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Seismometers are crucial in earthquake and tsunami early warning systems,
since they record ground vibrations due to significant seismic events. The
health condition of a seismometer is strongly related to the measurement of
seismic data quality, making seismometer health condition maintenance
critical. Predictive maintenance is the most advanced control or
measurement system maintenance method, since it informs about the faults
that have occurred in the system and the remaining lifetime of the system.
However, no research has proposed a seismometer predictive maintenance
framework. Thus, this article reviews general predictive maintenance
methods and seismic data quality analysis methods to find the feasibility of
developing a predictive maintenance framework for seismometers in seismic
stations. Based on the review, it is found that such a framework can be built
under particular challenges and requirements. Finally, machine learning is
the best approach to build the classification and regression models in the

Seismometer predictive maintenance framework due to its robustness and high prediction
accuracy.
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1. INTRODUCTION

Seismometers serve as the primary measurement instrument of global earthquake monitoring
systems, recording ground vibrations that enable early warning systems and scientific analysis for
earthquakes, tsunamis, or other major seismic events [1]-[3]. The force-feedback seismometer, featuring a
suspended reference mass and sophisticated feedback mechanism, represents modern seismic networks' most
widely deployed sensor technology [4]. However, the reliability of seismic data fundamentally depends on
the health condition of these sensitive instruments, as faulty sensors can generate spurious signals, leading to
false earthquake detections or missed critical events [5].

Current seismometer maintenance practices in Indonesia exemplify the limitations of traditional
approaches. The Indonesian Meteorological, Climatological, and Geophysical Agency (BMKG), which
manages hundreds of seismic observation stations in the Indonesian-Tsunami Early Warning System (Ina-
TEWS) still employs seismometer maintenance procedures that rely predominantly on reactive or scheduled
approaches, where repairs occur after equipment failure or at predetermined intervals regardless of actual
device condition [6]. Previous studies in industrial maintenance concluded that both reactive and preventive
repair strategies result in unnecessary downtime, increased operational costs, and potential data quality
degradation during undetected fault periods [7], [8]. While these limitations have encouraged seismic
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network technicians to develop additional maintenance procedures for assessing seismometer health
conditions, including sensitivity shift measurement using sensor calibration and performance degradation
detection using seismic time-series or frequency-domain data comparisons, these approaches remain far from
ideal as they lack in automation and the predictive capabilities of modern maintenance paradigms [9], [10].

Predictive maintenance has emerged as the most advanced maintenance paradigm across various
industrial sectors, leveraging real-time condition monitoring and machine learning algorithms to forecast
equipment failures before they occur [11], [12]. Modern predictive maintenance frameworks integrate fault
diagnosis capabilities, which encompass detection, isolation, and identification, along with prognostic models
that estimate remaining useful life (RUL) [13], [14]. Machine learning techniques, particularly classification
and regression models, have demonstrated superior performance to traditional statistical approaches,
achieving lower downtime and significantly higher prediction accuracies in various applications [15].
However, despite the proven effectiveness of predictive maintenance in industrial automation and control
systems, no comprehensive framework has been developed specifically for seismometer health monitoring in
seismic networks.

Despite the mission-critical nature of continuous seismic monitoring for seismological early
warning systems, the application of modern predictive maintenance methodologies to seismological
instrumentation remains largely unexplored. While extensive research has addressed seismic data quality
analysis methods, these approaches remain disconnected mainly from systematic equipment health
assessment and failure prediction capabilities. This study explores this intersection by providing a
comprehensive review of relevant methodologies to investigate the feasibility of developing a machine
learning-based predictive maintenance framework designed explicitly for seismometers in seismic
monitoring networks, thereby bridging the domains of advanced maintenance engineering and seismological
instrumentation.

Four fundamental research questions collectively bridge the gap between advanced predictive
maintenance methodologies and seismological instrumentation. First, we investigate what established
methods exist for predictive maintenance across industrial applications and how these approaches can be
adapted for sensor-based monitoring systems. Second, we examine the criteria most appropriate for seismic
data quality assessment that can serve as reliable health indicators for machine learning-based fault diagnosis
algorithms. Third, we synthesize findings from both industrial health monitoring and seismic data quality
criteria domains to explore what constitutes a feasible machine learning-based predictive maintenance
framework for seismometers in seismic monitoring stations. Finally, we assess what practical requirements,
implementation challenges, and operational constraints must be addressed to deploy such a framework in
real-world seismological networks successfully. These research questions provide the foundation for our
systematic literature analysis and guide the development of our proposed predictive maintenance
architecture.

To address these research questions systematically and provide comprehensive guidance for
seismometer predictive maintenance development, this review is structured to facilitate theoretical
understanding and practical implementation considerations across diverse seismic observation networks.
Section 1 establishes the research background by examining the critical role of seismometer reliability,
identifying current maintenance limitations, and positioning predictive maintenance as an essential tool in the
seismic sensor maintenance system. Section 2 provides the theoretical foundation by reviewing fundamental
concepts of seismic data analysis, seismometer fault schemes, and general predictive maintenance
architecture. Section 3 presents the review methods for comprehensive literature coverage, including
database selection criteria, search strategies, and analytical frameworks used to synthesize findings from
diverse engineering and seismological domains. Section 4 delivers comprehensive results and critical
discussion by analyzing fault detection, isolation, and identification methods, assessing seismic data quality
criteria as health indicators, and synthesizing these findings into a unified predictive maintenance framework
architecture. Finally, section 5 concludes with implications for future research directions, practical
implementation strategies, and potential challenges.

2. BACKGROUND AND THEORETICAL FOUNDATION
2.1. Seismic signal analysis

Effective seismometer health monitoring requires a comprehensive understanding of seismic signal
characteristics that reflect instrument condition [16]. Thus, seismic signal analysis forms the foundation for
extracting meaningful health indicators from seismometer measurements, as instrument condition directly
influences the characteristics of recorded ground motion data [17]. Modern seismological practice employs
two complementary analytical domains to characterize seismic signals and assess data quality
comprehensively. Understanding these analytical approaches is essential for developing practical predictive
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maintenance algorithms, distinguishing between genuine seismic phenomena and instrument-related
anomalies.

Time-domain analysis provides essential diagnostic capabilities for detecting temporal anomalies in
seismometer performance. It focuses on the temporal characteristics of seismic waveforms and examines the
physical parameters of earth motion, including displacement, velocity, and acceleration amplitudes as
functions of time [18], [19]. This analytical approach enables extracting critical temporal features such as
signal offsets, peak amplitudes, and waveform patterns, making it ideal to detect signals from earthquakes or
other major seismic events.

The second analytical type is the frequency-domain analysis, which transforms temporal seismic
data into spectral representations, most commonly expressed as power spectral density (PSD) [20], [21]. The
spectral analysis of seismic data can be used to characterize signals based on their power levels and also
compare them with the well-known ambient spectral noise models (e.g., new low noise model and new high
noise model) [22], [23]. In order to obtain seismic signal PSD representation, a Fourier Transform must be
applied to the autocorrelation sequence of the time-series signal [24], [25].

2.2. Possible seismometer fault schemes

Predictive maintenance systems require a comprehensive understanding of potential failure modes
to effectively diagnose system faults and predict remaining useful life based on fault type and severity [26].
Therefore, systematic classification of possible fault schemes is crucial before designing a predictive
maintenance architecture for seismometers in seismic monitoring networks. Table 1 shows 16 possible
ground seismometer fault scenarios that can be indicated by the seismic signal patterns [10]. These fault
categories encompass a broad spectrum of failure mechanisms based on their underlying root causes, ranging
from complete sensor failure scenarios such as "dead sensors" with no response to ground motions, to
complex internal mechanical issues including force-feedback mechanism failures leading to "mass-lock" and
"free oscillation" conditions, as well as electrical circuitry defects that manifest as "early failure signs".

Table 1. Seismometer fault schemes and indicators

Fault scheme Cause Indicator
Dead sensor - No response to ground motions - PSD <NLNM
- Decreasing sensitivity - Seismogram counts > 0
Half a double-ended output Damaged differential output system - PSD drops + 6 dB

Unintended pulse records
Short-period mode lock
Early failure sign

UVW mode lock

Telemetry dropouts
Free oscillation

Analog telemetry overload or
short-period mass lock

Degraded response
Poorly characterized response
Vacuum loss

Spurious high-frequency signals

Clipped signals

Calibration during an earthquake

Timing error

conductor

Seismometer transient pulses
Simultaneous use of control lines
Sensor moisture and corrosion

- Mixer faults

- Bad configuration logic
Time-series mean and trend removal
Force-feedback mechanism failure

- Telemetry issues
- Sensor mass locked to one side

Corrosion in feedback boxes
Modified feedback electronics
Pressure vessel leakage

Problematic gain ranging

- Problematic gain ranging

- Gain ranging decoding faults
Disruptions due to calibration pulses
Timing component faults

- Halved seismogram amplitude

High-amplitude long-period seismogram waveforms
PSD < NLNM (period > 1s)

High-amplitude, unstable seismogram signals
Relatively low vertical PSD component

Straight PSD lines

- Seismogram oscillatory pulses

- PSD > NHNM (with periodic noise)

- PSD < NLNM

- PSD similar to digitizer noises convolved with
short-period response

High-amplitude seismogram signals
Unmatched seismometer response

- Seismogram disturbances

- Elevated vertical noise level after disturbance
Seismogram spikes

Flat seismogram amplitudes

Unmatched earthquake seismogram
Significant time differences

Systematic fault pattern analysis demonstrates that seismometer malfunctions produce distinct
diagnostic signatures across multiple signal domains. Table 1 reveals that seismometer malfunctions can be
reliably identified through systematic examination of both time domain and frequency domain signal
characteristics, with many fault types producing unique combinations of temporal and spectral anomalies.
Time domain indicators include abrupt amplitude changes, waveform distortions, timing inconsistencies, and
spurious transient signals. Frequency domain indicators encompass systematic shifts in noise power levels,
appearance of periodic noise components, and deviations from established noise model predictions. The
multi-modal nature of these diagnostic indicators necessitates extracting comprehensive feature sets that
capture both temporal and spectral characteristics, providing the rich input data required for effective
machine learning-based fault classification algorithms.

Machine learning-based predictive maintenance framework for ... (Arifrahman Yustika Putra)



190 a ISSN: 2088-8708

2.3. General data-driven predictive maintenance architecture

This section thoroughly explains the general architecture of data-driven predictive maintenance
frameworks established for industrial systems and electronic instruments in previous studies. Generally,
predictive maintenance consists of four fundamental stages: data acquisition, data processing, fault diagnosis,
and fault prognosis, as illustrated in Figure 1 [27], [28]. First, the data acquisition process obtains condition
monitoring data from sensors and systems, historical maintenance records, and event logs. Then, the acquired
data undergoes cleaning and analysis during the processing stage. Data cleaning removes errors, noise
artifacts, and irrelevant data segments, while data analysis extracts meaningful health features from the
condition monitoring data and identifies possible system fault modes from historical event records.
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Figure 1. General data-driven predictive maintenance architecture

Remaining Useful Life
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Next, the extracted features are fed into the fault diagnosis model, which generates comprehensive
assessments including the current health state, specific fault type, and severity grade of the faulty
instruments. Combined with the original extracted features from the condition monitoring data, these
diagnostic outputs are then analyzed by the fault prognosis model to estimate the system is RUL.
Maintenance technicians can use the integrated results from fault diagnosis and prognosis to develop accurate
and precise maintenance strategies for problematic instruments, optimizing timing and resource allocation
[29]. Furthermore, more advanced predictive maintenance systems incorporate automated maintenance
strategy decision-making stages that generate specific recommendations based on the diagnosis and
prognosis results [30], [31]. The specific fault diagnosis and prognosis methods proposed in previous studies
will be reviewed in detail in section 4.

3. METHODS
3.1. Review protocol

The review protocol was designed to address the interdisciplinary nature of predictive maintenance
and seismological instrumentation, requiring integration of knowledge from machine learning (ML)
engineering, sensor measurements, and geophysics domains. Therefore, this study employs a systematic
literature review methodology that ensures comprehensive coverage of these topics while maintaining
reproducibility and minimizing selection bias. To achieve this goal, the search strategy encompassed research
articles from reputable databases, including Google Scholar, Scopus, IEEE XPLORE, ScienceDirect,
Springer, MDPI, IAES, and specialized repositories from the Seismological Society of America. The search
was limited to publications from 2005 to 2025, emphasizing the most recent five years to capture current
advances in machine learning algorithms and predictive maintenance frameworks. Figure 2 demonstrates an
example of reference keyword and date filtering strategy in the International Journal of Electrical and
Computer Engineering (IJECE) archive within the IAES database, limiting results to publications from
January 2021 to August 2025.
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Search for [| ] m

Advanced filters

Title |Fau|t Detection Delete
From |January v | 01 v | 2021 v Delete
Until | August v |31 v [2025 v Delete

Figure 2. Search parameters setup for fault detection literature (2021-2025), taken from [32]

The search employed appropriate keyword combinations to capture relevant studies across multiple
domains. Primary search terms included combinations of: “seismometer faults,” “sensor faults,” “predictive
maintenance,” “fault detection,” “fault isolation,” “fault identification,” “RUL estimation,” “seismic data
quality,” “machine learning classification,” and “machine learning regression.” Additional searches
incorporated specific algorithm names (SVM, ANN, Random Forest, and LSTM) and application domains
(health monitoring, system diagnosis). Each database was searched using its native search interface, with
keywords adapted to optimize results for each platform’s search algorithm.

EEINT3

3.2. Literature analysis and synthesis framework

A comprehensive literature analysis framework was developed to systematically capture, evaluate,
and synthesize relevant information from selected studies across predictive maintenance, machine learning,
and seismic data quality assessment domains. Figure 3 presents the four categories of criteria used for
literature analysis in this study.

Source metadata Technical specifications Implementation details Practical considerations

Computational .
Methodology Complexity

Algorithm

Dataset _Real-time Reproducibility
implementation

Performance

Publication year

Journal database Compute time Validation

Geographic origin

Limitations

Figure 3. Literature analysis framework

The first category is the source metadata, which comprises publication year (as explained
previously), the journal database that published the studies (reputable sources are mandatory), and
geographic origin, which is not directly relevant provided the study is written in English. The second aspect,
covers technical specifications of the studies, including the scientific methodology (e.g., statistics, machine
learning), specific algorithms (e.g., linear regression, support vector machine), dataset characteristics (e.g.
simulation results, experiment data), and model performance metrics (e.g., accuracy, error, loss). The third
criterion examines implementation details, including computational requirements (e.g., hardware
specifications, software packages), computational time for training and inference (rarely reported in studies),
and feasibility for real-time implementation. Studies requiring excessive computational resources or being
too demanding are excluded. Finally, the fourth category addresses practical considerations, including
method complexity (e.g., model architecture, hyperparameters), validation strategies (methodological
justification), reproducibility (implementation feasibility), and study limitations (e.g., weaknesses and
research gaps).

Using this comprehensive analytical framework, each selected study underwent rigorous quality
assessment based on methodological rigor, empirical validation quality, and practical applicability to
seismometer health monitoring applications. The assessment framework employed five primary criteria:
i) clarity and completeness of methodology description sufficient for replication, ii) appropriateness of
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datasets and experimental design for the stated research objectives, iii) statistical significance and reliability
of reported performance results, iv) comparative evaluation against conventional methods or baseline
approaches, and v) critical discussion of limitations and potential sources of bias or error. Studies lacking
these fundamental quality indicators were excluded from primary analysis but retained for contextual
reference where they provided relevant background information or identified important research gaps.

3.3. Predictive maintenance framework proposal

Previous literature reviews have been published to explore current advances in predictive
maintenance for manufacturing and industrial systems in Industry 4.0, without actually proposing novel
frameworks for specific sensor applications [33]-[35]. While these conventional review approaches provide
valuable overviews of existing methodologies, they typically focus on broad industrial applications without
addressing the unique requirements of safety-critical scientific instrumentation. In contrast, this study
employs a novel methodology that combines systematic literature analysis from multiple engineering
domains with application-specific framework development. Our approach differs from conventional reviews
by: 1) integrating knowledge from both predictive maintenance engineering and seismological
instrumentation domains, ii) systematically evaluating the applicability of general predictive maintenance
methods to seismometer-specific fault scenarios, and iii) synthesizing findings into a comprehensive,
implementable framework rather than merely cataloging existing approaches.

4. RESULTS AND DISCUSSION
4.1. Fault diagnosis

This section explains the basic concept of fault diagnosis and reviews the proposed methods in
previous relevant studies. To begin with, fault diagnosis is an essential tool in measurement and control
system maintenance since it informs the maintenance personnel about the fault that occurred in the
system [36], [37]. Diagnosis is formed by fault detection, isolation, and identification [38], [39]. Fault
detection is a reporting system of anomaly occurrence in a sensor's operating condition. Fault isolation
specifies the type of fault or the faulty component of the system, while fault identification quantifies the
severity of the fault [40].

4.1.1. Fault detection

The conventional data-driven fault detection method comprises a condition data monitoring
algorithm (e.g., threshold limits implementation) and anomaly/fault reporting as the health-state monitoring
protocol [41], [42]. However, the latest studies often use machine learning binary classifiers to detect faults
in the observed system, due to their robustness and adaptive learning abilities [43], [44]. During the making
of this study, there has been no specific research on seismometer fault detection, although predictive
maintenance has been widely applied for various industrial systems. This section presents the general fault
detection schemes proposed in previous studies.

Comparative analysis of fault detection methodologies reveals significant performance advantages
for machine learning approaches over traditional statistical methods. Table 2 summarizes fault detection
methods across diverse sensor applications and industrial systems. Machine learning approaches demonstrate
significantly superior performance to traditional statistical methods for fault detection applications. The
statistical approaches show considerable variability in performance, with some methods achieving perfect
detection for specific fault scenarios while completely failing to detect others in different noise conditions.
For instance, statistical fault detection in wind turbine systems using residual monitoring against a threshold
achieved successful detection in only one out of four tested scenarios under varying noise conditions, while
fault probability monitoring in wind energy conversion systems showed detection rates ranging from 95.1%
to 100% depending on the specific fault type.

In contrast, machine learning models demonstrate consistently high and stable accuracy across
different applications, with random forest classifiers achieving 99.4% accuracy for photovoltaic array fault
detection, artificial neural networks maintaining approximately 97% accuracy for Tennessee Eastman (TE)
process monitoring, and support vector machine-based residual monitoring successfully detecting faults in
six out of seven test scenarios for water reactor systems. However, despite the reliability of machine learning-
based fault detection systems, there are particular challenges in implementing them for seismometer health
monitoring, such as determining the suitable algorithm for seismic data, considering the computational time
due to the dataset size of the input seismic signals, and choosing the appropriate method to extract
seismometer health features from seismic signals.

Although machine learning techniques dominate performance accuracies, statistical approaches
offer certain advantages that merit consideration. Traditional threshold-based methods provide interpretable
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results that maintenance personnel can easily understand, whereas machine learning models often function as
“black boxes.” Additionally, statistical methods require minimal computational resources and can operate
reliably in remote seismic stations with limited processing power, whereas machine learning models,
specifically deep learning neural networks, require resource-intensive computational power.

Table 2. Summary of fault detection methods

Approach Observed Condition Method Results Reference
system monitoring data
Statistics Chiller plant  temperature, water ~ confidence degree The system succeeded in detecting [45]
simulation flow monitoring systematic errors. However, when
against a threshold  there are no measurement errors, the
confidence degree is lower than the
minimum threshold, leading to false
fault notifications.
Statistics Wind pitch angle, test statistic Two fault scenarios resulted in [46]
turbine torque, and monitoring significant test statistic leaps over the
benchmark angular speed against a constant threshold, meaning the faults
theoretical are perfectly detected. In contrast, the
threshold other fault scheme failed to be
detected, since the test statistic value
stayed under the threshold limit.
Statistics Wind Wind turbine Residual Of all the four detection schemes run, [47]
turbine parameters monitoring only one succeeded in detecting all
benchmark against a threshold  the faults in one noise scenario. None
of the four detection schemes can
correctly detect all faults in the other
two noise scenarios.
Statistics Wind temperature, fault probability 100% and 95.1% detection rates for [48]
Energy speed and confidence gearbox air cooler and sensor faults,
Conversion level comparison respectively.
System
Statistics Voltage voltage Measurement A drastic MI increase or drop is [49]
sensor innovation (MI) generated each time a bias voltage is
simulation monitoring applied. The relative error between
against the the estimated and real Ml is 2.63%
allowance interval under four condition scenarios.
Machine Photovoltaic temperature, Binary random The RFC maintained an accuracy of [50]
Learning (PV) array irradiance, and 3 forest classifier 99.4%, which surpasses other tested
simulation PV output (RFC) machine learning models such as
parameters SVM, KNN, multilayer perceptron
(MLP), decision tree, and stochastic
gradient descent (SGD).
Machine Tennessee 52 TE process ANN binary An overall accuracy of about 97% is [51]
Learning Eastman measurements classification obtained for the model with 3 and 4
(TE) neural network layers.
process
Machine Water temperature, Residual Six of the seven residuals detected the [52]
learning reactor reactivity monitoring fault when a scheme was simulated.
simulation against threshold
limits
Machine Nuclear 41 simulated consistency index 100% sensitivity is obtained with a [53]
learning Power Plant variables monitoring 10% error allowance and a 0.5
Simulation against the error consistency threshold.
allowance

Despite the proven effectiveness of machine learning multi-class classification in fault isolation
across various industrial applications, several critical challenges must be addressed when developing
seismometer-specific fault isolation systems. The primary challenge lies in acquiring comprehensive labeled
training datasets, which requires extensive correlation analysis between seismic monitoring data and
historical maintenance records to establish ground truth fault classifications. Unlike conventional industrial
sensors, where fault conditions can be artificially induced for dataset generation, seismometers operate in
critical earthquake monitoring networks where deliberate fault introduction is impractical and potentially
dangerous to public safety systems. Furthermore, developing an appropriate fault isolation framework
presents unique complexities, as the 16 identified seismometer fault categories must be validated against
actual field failure events to ensure the classification model accurately reflects real-world operational
conditions.
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4.1.2. Fault isolation

Fault isolation specifies the type of fault or declares a faulty component within a system [54], [55].
Machine learning multi-class classification is the most common method for building a fault isolation system.
Table 3 summarizes the fault isolation methods, demonstrating exceptional performance consistency across
different instrumentation systems and operational conditions. The results reveal that machine learning multi-
class classifiers achieve outstanding accuracy rates, with multiple studies reporting perfect 100%
classification performance for bearing condition monitoring using One-vs-all SVM classifiers, temperature
sensor fault isolation using polynomial and RBF kernel functions, random forest classifiers for bearing state
identification, and motor fault detection using One-vs-one SVM approaches.

Table 3. Summary of fault isolation methods

Condition Method Class labels Performance Reference
monitoring data
Vibrations One-vs-all SVM Multi-class  Five bearing conditions ~ 100% classification rate [56]
classifier
Temperature One-vs-all SVM Multi-class  Six temperature sensor 100% classification rate [57]
classifier with polynomial states
and RBF kernel function
Vibrations RF and RNN classifiers Four bearing states 100% RF classification [58]
rate
Sounds One-vs-one SVM multi- Five motor conditions 100% accuracy [59]
class classifier for
helicopter and duo copter
motors
Flow rate, water KGKNN multi-class 3 DTS200 three-tank 99% overall accuracy [60]
level classifier system conditions
Temperature, RF multi-class classifier 4 PV array faults 99.4% overall accuracy [50]
irradiance, 3 PV
output parameters
Temperature, ANN, KNN, and DT Multi- 12 gas turbine 99% accuracy [61]
speed, and class classifiers degradation conditions
pressure
Temperature and LSTM multi-class classifier Six water reactor 100% classification rate [52]
reactivity conditions

4.1.3. Fault identification

Fault identification estimates the observed system's fault severity [62], [63] It is also the final step of
fault diagnosis, which informs the most critical sensor condition parameter. The model built for fault
identification declares the damage to the system as a state in a defined hierarchical order. Like standard fault
detection and isolation methods, supervised learning models are also implementable for fault identification
tasks. However, instead of declaring the fault type, each label in the training data of a fault identification
model informs how damaged the system is.

Fault identification methodologies demonstrate clear algorithmic preferences that reveal both the
advantages of machine learning approaches and the limitations of traditional statistical methods for severity
assessment applications. Table 4 comprehensively summarizes fault identification methods across diverse
industrial applications. The comparative analysis demonstrates that fault identification methodologies share
substantial similarities with fault isolation approaches, as both processes predominantly employ machine
learning-based multi-class classifiers as their core decision-making algorithms. However, a critical
distinction emerges when examining the single statistical approach included in the review: the gas ratio
evaluation technique for electrical insulation deterioration assessment. This statistical method exhibits
inherent limitations, as it requires distinct evaluation techniques tailored to each specific deterioration type,
making it unsuitable for generalized fault identification frameworks where multiple fault severities must be
assessed using a unified approach.

In contrast, machine learning approaches demonstrate superior versatility and performance
consistency across applications. Decision tree classifiers achieve 98% and 95% classification rates for
training and testing datasets for variable refrigerant flow systems, while One-vs-one SVM multi-class
classifiers reach 99.3% accuracy for microgrid fault level identification. LSTM classifiers excel in temporal
severity pattern recognition, achieving 98.92% accuracy across 12 different severity levels in induction
machine systems, and Multilayer Perceptron classifiers demonstrate exceptional precision with below 0.3%
classification errors for Li-ion battery State of Health assessment.
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Table 4. Summary of fault identification methods

Condition monitoring Method Class labels Performance Reference
data
Gas ratio Statistical mean, Three electrical Each deterioration type has its [64]
standard deviation, and insulation deterioration own suitable gas ratio evaluation
range analysis using technique, based on how the
Rogers, Doernenburg, three statistical values are
IEC, and CIGRE gas isolated from the other
ratio evaluation techniques.
techniques
Temperature Decision tree classifier Five fouling fault 98% and 95% classification rates [65]
severities of the Variable  for training and testing datasets,
Refrigerant Flow (VRF) respectively
outdoor unit
Current, voltage, and One-vs-one SVM multi- Three microgrid fault 99.3% accuracy [66]
power class classifier levels
Motor current LSTM classifier 12 severity levels of the 98.92% accuracy [67]
induction machine
system
Voltage, current, and MLP classifier Five Li-ion battery State Below 0.3% of classification [68]
temperature of Health (SOH) errors
Pressure Physics informed neural Four axial piston pump 100% accuracy [69]
network (PINN) conditions

These comprehensive prior studies demonstrate the significant potential for implementing machine
learning classifiers and regressors to develop robust data-driven fault severity identification systems for
operational seismometers. The consistently high performance achieved across diverse sensor applications
suggests that similar performance levels could be attainable for seismometer applications with appropriate
dataset development and feature engineering. However, the primary implementation challenge extends
beyond algorithmic selection to the fundamental definition of severity classification schemes that accurately
reflect seismometer health degradation patterns. Unlike industrial applications, where severity levels can be
defined through controlled testing or standardized performance metrics, seismometer severity classification
requires categorical grades representing the operational health state based on extensive analysis of historical
maintenance records spanning decades of network operation.

4.2. Fault prognosis

Fault prognosis represents the most advanced stage of predictive maintenance, focusing on the early
prediction of system potential failure and the quantitative estimation of RUL before critical breakdown
occurs [70], [71]. This sophisticated predictive capability enables maintenance personnel to transition from
reactive repair strategies to proactive maintenance scheduling, optimizing both system availability and
resource allocation through precise timing of repair or component replacement interventions [72], [73].
Unlike fault diagnosis, which addresses current system health status, fault prognosis provides forward-
looking insights for strategic maintenance planning and operational risk management.

The evolution of fault prognosis methodologies demonstrates a clear technological progression from
basic statistical approaches to advanced machine learning frameworks, corresponding improvements in
prediction accuracy and operational capability. Table 5 comprehensively summarizes fault prognosis
methods across diverse industrial applications. The progression demonstrates marked improvements in both
methodological sophistication and performance capabilities. The theoretical linear regression approach
represents the earliest generation of RUL estimation, relying on experience-based determination without
quantitative performance metrics. In contrast, modern approaches showcase substantial advancement: Deep
Reinforcement Learning achieves RMSE values ranging from 12.17 to 18.87 across different operational
complexities, while physics guided long short-term memory networks demonstrate exceptional accuracy with
R? values of 0.902 and mean absolute error of 0.0717.

Furthermore, the LSTM-based hybrid approach represents the current state-of-the-art, achieving
high classification accuracy (0.96 and 0.86) for degradation stage identification and low regression errors
(421 and 5.21 RMSE) for continuous RUL prediction, indicating the effectiveness of combining
classification and regression methodologies. The success of the machine learning-based RUL estimation
approaches lies in robust quantification methodologies that establish ground truth for algorithm training and
validation, which presents the fundamental challenge for practical application to operational seismometers in
seismic monitoring networks.

The development of robust machine learning regression models for seismometer prognosis
applications faces a fundamental and critical challenge: the requirement for comprehensive training datasets
that capture complete degradation trajectories across all fault categories throughout the entire operational
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lifecycle of seismometer systems. This data scarcity represents the most significant barrier to practical
implementation, as effective RUL estimation models require extensive historical records that correlate health
feature evolution with actual failure timelines, documenting the progressive deterioration patterns from initial
healthy operation through various degradation stages to ultimate component failure. However, the reality of
operational seismic networks often conflicts with these data requirements, as preventive maintenance
protocols may lead to sensor replacements before complete degradation cycles can be captured.

Table 5. Summary of fault prognosis methods

Condition RUL estimation method RUL quantification method Performance Reference
monitoring data
Theoretical linear regression between  experience-based determination unstated [74]
condition data deviation and
monitoring data historical RUL
Vibrations of Deep reinforcement C-MAPSS turbofan engine RMSE: 12.17 (FDO0O01), [75]
turbofan engines learning (DRL) health division into two stages: 16.28 (FD002), 13.09
(early, linear degradation) (FDO003), 18.87 (FD004).
Bearing vibrations SVM classifier Analysis of historical failure 94.4% of average prediction [76]
patterns accuracy
Bearing vibrations Physics guided long unstated 0.0717 of MAE, 0.0866 of [77]
short-term memory RMSE, 0.902 of R? and 56 of
(PGLSTM) consistency accuracy
Voltage, LSTM regression unstated 2 to 6 days of the least [78]
temperature prediction deviation
21 sensor LSTM classification and The degradation process is 0.96 & 0.86 classification [79]
measurements regression divided into three stages accuracies and 4.21 and 5.21

regression RMSEs

4.3. Seismic data quality criteria

Seismic data quality criteria represent a comprehensive set of statistical and signal processing
parameters specifically designed to determine seismometers’ operational health and measurement
performance through analysis of recorded seismic signals [80]. These criteria are fundamental health
indicators because they capture measurable deviations from expected seismometer behavior that correlate
directly with specific fault conditions, sensor degradation patterns, and environmental interference effects
[81]. Thus, transforming raw seismic recordings into quantitative health metrics enables systematic
instrument performance monitoring and provides the essential feature space required for machine learning-
based fault diagnosis algorithms.

Analyzing well-established seismic data quality criteria is critical, since these criteria can be
candidates for relevant seismometer health features. Table 6 shows the previous studies and the
corresponding seismic data quality criteria, revealing a diverse landscape of methodological approaches that
span single-sensor and multiple-sensor analysis techniques with varying complexity and practical
applicability. Single-sensor criteria analysis focuses exclusively on data from individual seismometers,
employing three primary analytical approaches: time-domain seismogram comparison with synthetically
generated ideal signals to detect amplitude and waveform distortions, frequency-domain power spectral
density comparison with established noise models to identify spectral anomalies, and systematic instrument
calibration procedures to quantify sensor performance degradation over time.

The calibration methodologies encompass relative and absolute approaches, where relative
calibration utilizes the seismometer’s built-in calibration coil to simulate ground motion and measure
sensitivity changes remotely. On the other hand, absolute calibration requires physical removal of the
seismometer from its installation platform for testing on precision vibrating tables that mechanically excite
the sensor across its operational frequency range, enabling comprehensive transfer function analysis and
comparison with original manufacturer specifications. However, both calibration methods present significant
operational risks, as they temporarily remove the seismometer's ability to detect genuine ground motion by
overriding normal signal acquisition with calibration inputs, resulting in critical data loss that could
compromise earthquake detection capabilities during major seismic events.

In contrast, multiple-sensor analysis employs comparative methodologies that require an additional
operational seismometer to serve as a performance reference benchmark, with the reference instrument
typically being either a co-located sensor within the same seismic station or a sensor from the nearest
neighboring station experiencing similar ground motion conditions. These comparative analysis techniques
operate across both frequency and time domains, utilizing frequency-domain approaches such as median
power-level difference calculations and time-domain methods including root mean square (RMS) amplitude
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difference analysis. Furthermore, time-domain analysis also involves a comparative statistical framework
encompassing multiple quantitative metrics designed to capture different aspects of sensor health, including
cross-correlation coefficients, amplitude ratio, and lag time error.

Table 6. Summary of seismic data quality criteria

Sensor analysis methods Signal type Method Criteria Reference
Single-sensor time domain seismogram comparison amplitude scaling-coefficient [82]
Single-sensor frequency domain power-level comparison mean power-level differences [83]

Multiple co-located frequency domain power-level comparison median power-level differences [83]
sensors

Single-sensor time domain relative calibration sensitivity change [84]

Single-sensor time domain relative calibration transfer-function change [85]

Multiple co-located time domain seismogram comparison RMS amplitude differences [86]
sensors

Multiple stations time domain seismogram comparison cross-correlation coefficient, [87]

amplitude ratio, and lag time error.
Single-sensor time domain absolute calibration sensitivity change [88]

Both single-sensor and multiple-sensor analysis methods exhibit distinct advantages and limitations
that significantly influence their practical applicability in operational seismic monitoring environments.
Single-sensor approaches, such as power-level comparison using long-term Power Spectral Density
recordings as reference baselines, offer universal deployment capability across seismic networks regardless
of station configuration. However, their effectiveness depends critically on accurately identifying and
selecting reference periods during confirmed fault-free seismometer operation, which can be challenging to
verify retrospectively without independent validation methods.

Multiple-sensor comparative analysis provides enhanced reliability and recognition capability
through comparative analysis, as co-located sensors experience nearly identical ground motion inputs that
enable robust separation of sensor-specific anomalies from genuine seismic phenomena. However, the
practical implementation of multiple-sensor approaches faces significant logistical constraints in real-world
deployments, including the substantial cost implications of deploying redundant instrumentation, the
operational complexity of maintaining multiple sensors per station, and the considerable challenge of
ensuring benchmark instrument operational health [89]. Furthermore, multiple-station analysis introduces
additional concerns when reference sensors are located at distant observational points, as variations in local
geological conditions including bedrock composition, sedimentary layer thickness, and soil characteristics
can significantly alter ground motion amplification and frequency content, causing legitimate site-specific
seismic response differences that may be incorrectly interpreted as sensor faults rather than genuine
geological effects [90], [91].

4.4. Possible seismometer predictive maintenance framework

Seismometer predictive maintenance represents an emerging and highly promising research domain
that addresses critical gaps in current seismic network operation and maintenance practices, offering
significant potential for enhancing data quality assurance and operational efficiency across global seismic
monitoring infrastructure. Based on our comprehensive review of predictive maintenance methodologies and
seismic data quality analysis techniques, the development of robust predictive maintenance systems for
seismometers requires the integration of two fundamental data components: real-time seismic condition
monitoring data that provides continuous health indicators, and comprehensive historical seismometer
maintenance records that enable supervised learning of fault pattern recognition. The selection of appropriate
input signal types, whether time-domain seismograms, frequency-domain Power Spectral Density
representations, or hybrid multi-domain features, emerges as a critical design decision that fundamentally
determines the applicable range of seismic data quality monitoring methods and influences the effectiveness
of machine learning algorithms for fault diagnosis and prognosis.

Rather than prescribing specific algorithmic implementations that would require extensive empirical
validation with seismometer-specific datasets currently unavailable in the literature, we propose a generalized
predictive maintenance framework architecture that provides systematic guidance for implementation while
acknowledging that optimal feature extraction methods, machine learning model selection, and parameter
optimization must be tailored to individual network characteristics, available training data, computational
resources, and operational requirements of specific seismic monitoring applications. This framework-based
approach, illustrated in Figure 4, establishes the foundational architecture and methodological principles
necessary for successful seismometer predictive maintenance deployment while maintaining the flexibility
required for adaptation across diverse seismological environments and technological constraints.
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Figure 4. A possible seismometer predictive maintenance framework

The proposed framework requires two fundamental data types for operational effectiveness:
continuous seismic recordings that serve as real-time condition monitoring data, and comprehensive
seismometer maintenance history records that provide labeled examples of fault events, failure modes, and
degradation patterns necessary for supervised machine learning algorithm training. The data acquisition stage
should systematically collect and organize these diverse data sources from the seismic network database,
ensuring temporal alignment and metadata consistency required for subsequent analysis procedures. The
quality and completeness of these integrated datasets directly determine the framework's diagnostic accuracy
and prognostic reliability, making robust data management protocols essential for successful predictive
maintenance implementation.

The data processing pipeline encompasses data cleaning operations to remove outliers, artifacts, and
missing values, and sophisticated feature analysis procedures that transform raw seismic signals and
maintenance records into quantitative health indicators suitable for machine learning algorithm input. The
feature extraction process generates seismic data quality criteria that serve as the primary health monitoring
parameters, with the specific selection of features, whether time-domain characteristics, frequency-domain
spectral properties, or both, is determined by the actual database characteristics, available computational
resources, and specific operational requirements of the target seismic observation network.

For example, stations equipped with multiple co-located seismometers, comparative analysis
techniques utilizing cross-sensor correlation and differential measurements may provide optimal performance
due to the availability of reference benchmarks, provided that the health and calibration status of reference
sensors can be independently verified and maintained. Conversely, for single-sensor station configurations
where co-located reference instruments are unavailable, power spectral density comparative analysis utilizing
either long-term historical spectral baselines or established standard noise models (such as the New Low
Noise Model and New High Noise Model) represents the most practical and operationally viable approach
for health monitoring implementation. The latter methodology offers significant advantages over alternative
single-sensor techniques, as it avoids the computational complexity and modeling uncertainties associated
with synthetic seismogram generation and comparison, while eliminating the operational disruptions and
measurement interruptions inherent in calibration-based assessment procedures.
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The extracted health features, which serve as quantitative representations of normal seismometer
operational characteristics and various failure mode signatures, are utilized to train supervised machine
learning models within the fault diagnosis subsystem through a hierarchical three-step classification
approach. During operational deployment, the framework continuously processes real-time seismic
recordings as test datasets, applying the trained binary classification model to detect the presence of fault
conditions or anomalous behavior patterns that deviate from established normal operational baselines. Upon
detection of a fault or anomaly, the system automatically proceeds to the fault isolation step, where a
supervised multi-class classifier analyzes the specific health feature patterns to determine the exact fault type
or the underlying cause responsible for the detected anomaly. Subsequently, the fault identification module
employs an additional multi-class classification model to assess the fault condition's severity level and
operational impact.

The framework deliberately maintains algorithmic flexibility by not prescribing specific machine
learning implementations for each classification step, recognizing that optimal algorithm selection depends
critically on dataset characteristics, computational constraints, real-time performance requirements, and the
specific operational environment of individual seismic networks. This design philosophy acknowledges that
comprehensive comparative studies evaluating different supervised classification algorithms, including
support vector machines, decision trees, neural networks, and ensemble learning methods, must be conducted
using actual seismometer fault datasets and validated under specific network conditions before establishing
definitive algorithmic recommendations.

The fault prognosis module represents the final stage of the predictive maintenance framework,
employing fundamentally different machine learning methodologies compared to the classification-based
fault diagnosis subsystem. Unlike diagnostic procedures that rely primarily on supervised classification
algorithms to categorize fault types and severity levels, fault prognosis utilizes machine learning regression
models to estimate the RUL of seismometer components, as the temporal prediction of equipment failure
inherently requires continuous numerical output rather than discrete categorical classifications. The
regression models are trained using a comprehensive feature set that integrates both the extracted seismic
data quality criteria derived from real-time recordings and the diagnostic outputs from the fault detection,
isolation, and identification stages, enabling the prognosis system to leverage both current operational health
indicators and identified fault progression patterns for accurate RUL estimation.

The development of effective RUL estimation models requires comprehensive training datasets
that capture the complete degradation trajectory of seismometers from initial healthy operation through
progressive deterioration to final failure to establish quantitative relationships between feature evolution
patterns and remaining operational time. These historical datasets must encompass diverse failure modes
and environmental conditions to ensure robust model generalization, presenting a significant challenge
for seismometer applications where complete run-to-failure data remains scarce due to the extended
operational lifespans of seismic instrumentation and prevalent preventive maintenance practices that
typically intervene before total equipment failure occurs. Some of the candidate regression algorithms that
are potentially applicable for RUL estimation include long short-term memory (LSTM) networks for
capturing temporal degradation patterns, support vector regression for handling high-dimensional feature
spaces, and ensemble methods such as Random Forest regression for robust performance across diverse
fault scenarios [92]-[94].

4.5. Implementation challenges and future impacts

The successful deployment of seismometer predictive maintenance faces several critical challenges
that represent priority areas for future research development. The most significant limitation involves the
scarcity of comprehensive training datasets that capture complete seismometer degradation cycles from
healthy operation through progressive failure, necessitating robust data transfer and engineering across the
observed seismic networks. Algorithm selection and optimization require extensive comparative studies
using actual seismometer fault datasets to establish performance benchmarks and develop systematic
selection protocols tailored to diverse operational environments and computational constraints [95].
Integrating existing seismic network infrastructure demands careful consideration of real-time processing
requirements, data flow compatibility, and validation protocols appropriate for safety-critical earthquake
monitoring applications.

Nevertheless, the proposed framework addresses a critical gap in seismological instrumentation
maintenance while establishing principles applicable to broader scientific monitoring equipment domains,
including accelerometers and micro-electro-mechanical system (MEMS) seismometers [96], [97]. Successful
implementation could significantly enhance seismic data quality assurance, reduce operational costs through
optimized maintenance scheduling, and improve earthquake early warning system reliability through
proactive fault prevention. Furthermore, future work should focus on developing comprehensive seismometer
fault datasets through controlled laboratory experiments and field data collection campaigns, conducting
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systematic algorithm comparison studies across diverse seismometer types and operational environments, and
establishing standardized validation methodologies for safety-critical applications.

5. CONCLUSION

This study presents the first comprehensive machine learning-based predictive maintenance
framework designed explicitly for seismometer health monitoring, developed through a systematic review
and analysis of relevant methodologies from predictive maintenance engineering, seismic data quality
assessment, and machine learning applications. The research addresses a critical gap at the intersection of
electrical engineering, signal processing, artificial intelligence, and instrumentation engineering by
demonstrating how advanced predictive maintenance principles can be systematically adapted for
seismological monitoring systems, thereby tackling fundamental challenges in sensor network reliability and
automated health assessment that are central to modern engineering practice. The proposed framework
integrates two primary operational stages: fault diagnosis and fault prognosis, each employing distinct but
complementary machine learning approaches specifically tailored to address the unique operational
requirements of seismometer health monitoring in safety-critical earthquake early warning systems.

The fault diagnosis subsystem implements a hierarchical three-step methodology encompassing
fault detection through binary classification algorithms to identify anomalous operational conditions, fault
isolation using multi-class classification techniques to determine specific fault types among the 16 identified
seismometer failure modes, and fault identification employing severity assessment models to quantify
operational impact and maintenance urgency. The fault prognosis subsystem utilizes regression-based
machine learning algorithms to estimate RUL based on temporal health indicator patterns. It implements
experience-based quantification models to translate abstract temporal predictions into actionable maintenance
recommendations and sensor health degradation assessments.

Our comprehensive review of predictive maintenance methodologies reveals that machine learning
approaches demonstrate superior performance characteristics compared to traditional statistical methods,
with classification algorithms achieving fault detection accuracies exceeding 95% in multiple applications
while exhibiting enhanced capability for handling the complex, multi-dimensional nature of various
instrument health indicators that simple threshold-based monitoring approaches cannot adequately capture.
The seismic data quality criteria analysis identifies optimal feature extraction strategies that leverage both
time-domain characteristics (amplitude statistics, cross-correlation coefficients) and frequency-domain
properties (Power Spectral Density analysis, spectral anomaly detection) as fundamental health indicators for
machine learning algorithm input. Single-sensor analysis methods offer universal applicability but face
limitations in distinguishing sensor faults from genuine seismic phenomena, while multiple-sensor
comparative approaches provide enhanced recognition capability at the cost of increased infrastructure
complexity and potential geological site effect interference.

Despite the promising potential demonstrated in this framework, several significant limitations must
be considered when developing machine learning-based predictive maintenance systems for operational
seismometers in seismic stations. The most critical constraint involves the scarcity of comprehensive training
datasets that capture complete seismometer degradation cycles from healthy operation through progressive
failure. Secondly, machine learning model evaluation necessitates extensive validation protocols using actual
seismometer fault data across diverse environmental conditions, seismometer types, and operational
scenarios. Lastly, the computational complexity of real-time machine learning inference for continuous
health monitoring across large seismic networks presents infrastructure challenges requiring edge computing
capabilities or cloud-based processing architectures that may not be readily available in remote seismic
station locations. Integration with existing seismic data acquisition systems demands careful consideration of
data format compatibility, latency constraints for safety-critical earthquake early warning applications, and
validation requirements for deployment in operational monitoring environments where false alarms could
undermine system credibility.
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