early failure signs". 

 

 

Table 1. Seismometer fault schemes and indicators 
Fault scheme Cause Indicator 

Dead sensor - No response to ground motions 

- Decreasing sensitivity 

- PSD < NLNM 

- Seismogram counts > 0 
Half a double-ended output Damaged differential output system 

conductor 
- PSD drops  6 dB 

- Halved seismogram amplitude 

Unintended pulse records Seismometer transient pulses High-amplitude long-period seismogram waveforms 
Short-period mode lock Simultaneous use of control lines PSD < NLNM (period > 1s) 

Early failure sign Sensor moisture and corrosion High-amplitude, unstable seismogram signals 

UVW mode lock - Mixer faults 
- Bad configuration logic 

Relatively low vertical PSD component 

Telemetry dropouts Time-series mean and trend removal Straight PSD lines 

Free oscillation Force-feedback mechanism failure - Seismogram oscillatory pulses 
- PSD > NHNM (with periodic noise) 

Analog telemetry overload or 

short-period mass lock 

- Telemetry issues 

- Sensor mass locked to one side 

- PSD < NLNM 

- PSD similar to digitizer noises convolved with 
short-period response 

Degraded response Corrosion in feedback boxes High-amplitude seismogram signals 
Poorly characterized response Modified feedback electronics Unmatched seismometer response 

Vacuum loss Pressure vessel leakage - Seismogram disturbances 

- Elevated vertical noise level after disturbance 
Spurious high-frequency signals Problematic gain ranging Seismogram spikes 

Clipped signals - Problematic gain ranging 

- Gain ranging decoding faults 

Flat seismogram amplitudes 

Calibration during an earthquake Disruptions due to calibration pulses Unmatched earthquake seismogram 

Timing error Timing component faults Significant time differences 

 
 

Systematic fault pattern analysis demonstrates that seismometer malfunctions produce distinct 

diagnostic signatures across multiple signal domains. Table 1 reveals that seismometer malfunctions can be 

reliably identified through systematic examination of both time domain and frequency domain signal 

characteristics, with many fault types producing unique combinations of temporal and spectral anomalies. 

Time domain indicators include abrupt amplitude changes, waveform distortions, timing inconsistencies, and 

spurious transient signals. Frequency domain indicators encompass systematic shifts in noise power levels, 

appearance of periodic noise components, and deviations from established noise model predictions. The 

multi-modal nature of these diagnostic indicators necessitates extracting comprehensive feature sets that 

capture both temporal and spectral characteristics, providing the rich input data required for effective 

machine learning-based fault classification algorithms. 
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2.3.  General data-driven predictive maintenance architecture 

This section thoroughly explains the general architecture of data-driven predictive maintenance 

frameworks established for industrial systems and electronic instruments in previous studies. Generally, 

predictive maintenance consists of four fundamental stages: data acquisition, data processing, fault diagnosis, 

and fault prognosis, as illustrated in Figure 1 [27], [28]. First, the data acquisition process obtains condition 

monitoring data from sensors and systems, historical maintenance records, and event logs. Then, the acquired 

data undergoes cleaning and analysis during the processing stage. Data cleaning removes errors, noise 

artifacts, and irrelevant data segments, while data analysis extracts meaningful health features from the 

condition monitoring data and identifies possible system fault modes from historical event records. 

 

 

 
 

Figure 1. General data-driven predictive maintenance architecture 

 

 

Next, the extracted features are fed into the fault diagnosis model, which generates comprehensive 

assessments including the current health state, specific fault type, and severity grade of the faulty 

instruments. Combined with the original extracted features from the condition monitoring data, these 

diagnostic outputs are then analyzed by the fault prognosis model to estimate the system is RUL. 

Maintenance technicians can use the integrated results from fault diagnosis and prognosis to develop accurate 

and precise maintenance strategies for problematic instruments, optimizing timing and resource allocation 

[29]. Furthermore, more advanced predictive maintenance systems incorporate automated maintenance 

strategy decision-making stages that generate specific recommendations based on the diagnosis and 

prognosis results [30], [31]. The specific fault diagnosis and prognosis methods proposed in previous studies 

will be reviewed in detail in section 4. 

 

 

3. METHODS 

3.1.  Review protocol 

The review protocol was designed to address the interdisciplinary nature of predictive maintenance 

and seismological instrumentation, requiring integration of knowledge from machine learning (ML) 

engineering, sensor measurements, and geophysics domains. Therefore, this study employs a systematic 

literature review methodology that ensures comprehensive coverage of these topics while maintaining 

reproducibility and minimizing selection bias. To achieve this goal, the search strategy encompassed research 

articles from reputable databases, including Google Scholar, Scopus, IEEE XPLORE, ScienceDirect, 

Springer, MDPI, IAES, and specialized repositories from the Seismological Society of America. The search 

was limited to publications from 2005 to 2025, emphasizing the most recent five years to capture current 

advances in machine learning algorithms and predictive maintenance frameworks. Figure 2 demonstrates an 

example of reference keyword and date filtering strategy in the International Journal of Electrical and 

Computer Engineering (IJECE) archive within the IAES database, limiting results to publications from 

January 2021 to August 2025.  
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Figure 2. Search parameters setup for fault detection literature (2021-2025), taken from [32] 

 

 

The search employed appropriate keyword combinations to capture relevant studies across multiple 

domains. Primary search terms included combinations of: “seismometer faults,” “sensor faults,” “predictive 

maintenance,” “fault detection,” “fault isolation,” “fault identification,” “RUL estimation,” “seismic data 

quality,” “machine learning classification,” and “machine learning regression.” Additional searches 

incorporated specific algorithm names (SVM, ANN, Random Forest, and LSTM) and application domains 

(health monitoring, system diagnosis). Each database was searched using its native search interface, with 

keywords adapted to optimize results for each platform’s search algorithm.  

 

3.2.  Literature analysis and synthesis framework  

A comprehensive literature analysis framework was developed to systematically capture, evaluate, 

and synthesize relevant information from selected studies across predictive maintenance, machine learning, 

and seismic data quality assessment domains. Figure 3 presents the four categories of criteria used for 

literature analysis in this study. 

 

 

 
 

Figure 3. Literature analysis framework 

 

 

The first category is the source metadata, which comprises publication year (as explained 

previously), the journal database that published the studies (reputable sources are mandatory), and 

geographic origin, which is not directly relevant provided the study is written in English. The second aspect, 

covers technical specifications of the studies, including the scientific methodology (e.g., statistics, machine 

learning), specific algorithms (e.g., linear regression, support vector machine), dataset characteristics (e.g. 

simulation results, experiment data), and model performance metrics (e.g., accuracy, error, loss). The third 

criterion examines implementation details, including computational requirements (e.g., hardware 

specifications, software packages), computational time for training and inference (rarely reported in studies), 

and feasibility for real-time implementation. Studies requiring excessive computational resources or being 

too demanding are excluded. Finally, the fourth category addresses practical considerations, including 

method complexity (e.g., model architecture, hyperparameters), validation strategies (methodological 

justification), reproducibility (implementation feasibility), and study limitations (e.g., weaknesses and 

research gaps).  

Using this comprehensive analytical framework, each selected study underwent rigorous quality 

assessment based on methodological rigor, empirical validation quality, and practical applicability to 

seismometer health monitoring applications. The assessment framework employed five primary criteria:  

i) clarity and completeness of methodology description sufficient for replication, ii) appropriateness of 
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datasets and experimental design for the stated research objectives, iii) statistical significance and reliability 

of reported performance results, iv) comparative evaluation against conventional methods or baseline 

approaches, and v) critical discussion of limitations and potential sources of bias or error. Studies lacking 

these fundamental quality indicators were excluded from primary analysis but retained for contextual 

reference where they provided relevant background information or identified important research gaps. 

 

3.3.  Predictive maintenance framework proposal 

Previous literature reviews have been published to explore current advances in predictive 

maintenance for manufacturing and industrial systems in Industry 4.0, without actually proposing novel 

frameworks for specific sensor applications [33]–[35]. While these conventional review approaches provide 

valuable overviews of existing methodologies, they typically focus on broad industrial applications without 

addressing the unique requirements of safety-critical scientific instrumentation. In contrast, this study 

employs a novel methodology that combines systematic literature analysis from multiple engineering 

domains with application-specific framework development. Our approach differs from conventional reviews 

by: i) integrating knowledge from both predictive maintenance engineering and seismological 

instrumentation domains, ii) systematically evaluating the applicability of general predictive maintenance 

methods to seismometer-specific fault scenarios, and iii) synthesizing findings into a comprehensive, 

implementable framework rather than merely cataloging existing approaches. 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Fault diagnosis 

This section explains the basic concept of fault diagnosis and reviews the proposed methods in 

previous relevant studies. To begin with, fault diagnosis is an essential tool in measurement and control 

system maintenance since it informs the maintenance personnel about the fault that occurred in the 

system [36], [37]. Diagnosis is formed by fault detection, isolation, and identification [38], [39]. Fault 

detection is a reporting system of anomaly occurrence in a sensor's operating condition. Fault isolation 

specifies the type of fault or the faulty component of the system, while fault identification quantifies the 

severity of the fault [40].    

 

4.1.1. Fault detection 

The conventional data-driven fault detection method comprises a condition data monitoring 

algorithm (e.g., threshold limits implementation) and anomaly/fault reporting as the health-state monitoring 

protocol [41], [42]. However, the latest studies often use machine learning binary classifiers to detect faults 

in the observed system, due to their robustness and adaptive learning abilities [43], [44]. During the making 

of this study, there has been no specific research on seismometer fault detection, although predictive 

maintenance has been widely applied for various industrial systems. This section presents the general fault 

detection schemes proposed in previous studies. 

Comparative analysis of fault detection methodologies reveals significant performance advantages 

for machine learning approaches over traditional statistical methods. Table 2 summarizes fault detection 

methods across diverse sensor applications and industrial systems. Machine learning approaches demonstrate 

significantly superior performance to traditional statistical methods for fault detection applications. The 

statistical approaches show considerable variability in performance, with some methods achieving perfect 

detection for specific fault scenarios while completely failing to detect others in different noise conditions. 

For instance, statistical fault detection in wind turbine systems using residual monitoring against a threshold 

achieved successful detection in only one out of four tested scenarios under varying noise conditions, while 

fault probability monitoring in wind energy conversion systems showed detection rates ranging from 95.1% 

to 100% depending on the specific fault type. 

In contrast, machine learning models demonstrate consistently high and stable accuracy across 

different applications, with random forest classifiers achieving 99.4% accuracy for photovoltaic array fault 

detection, artificial neural networks maintaining approximately 97% accuracy for Tennessee Eastman (TE) 

process monitoring, and support vector machine-based residual monitoring successfully detecting faults in 

six out of seven test scenarios for water reactor systems. However, despite the reliability of machine learning-

based fault detection systems, there are particular challenges in implementing them for seismometer health 

monitoring, such as determining the suitable algorithm for seismic data, considering the computational time 

due to the dataset size of the input seismic signals, and choosing the appropriate method to extract 

seismometer health features from seismic signals. 

Although machine learning techniques dominate performance accuracies, statistical approaches 

offer certain advantages that merit consideration. Traditional threshold-based methods provide interpretable 
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results that maintenance personnel can easily understand, whereas machine learning models often function as 

“black boxes.” Additionally, statistical methods require minimal computational resources and can operate 

reliably in remote seismic stations with limited processing power, whereas machine learning models, 

specifically deep learning neural networks, require resource-intensive computational power. 

 

 

Table 2. Summary of fault detection methods 
Approach Observed 

system 
Condition 

monitoring data 
Method Results Reference 

Statistics Chiller plant 

simulation 

temperature, water 

flow 

confidence degree 

monitoring 

against a threshold 

The system succeeded in detecting 

systematic errors. However, when 

there are no measurement errors, the 
confidence degree is lower than the 

minimum threshold, leading to false 

fault notifications. 

[45] 

Statistics Wind 

turbine 

benchmark 

pitch angle, 

torque, and 

angular speed 

test statistic 

monitoring 

against a 
theoretical 

threshold 

Two fault scenarios resulted in 

significant test statistic leaps over the 

constant threshold, meaning the faults 
are perfectly detected. In contrast, the 

other fault scheme failed to be 

detected, since the test statistic value 
stayed under the threshold limit. 

[46] 

Statistics Wind 
turbine 

benchmark 

Wind turbine 
parameters 

Residual 
monitoring 

against a threshold 

Of all the four detection schemes run, 
only one succeeded in detecting all 

the faults in one noise scenario. None 

of the four detection schemes can 
correctly detect all faults in the other 

two noise scenarios. 

[47] 

Statistics Wind 
Energy 

Conversion 

System 

temperature, 
speed 

fault probability 
and confidence 

level comparison 

100% and 95.1% detection rates for 
gearbox air cooler and sensor faults, 

respectively. 

[48] 

Statistics Voltage 

sensor 

simulation 

voltage Measurement 

innovation (MI) 

monitoring 
against the 

allowance interval 

A drastic MI increase or drop is 

generated each time a bias voltage is 

applied. The relative error between 
the estimated and real MI is 2.63% 

under four condition scenarios. 

[49] 

Machine 
Learning 

Photovoltaic 
(PV) array 

simulation 

temperature, 
irradiance, and 3 

PV output 

parameters 

Binary random 
forest classifier 

(RFC) 

The RFC maintained an accuracy of 
99.4%, which surpasses other tested 

machine learning models such as 

SVM, KNN, multilayer perceptron 
(MLP), decision tree, and stochastic 

gradient descent (SGD). 

[50] 

Machine 
Learning 

Tennessee 
Eastman 

(TE) 

process 

52 TE process 
measurements 

ANN binary 
classification 

An overall accuracy of about 97% is 
obtained for the model with 3 and 4 

neural network layers. 

[51] 

Machine 

learning 

Water 

reactor 

simulation 

temperature, 

reactivity 

Residual 

monitoring 

against threshold 
limits 

Six of the seven residuals detected the 

fault when a scheme was simulated. 

[52] 

Machine 

learning 

Nuclear 

Power Plant 

Simulation 

41 simulated 

variables 

consistency index 

monitoring 

against the error 

allowance 

100% sensitivity is obtained with a 

10% error allowance and a 0.5 

consistency threshold. 

[53] 

 

 

Despite the proven effectiveness of machine learning multi-class classification in fault isolation 

across various industrial applications, several critical challenges must be addressed when developing 

seismometer-specific fault isolation systems. The primary challenge lies in acquiring comprehensive labeled 

training datasets, which requires extensive correlation analysis between seismic monitoring data and 

historical maintenance records to establish ground truth fault classifications. Unlike conventional industrial 

sensors, where fault conditions can be artificially induced for dataset generation, seismometers operate in 

critical earthquake monitoring networks where deliberate fault introduction is impractical and potentially 

dangerous to public safety systems. Furthermore, developing an appropriate fault isolation framework 

presents unique complexities, as the 16 identified seismometer fault categories must be validated against 

actual field failure events to ensure the classification model accurately reflects real-world operational 

conditions. 
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4.1.2. Fault isolation 

Fault isolation specifies the type of fault or declares a faulty component within a system [54], [55]. 

Machine learning multi-class classification is the most common method for building a fault isolation system. 

Table 3 summarizes the fault isolation methods, demonstrating exceptional performance consistency across 

different instrumentation systems and operational conditions. The results reveal that machine learning multi-

class classifiers achieve outstanding accuracy rates, with multiple studies reporting perfect 100% 

classification performance for bearing condition monitoring using One-vs-all SVM classifiers, temperature 

sensor fault isolation using polynomial and RBF kernel functions, random forest classifiers for bearing state 

identification, and motor fault detection using One-vs-one SVM approaches. 

 

 

Table 3. Summary of fault isolation methods 
Condition 

monitoring data 

Method Class labels Performance Reference 

Vibrations One-vs-all SVM Multi-class 

classifier 

Five bearing conditions 100% classification rate [56] 

Temperature One-vs-all SVM Multi-class 

classifier with polynomial 
and RBF kernel function 

Six temperature sensor 

states 

100% classification rate [57] 

Vibrations RF and RNN classifiers Four bearing states 100% RF classification 

rate 

[58] 

Sounds One-vs-one SVM multi-

class classifier for 
helicopter and duo copter 

motors 

Five motor conditions 100% accuracy [59] 

Flow rate, water 
level 

KGKNN multi-class 
classifier 

3 DTS200 three-tank 
system conditions 

99% overall accuracy [60] 

Temperature, 

irradiance, 3 PV 
output parameters 

RF multi-class classifier 4 PV array faults 99.4% overall accuracy [50] 

Temperature, 

speed, and 
pressure 

ANN, KNN, and DT Multi-

class classifiers 

12 gas turbine 

degradation conditions 

99% accuracy [61] 

Temperature and 

reactivity 

LSTM multi-class classifier Six water reactor 

conditions 

100% classification rate [52] 

 

 

4.1.3. Fault identification 

Fault identification estimates the observed system's fault severity [62], [63] It is also the final step of 

fault diagnosis, which informs the most critical sensor condition parameter. The model built for fault 

identification declares the damage to the system as a state in a defined hierarchical order. Like standard fault 

detection and isolation methods, supervised learning models are also implementable for fault identification 

tasks. However, instead of declaring the fault type, each label in the training data of a fault identification 

model informs how damaged the system is. 

Fault identification methodologies demonstrate clear algorithmic preferences that reveal both the 

advantages of machine learning approaches and the limitations of traditional statistical methods for severity 

assessment applications. Table 4 comprehensively summarizes fault identification methods across diverse 

industrial applications. The comparative analysis demonstrates that fault identification methodologies share 

substantial similarities with fault isolation approaches, as both processes predominantly employ machine 

learning-based multi-class classifiers as their core decision-making algorithms. However, a critical 

distinction emerges when examining the single statistical approach included in the review: the gas ratio 

evaluation technique for electrical insulation deterioration assessment. This statistical method exhibits 

inherent limitations, as it requires distinct evaluation techniques tailored to each specific deterioration type, 

making it unsuitable for generalized fault identification frameworks where multiple fault severities must be 

assessed using a unified approach. 

In contrast, machine learning approaches demonstrate superior versatility and performance 

consistency across applications. Decision tree classifiers achieve 98% and 95% classification rates for 

training and testing datasets for variable refrigerant flow systems, while One-vs-one SVM multi-class 

classifiers reach 99.3% accuracy for microgrid fault level identification. LSTM classifiers excel in temporal 

severity pattern recognition, achieving 98.92% accuracy across 12 different severity levels in induction 

machine systems, and Multilayer Perceptron classifiers demonstrate exceptional precision with below 0.3% 

classification errors for Li-ion battery State of Health assessment. 
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Table 4. Summary of fault identification methods 
Condition monitoring 

data 
Method Class labels Performance Reference 

Gas ratio Statistical mean, 

standard deviation, and 

range analysis using 
Rogers, Doernenburg, 

IEC, and CIGRE gas 

ratio evaluation 
techniques 

Three electrical 

insulation deterioration 

Each deterioration type has its 

own suitable gas ratio evaluation 

technique, based on how the 
three statistical values are 

isolated from the other 

techniques. 

[64] 

Temperature Decision tree classifier Five fouling fault 

severities of the Variable 
Refrigerant Flow (VRF) 

outdoor unit 

98% and 95% classification rates 

for training and testing datasets, 
respectively 

[65] 

Current, voltage, and 
power 

One-vs-one SVM multi-
class classifier 

Three microgrid fault 
levels 

99.3% accuracy [66] 

Motor current LSTM classifier 12 severity levels of the 

induction machine 

system 

98.92% accuracy [67] 

Voltage, current, and 

temperature 

MLP classifier Five Li-ion battery State 

of Health (SOH) 

Below 0.3% of classification 

errors 

[68] 

Pressure Physics informed neural 

network (PINN) 

Four axial piston pump 

conditions 

100% accuracy [69] 

 

 

These comprehensive prior studies demonstrate the significant potential for implementing machine 

learning classifiers and regressors to develop robust data-driven fault severity identification systems for 

operational seismometers. The consistently high performance achieved across diverse sensor applications 

suggests that similar performance levels could be attainable for seismometer applications with appropriate 

dataset development and feature engineering. However, the primary implementation challenge extends 

beyond algorithmic selection to the fundamental definition of severity classification schemes that accurately 

reflect seismometer health degradation patterns. Unlike industrial applications, where severity levels can be 

defined through controlled testing or standardized performance metrics, seismometer severity classification 

requires categorical grades representing the operational health state based on extensive analysis of historical 

maintenance records spanning decades of network operation. 

 

4.2.  Fault prognosis 

Fault prognosis represents the most advanced stage of predictive maintenance, focusing on the early 

prediction of system potential failure and the quantitative estimation of RUL before critical breakdown 

occurs [70], [71]. This sophisticated predictive capability enables maintenance personnel to transition from 

reactive repair strategies to proactive maintenance scheduling, optimizing both system availability and 

resource allocation through precise timing of repair or component replacement interventions [72], [73]. 

Unlike fault diagnosis, which addresses current system health status, fault prognosis provides forward-

looking insights for strategic maintenance planning and operational risk management. 

The evolution of fault prognosis methodologies demonstrates a clear technological progression from 

basic statistical approaches to advanced machine learning frameworks, corresponding improvements in 

prediction accuracy and operational capability. Table 5 comprehensively summarizes fault prognosis 

methods across diverse industrial applications. The progression demonstrates marked improvements in both 

methodological sophistication and performance capabilities. The theoretical linear regression approach 

represents the earliest generation of RUL estimation, relying on experience-based determination without 

quantitative performance metrics. In contrast, modern approaches showcase substantial advancement: Deep 

Reinforcement Learning achieves RMSE values ranging from 12.17 to 18.87 across different operational 

complexities, while physics guided long short-term memory networks demonstrate exceptional accuracy with 

R² values of 0.902 and mean absolute error of 0.0717.  

Furthermore, the LSTM-based hybrid approach represents the current state-of-the-art, achieving 

high classification accuracy (0.96 and 0.86) for degradation stage identification and low regression errors 

(4.21 and 5.21 RMSE) for continuous RUL prediction, indicating the effectiveness of combining 

classification and regression methodologies. The success of the machine learning-based RUL estimation 

approaches lies in robust quantification methodologies that establish ground truth for algorithm training and 

validation, which presents the fundamental challenge for practical application to operational seismometers in 

seismic monitoring networks. 

The development of robust machine learning regression models for seismometer prognosis 

applications faces a fundamental and critical challenge: the requirement for comprehensive training datasets 

that capture complete degradation trajectories across all fault categories throughout the entire operational 
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lifecycle of seismometer systems. This data scarcity represents the most significant barrier to practical 

implementation, as effective RUL estimation models require extensive historical records that correlate health 

feature evolution with actual failure timelines, documenting the progressive deterioration patterns from initial 

healthy operation through various degradation stages to ultimate component failure. However, the reality of 

operational seismic networks often conflicts with these data requirements, as preventive maintenance 

protocols may lead to sensor replacements before complete degradation cycles can be captured.  

 

 

Table 5. Summary of fault prognosis methods 
Condition 

monitoring data 
RUL estimation method RUL quantification method Performance Reference 

Theoretical 

condition 
monitoring data 

linear regression between 

data deviation and 
historical RUL 

experience-based determination unstated [74] 

Vibrations of 

turbofan engines 

Deep reinforcement 

learning (DRL) 

C-MAPSS turbofan engine 

health division into two stages: 
(early, linear degradation) 

RMSE: 12.17 (FD001), 

16.28 (FD002), 13.09 
(FD003), 18.87 (FD004). 

[75] 

Bearing vibrations SVM classifier Analysis of historical failure 

patterns 

94.4% of average prediction 

accuracy 

[76] 

Bearing vibrations Physics guided long 

short-term memory 

(PGLSTM) 

unstated 0.0717 of MAE, 0.0866 of 

RMSE, 0.902 of 𝑅2 and 56 of 

consistency accuracy 

[77] 

Voltage, 
temperature 

LSTM regression unstated 2 to 6 days of the least 
prediction deviation 

[78] 

21 sensor 

measurements 

LSTM classification and 

regression 

The degradation process is 

divided into three stages 

0.96 & 0.86 classification 

accuracies and 4.21 and 5.21 
regression RMSEs 

[79] 

 

 

4.3.  Seismic data quality criteria 

Seismic data quality criteria represent a comprehensive set of statistical and signal processing 

parameters specifically designed to determine seismometers’ operational health and measurement 

performance through analysis of recorded seismic signals [80]. These criteria are fundamental health 

indicators because they capture measurable deviations from expected seismometer behavior that correlate 

directly with specific fault conditions, sensor degradation patterns, and environmental interference effects 

[81]. Thus, transforming raw seismic recordings into quantitative health metrics enables systematic 

instrument performance monitoring and provides the essential feature space required for machine learning-

based fault diagnosis algorithms. 

Analyzing well-established seismic data quality criteria is critical, since these criteria can be 

candidates for relevant seismometer health features. Table 6 shows the previous studies and the 

corresponding seismic data quality criteria, revealing a diverse landscape of methodological approaches that 

span single-sensor and multiple-sensor analysis techniques with varying complexity and practical 

applicability. Single-sensor criteria analysis focuses exclusively on data from individual seismometers, 

employing three primary analytical approaches: time-domain seismogram comparison with synthetically 

generated ideal signals to detect amplitude and waveform distortions, frequency-domain power spectral 

density comparison with established noise models to identify spectral anomalies, and systematic instrument 

calibration procedures to quantify sensor performance degradation over time.  

The calibration methodologies encompass relative and absolute approaches, where relative 

calibration utilizes the seismometer’s built-in calibration coil to simulate ground motion and measure 

sensitivity changes remotely. On the other hand, absolute calibration requires physical removal of the 

seismometer from its installation platform for testing on precision vibrating tables that mechanically excite 

the sensor across its operational frequency range, enabling comprehensive transfer function analysis and 

comparison with original manufacturer specifications. However, both calibration methods present significant 

operational risks, as they temporarily remove the seismometer's ability to detect genuine ground motion by 

overriding normal signal acquisition with calibration inputs, resulting in critical data loss that could 

compromise earthquake detection capabilities during major seismic events. 

In contrast, multiple-sensor analysis employs comparative methodologies that require an additional 

operational seismometer to serve as a performance reference benchmark, with the reference instrument 

typically being either a co-located sensor within the same seismic station or a sensor from the nearest 

neighboring station experiencing similar ground motion conditions. These comparative analysis techniques 

operate across both frequency and time domains, utilizing frequency-domain approaches such as median 

power-level difference calculations and time-domain methods including root mean square (RMS) amplitude 
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difference analysis. Furthermore, time-domain analysis also involves a comparative statistical framework 

encompassing multiple quantitative metrics designed to capture different aspects of sensor health, including 

cross-correlation coefficients, amplitude ratio, and lag time error.  

 

 

Table 6. Summary of seismic data quality criteria 
Sensor analysis methods Signal type Method Criteria Reference 

Single-sensor time domain seismogram comparison amplitude scaling-coefficient [82] 
Single-sensor frequency domain power-level comparison mean power-level differences [83] 

Multiple co-located 

sensors 

frequency domain power-level comparison median power-level differences [83] 

Single-sensor time domain relative calibration sensitivity change [84] 

Single-sensor time domain relative calibration transfer-function change [85] 

Multiple co-located 
sensors 

time domain seismogram comparison RMS amplitude differences [86] 

Multiple stations time domain seismogram comparison cross-correlation coefficient, 

amplitude ratio, and lag time error. 

[87] 

Single-sensor time domain absolute calibration sensitivity change [88] 

 

 

Both single-sensor and multiple-sensor analysis methods exhibit distinct advantages and limitations 

that significantly influence their practical applicability in operational seismic monitoring environments. 

Single-sensor approaches, such as power-level comparison using long-term Power Spectral Density 

recordings as reference baselines, offer universal deployment capability across seismic networks regardless 

of station configuration. However, their effectiveness depends critically on accurately identifying and 

selecting reference periods during confirmed fault-free seismometer operation, which can be challenging to 

verify retrospectively without independent validation methods. 

Multiple-sensor comparative analysis provides enhanced reliability and recognition capability 

through comparative analysis, as co-located sensors experience nearly identical ground motion inputs that 

enable robust separation of sensor-specific anomalies from genuine seismic phenomena. However, the 

practical implementation of multiple-sensor approaches faces significant logistical constraints in real-world 

deployments, including the substantial cost implications of deploying redundant instrumentation, the 

operational complexity of maintaining multiple sensors per station, and the considerable challenge of 

ensuring benchmark instrument operational health [89]. Furthermore, multiple-station analysis introduces 

additional concerns when reference sensors are located at distant observational points, as variations in local 

geological conditions including bedrock composition, sedimentary layer thickness, and soil characteristics 

can significantly alter ground motion amplification and frequency content, causing legitimate site-specific 

seismic response differences that may be incorrectly interpreted as sensor faults rather than genuine 

geological effects [90], [91]. 

 

4.4.  Possible seismometer predictive maintenance framework  

Seismometer predictive maintenance represents an emerging and highly promising research domain 

that addresses critical gaps in current seismic network operation and maintenance practices, offering 

significant potential for enhancing data quality assurance and operational efficiency across global seismic 

monitoring infrastructure. Based on our comprehensive review of predictive maintenance methodologies and 

seismic data quality analysis techniques, the development of robust predictive maintenance systems for 

seismometers requires the integration of two fundamental data components: real-time seismic condition 

monitoring data that provides continuous health indicators, and comprehensive historical seismometer 

maintenance records that enable supervised learning of fault pattern recognition. The selection of appropriate 

input signal types, whether time-domain seismograms, frequency-domain Power Spectral Density 

representations, or hybrid multi-domain features, emerges as a critical design decision that fundamentally 

determines the applicable range of seismic data quality monitoring methods and influences the effectiveness 

of machine learning algorithms for fault diagnosis and prognosis. 

Rather than prescribing specific algorithmic implementations that would require extensive empirical 

validation with seismometer-specific datasets currently unavailable in the literature, we propose a generalized 

predictive maintenance framework architecture that provides systematic guidance for implementation while 

acknowledging that optimal feature extraction methods, machine learning model selection, and parameter 

optimization must be tailored to individual network characteristics, available training data, computational 

resources, and operational requirements of specific seismic monitoring applications. This framework-based 

approach, illustrated in Figure 4, establishes the foundational architecture and methodological principles 

necessary for successful seismometer predictive maintenance deployment while maintaining the flexibility 

required for adaptation across diverse seismological environments and technological constraints. 
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Figure 4. A possible seismometer predictive maintenance framework 

 

 

The proposed framework requires two fundamental data types for operational effectiveness: 

continuous seismic recordings that serve as real-time condition monitoring data, and comprehensive 

seismometer maintenance history records that provide labeled examples of fault events, failure modes, and 

degradation patterns necessary for supervised machine learning algorithm training. The data acquisition stage 

should systematically collect and organize these diverse data sources from the seismic network database, 

ensuring temporal alignment and metadata consistency required for subsequent analysis procedures. The 

quality and completeness of these integrated datasets directly determine the framework's diagnostic accuracy 

and prognostic reliability, making robust data management protocols essential for successful predictive 

maintenance implementation. 

The data processing pipeline encompasses data cleaning operations to remove outliers, artifacts, and 

missing values, and sophisticated feature analysis procedures that transform raw seismic signals and 

maintenance records into quantitative health indicators suitable for machine learning algorithm input. The 

feature extraction process generates seismic data quality criteria that serve as the primary health monitoring 

parameters, with the specific selection of features, whether time-domain characteristics, frequency-domain 

spectral properties, or both, is determined by the actual database characteristics, available computational 

resources, and specific operational requirements of the target seismic observation network.  

For example, stations equipped with multiple co-located seismometers, comparative analysis 

techniques utilizing cross-sensor correlation and differential measurements may provide optimal performance 

due to the availability of reference benchmarks, provided that the health and calibration status of reference 

sensors can be independently verified and maintained. Conversely, for single-sensor station configurations 

where co-located reference instruments are unavailable, power spectral density comparative analysis utilizing 

either long-term historical spectral baselines or established standard noise models (such as the New Low 

Noise Model and New High Noise Model) represents the most practical and operationally viable approach 

for health monitoring implementation. The latter methodology offers significant advantages over alternative 

single-sensor techniques, as it avoids the computational complexity and modeling uncertainties associated 

with synthetic seismogram generation and comparison, while eliminating the operational disruptions and 

measurement interruptions inherent in calibration-based assessment procedures.  
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The extracted health features, which serve as quantitative representations of normal seismometer 

operational characteristics and various failure mode signatures, are utilized to train supervised machine 

learning models within the fault diagnosis subsystem through a hierarchical three-step classification 

approach. During operational deployment, the framework continuously processes real-time seismic 

recordings as test datasets, applying the trained binary classification model to detect the presence of fault 

conditions or anomalous behavior patterns that deviate from established normal operational baselines. Upon 

detection of a fault or anomaly, the system automatically proceeds to the fault isolation step, where a 

supervised multi-class classifier analyzes the specific health feature patterns to determine the exact fault type 

or the underlying cause responsible for the detected anomaly. Subsequently, the fault identification module 

employs an additional multi-class classification model to assess the fault condition's severity level and 

operational impact. 

The framework deliberately maintains algorithmic flexibility by not prescribing specific machine 

learning implementations for each classification step, recognizing that optimal algorithm selection depends 

critically on dataset characteristics, computational constraints, real-time performance requirements, and the 

specific operational environment of individual seismic networks. This design philosophy acknowledges that 

comprehensive comparative studies evaluating different supervised classification algorithms, including 

support vector machines, decision trees, neural networks, and ensemble learning methods, must be conducted 

using actual seismometer fault datasets and validated under specific network conditions before establishing 

definitive algorithmic recommendations. 

The fault prognosis module represents the final stage of the predictive maintenance framework, 

employing fundamentally different machine learning methodologies compared to the classification-based 

fault diagnosis subsystem. Unlike diagnostic procedures that rely primarily on supervised classification 

algorithms to categorize fault types and severity levels, fault prognosis utilizes machine learning regression 

models to estimate the RUL of seismometer components, as the temporal prediction of equipment failure 

inherently requires continuous numerical output rather than discrete categorical classifications. The 

regression models are trained using a comprehensive feature set that integrates both the extracted seismic 

data quality criteria derived from real-time recordings and the diagnostic outputs from the fault detection, 

isolation, and identification stages, enabling the prognosis system to leverage both current operational health 

indicators and identified fault progression patterns for accurate RUL estimation. 

The development of effective RUL estimation models requires comprehensive training datasets 

that capture the complete degradation trajectory of seismometers from initial healthy operation through 

progressive deterioration to final failure to establish quantitative relationships between feature evolution 

patterns and remaining operational time. These historical datasets must encompass diverse failure modes 

and environmental conditions to ensure robust model generalization, presenting a significant challenge  

for seismometer applications where complete run-to-failure data remains scarce due to the extended 

operational lifespans of seismic instrumentation and prevalent preventive maintenance practices that 

typically intervene before total equipment failure occurs. Some of the candidate regression algorithms that 

are potentially applicable for RUL estimation include long short-term memory (LSTM) networks for 

capturing temporal degradation patterns, support vector regression for handling high-dimensional feature 

spaces, and ensemble methods such as Random Forest regression for robust performance across diverse 

fault scenarios [92]–[94]. 

 

4.5.  Implementation challenges and future impacts 

The successful deployment of seismometer predictive maintenance faces several critical challenges 

that represent priority areas for future research development. The most significant limitation involves the 

scarcity of comprehensive training datasets that capture complete seismometer degradation cycles from 

healthy operation through progressive failure, necessitating robust data transfer and engineering across the 

observed seismic networks. Algorithm selection and optimization require extensive comparative studies 

using actual seismometer fault datasets to establish performance benchmarks and develop systematic 

selection protocols tailored to diverse operational environments and computational constraints [95]. 

Integrating existing seismic network infrastructure demands careful consideration of real-time processing 

requirements, data flow compatibility, and validation protocols appropriate for safety-critical earthquake 

monitoring applications. 

Nevertheless, the proposed framework addresses a critical gap in seismological instrumentation 

maintenance while establishing principles applicable to broader scientific monitoring equipment domains, 

including accelerometers and micro-electro-mechanical system (MEMS) seismometers [96], [97]. Successful 

implementation could significantly enhance seismic data quality assurance, reduce operational costs through 

optimized maintenance scheduling, and improve earthquake early warning system reliability through 

proactive fault prevention. Furthermore, future work should focus on developing comprehensive seismometer 

fault datasets through controlled laboratory experiments and field data collection campaigns, conducting 
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systematic algorithm comparison studies across diverse seismometer types and operational environments, and 

establishing standardized validation methodologies for safety-critical applications. 

 

 

5. CONCLUSION 

This study presents the first comprehensive machine learning-based predictive maintenance 

framework designed explicitly for seismometer health monitoring, developed through a systematic review 

and analysis of relevant methodologies from predictive maintenance engineering, seismic data quality 

assessment, and machine learning applications. The research addresses a critical gap at the intersection of 

electrical engineering, signal processing, artificial intelligence, and instrumentation engineering by 

demonstrating how advanced predictive maintenance principles can be systematically adapted for 

seismological monitoring systems, thereby tackling fundamental challenges in sensor network reliability and 

automated health assessment that are central to modern engineering practice. The proposed framework 

integrates two primary operational stages: fault diagnosis and fault prognosis, each employing distinct but 

complementary machine learning approaches specifically tailored to address the unique operational 

requirements of seismometer health monitoring in safety-critical earthquake early warning systems. 

The fault diagnosis subsystem implements a hierarchical three-step methodology encompassing 

fault detection through binary classification algorithms to identify anomalous operational conditions, fault 

isolation using multi-class classification techniques to determine specific fault types among the 16 identified 

seismometer failure modes, and fault identification employing severity assessment models to quantify 

operational impact and maintenance urgency. The fault prognosis subsystem utilizes regression-based 

machine learning algorithms to estimate RUL based on temporal health indicator patterns. It implements 

experience-based quantification models to translate abstract temporal predictions into actionable maintenance 

recommendations and sensor health degradation assessments. 

Our comprehensive review of predictive maintenance methodologies reveals that machine learning 

approaches demonstrate superior performance characteristics compared to traditional statistical methods, 

with classification algorithms achieving fault detection accuracies exceeding 95% in multiple applications 

while exhibiting enhanced capability for handling the complex, multi-dimensional nature of various 

instrument health indicators that simple threshold-based monitoring approaches cannot adequately capture. 

The seismic data quality criteria analysis identifies optimal feature extraction strategies that leverage both 

time-domain characteristics (amplitude statistics, cross-correlation coefficients) and frequency-domain 

properties (Power Spectral Density analysis, spectral anomaly detection) as fundamental health indicators for 

machine learning algorithm input. Single-sensor analysis methods offer universal applicability but face 

limitations in distinguishing sensor faults from genuine seismic phenomena, while multiple-sensor 

comparative approaches provide enhanced recognition capability at the cost of increased infrastructure 

complexity and potential geological site effect interference. 

Despite the promising potential demonstrated in this framework, several significant limitations must 

be considered when developing machine learning-based predictive maintenance systems for operational 

seismometers in seismic stations. The most critical constraint involves the scarcity of comprehensive training 

datasets that capture complete seismometer degradation cycles from healthy operation through progressive 

failure. Secondly, machine learning model evaluation necessitates extensive validation protocols using actual 

seismometer fault data across diverse environmental conditions, seismometer types, and operational 

scenarios. Lastly, the computational complexity of real-time machine learning inference for continuous 

health monitoring across large seismic networks presents infrastructure challenges requiring edge computing 

capabilities or cloud-based processing architectures that may not be readily available in remote seismic 

station locations. Integration with existing seismic data acquisition systems demands careful consideration of 

data format compatibility, latency constraints for safety-critical earthquake early warning applications, and 

validation requirements for deployment in operational monitoring environments where false alarms could 

undermine system credibility.  
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