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In the evolving field of Spirulina cultivation, the integration of the
internet of things (IoT) has facilitated the optimization of spirulina growth
and significantly enhanced biomass yield in the culture medium. This study
outlines a control open-pond system for Spirulina cultivation that employs
generative artificial intelligence (AI) and edge computing within an IoT
framework. This transformative approach maintains optimal conditions and
automates tasks traditionally managed through labor-intensive manual
processes. The system is designed to detect, acquire, and monitor basin data
via electronic devices, which is then analyzed by a large language model
(LLM) to generate precise, context-aware recommendations based on
domain-specific knowledge. The final output comprises SMS notifications
sent to the farm manager, containing the generated recommendations, which
keep them informed and enable timely intervention when necessary.
To ensure continued autonomous operation in case of connectivity loss,
pre-trained TinyML models were integrated into the Raspberry Pi. These
models display alarm signals to alert the farm owner to any irregularities,
thereby maintaining system stability and performance. This system has
substantially improved the growth rate, biomass yield, and nutrient content
of Spirulina. The results highlight the potential of this system to transform
Spirulina cultivation by offering an adaptable, autonomous solution.
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1. INTRODUCTION

Spirulina (Arthrospira platensis) is a blue-green algae [1] recognized for its nutritional benefits and
high protein content (50%-70% of dry weight) [2], [3]. In addition to its rich source of vitamins, minerals,
and bioactive compounds such as carotenoids [4], [5] and antioxidants, it is used in food, cosmetics, and as a
dietary supplement, even supporting astronauts on long space missions [6], [7]. Due to its well-established
commercial production, Spirulina is cultivated in several countries, including the United States, Thailand,
China, India, Taiwan, Pakistan, and Burma [8]. Additionally, effective management of spirulina cultivation is
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necessary to achieve high yields and produce a quality product. Among the many cultivation methods, three
are particularly popular: open-pond systems [9], photobioreactors (PBRs) [10], and home cultivation kits.
Figure 1 shows each of the three systems used for the cultivation of Spirulina. Open-pond systems, as shown
in Figure 1(a), are the most widely used. Typically, these systems utilize tanks that expose Spirulina to
natural sunlight, thereby reducing investment and maintenance costs. These systems are notable for their
scalability and simplicity, which make them a particularly well-suited solution for farmers. However, these
systems are prone to contamination and sudden changes in environmental conditions. Figure 1(b) illustrates
photobioreactors (PBRs), which use a more controlled approach with closed systems, such as tubular,
flat-panel, or columnar configurations. This method carefully controls light, temperature, and nutrient supply.
Therefore, there is a reduction in contamination risk and a continuous controlled production of the product
throughout the year. This is also widely applied in high-production and quality spirulina, which requires a
higher initial investment and associated running maintenance. Home cultivation kits are used for indoor
cultivation in home settings and come with basic environmental controls to simplify the growing process for
individuals and small-scale growers, as illustrated in Figure 1(c).

Typically, Spirulina is cultivated in open ponds and then transferred to PBRs for later growth stages,
leveraging the cost-effectiveness of open ponds and the high productivity and control of PBRs. Efficient
management and control of Spirulina cultivation through these methods ensure high-quality production,
reinforcing Spirulina’s viability and value as a nutrient-dense food source and sustainable solution for
nutraceutical applications.

Figure 1. Different methods to cultivate Spirulina (a) open pond systems, (b) photobioreactors (PBRs),
and (c) home cultivation kits

Furthermore, in open-pond systems, manual control of key parameters such as pH, temperature, and
nutrient concentrations is laborious and prone to human error, leading to variations in growth rates,
differences in quality, and increased operational costs. To address these limitations, this study proposes an
artificial intelligence of things (AIoT) -enabled solution that enables precise monitoring, autonomous
regulation, and optimization of growth conditions to enhance biomass yield and nutrient content. The
proposed system integrates sensors enabled with IoT, real time data analytics, and machine learning models
to control key parameters such as temperature, pH, and nutrient levels. It applies automation and Al-based
insights to reduce the chances of risks linked to human error, ensure the best conditions for growth, and
provide remote management. Moreover, this work addresses key limitations of existing systems, such as
unstable internet connectivity in coastal regions and the lack of autonomous operation during network loss.

This work is organized as follows: Section 2 reviews related works and compares them with other
articles. Furthermore, section 3 explores the background of Spirulina, highlighting its importance and optimal
growth requirements. Section 4 discusses the project process, including the description of the data set and the
data processing from collection to analysis. Next, in section 5, we present a complete system overview that
explains the proposed system and the data flow diagram to fully grasp the general operations of the system.
Section 6 elaborates on the results of this system, followed by discussion and conclusion in sections 7 and 8,
respectively.

2. RELATEDWORKS

In recent years, several works have showcased the potential of IoT in enhancing Spirulina
cultivation. Research has focused on the implementation of technology to improve Spirulina cultivation.
Initially, we explored general information using the keyword “Spirulina cultivation”. As we narrowed our
focus to IoT and Al applications for real-time monitoring and automation, we filtered out papers on Spirulina
cultivation systems or included a chapter discussing Spirulina cultivation systems. Of these, 5 papers were
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the most related. This section will discuss each proposal and compare it with our solution as shown in
Table 1.

Aquino et al. [11] present a vision-based closed Spirulina cultivation system integrating RGB/lux
sensors with pH and temperature monitoring, combined with an artificial neural network (ANN) for growth
prediction. This method enables reliable estimation of cell density without direct sampling. Similar to the
proposed system, it applies sensor-driven monitoring to improve Spirulina growth. However, while it predicts
biomass trends, it lacks adaptive decision-making. By contrast, the proposed framework employs generative
artificial intelligence (AI) and TinyML to not only predict but also generate context-aware recommendations

and enable autonomous control.

Table 1. Comparative evaluation of Spirulina cultivation systems (IoT, Al, and AloT approaches)

Metric A vision-based Smart micro farm: Development of IoT-based closed Evaluation of
closed spirulina Sustainable algae smart algae pond algal cultivation real- time
(a. platensis) spirulina growth system for system with vision monitoring on the
cultivation system  monitoring system microalgae system for cell count  growth of Spirulina
with growth [12] biomass through ImageJ via Microalgae:
monitoring using (2018) production [13] Raspberry Pi [14] Internet of Things
artificial neural (2021) (2021) and Microalgae
network [11] Technologies [15]
(2018) (2024)
IoT availability Partial (pH, temp, Yes Yes (multi-sensor Yes Yes
DO via Arduino; (Arduino+GSM) ESP32 cloud) (RPicamera+sen sors)  (ThingSpeak IoT)
local)
Al availability Yes (ANN from No No No (Imagel, rule- No
RGB & lux) based)
Sensor types Temp, pH, DO, Temp, pH, light, Temp, pH, CO,, Temp, pH, light, Temp, light, water
monitored RGB & lux water level turbidity, light, camera imaging level, absorbance
velocity (TCS3200)
Real-time data No Yes (GSM SMS Partial (local + Yes (RPi + online) Yes (ThingSpeak
availability alerts) DB) cloud)
Data transmission N/A Higher (SMS) Low (ESP32 — Low (RPi Wi-Fi) Low (ESP8266 —
latency MySQL) ThingSpeak)
Prediction ANN MSE = N/A N/A N/A N/A
accuracy (%) 0.00478
Energy consumption N/A N/A Paddlewheel 0.5 N/A N/A
(kWh) —0.2
User interface LCD alerts SMS alerts Local + DB Web dashboard Cloud dashboard +
quality logging (RPi) mobile
Scalability Lab-scale 10L Small-scale farm  Prototype raceway Lab-scale 5-10L Lab-scale 10L
pond 120L
Implementation Not discussed Arduino + GSM  Energy savings from RPi setup Low-cost Sensors
Cost paddlewheel (j$250
Growth rate 0.0519 vs 0.0372 N/A N/A N/A N/A
(day™)
Cultivation Closed pond Open pond (micro Raceway ponds Closed pond (RPi Photobioreactor
system type (PBR-like) farm) (open) monitored) (lab-scale)

Ariawan and Makalew [12] describe a smart micro farm using Arduino-based sensors (pH, light,
temperature) and GSM modules to deliver threshold-based SMS alerts. This system provides an early,
low-cost IoT application that makes Spirulina monitoring more accessible. Like the proposed design, it
emphasizes real-time tracking of key growth parameters. The difference lies in adaptability: this system is
reactive and manual, while the proposed solution integrates LLMs and TinyML to deliver proactive,
context-aware recommendations and maintain functionality offline, advancing from monitoring to intelligent
intervention.

Hermadi et al. [13] develop a smart pond system with ESP32 sensors measuring environmental
parameters (temperature, pH, CO2, turbidity, light, water velocity), integrated with automated paddlewheel
control for energy efficiency. Similar to the proposed system, it integrates IoT for continuous monitoring and
automated adjustments. However, it lacks adaptive intelligence and deeper data analysis. The proposed
framework expands this by embedding generative Al and TinyML, transforming sensor-based automation
into an intelligent, knowledge-driven cultivation process.

Tolentino et al. [14] propose an IoT-based closed algal cultivation system that combines Raspberry
Pi imaging with ImagelJ software for cell count estimation. This vision-based method enhances biomass
tracking accuracy at low cost. Like the proposed design, it exploits digital imaging and IoT integration to
improve Spirulina monitoring. However, its reliance on static, rule-based image analysis limits adaptability in
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dynamic conditions. The proposed system addresses this by incorporating LLMs and TinyML, enabling
adaptive reasoning and real-time recommendations beyond static analysis.

Lim et al. [15] present a cloud-based monitoring system (ThingSpeak) integrated with IoT sensors
(e.g., optical density, temperature), offering scalable real-time Spirulina growth tracking. Its strength is
enabling efficient, remote supervision. Similar to the proposed work, it leverages IoT connectivity to enhance
cultivation oversight. However, it lacks Al-based recommendations and autonomy. In contrast, the proposed
framework integrates LLM analytics and TinyML edge resilience, elevating monitoring into a fully adaptive,
autonomous cultivation management system.

In all reviewed studies, IoT-based monitoring of Spirulina cultivation has advanced significantly, yet
a critical gap persists in the absence of Al-driven autonomous decision-making frameworks. While existing
systems effectively collect and transmit environmental data, they fall short of leveraging advanced generative
Al or large language models (LLMs) to provide adaptive, context-aware recommendations. Moreover, most
solutions remain limited to small-scale prototypes, lacking scalability, resilience to connectivity loss, and
integration of edge intelligence for uninterrupted operation. This gap highlights the need for research that
bridges IoT sensing with autonomous Al reasoning, ensuring both real-time optimization of growth
conditions and practical applicability in real-world Spirulina farming. This project aims to bridge these gaps
by leveraging LLMs for dynamic and context-aware decision-making, deploying offline operations to
address communication instability, and considering robust communication, especially in coastal areas.

3. BACKGROUND

To fully understand the system, it is important to cover the origins of Spirulina, the ideal cultivation
conditions, and the significant role of IoT technology in enhancing its growth, productivity, and
sustainability.

3.1. Origins and nutritional benefits of Spirulina

Spirulina is a microscopic aquatic organism of the cyanobacteria group. It is scientifically classified
under the genus Arthrospira platensis [16]. This microalga has a characteristic spiral shape as depicted in
Figure 2, consisting of 5 to 7 spirals typically 3 to 8 pm in diameter. It appears in the form of microscopic
filaments made up of juxtaposed cells. The length of the filament and the number and density of the coils for
each filament vary depending on the age of the microalgae and the cultivation conditions. Its reproduction is
asexual and occurs through filament division [17].

In the mid-20th century, researchers rediscovered Spirulina in Europe and the U.S. [18]. Global
interest has recently increased, particularly in Chad, where production has increased significantly. In Tunisia,
Spirulina was first discovered in Lake Tunis in 1978 and later in Chatt el Jerid in 1997. There are also
promising strains near Sfax and Hergla, indicating the potential for larger cultivation.

Figure 2. Spirulina under view x100 magnification

3.2. Optimal Spirulina cultivation conditions

Certain conditions are required to ensure optimal Spirulina growth [19], [20]. The water used for the
culture medium should be seawater enriched with mineral salts to provide Spirulina with the necessary
chemical elements [21], [22]. The temperature of the culture liquid directly influences the multiplication rate
of Spirulina and the reproduction stability, with significant growth occurring only above 20 °C. In 1975, Pirt
asserted that the optimum water temperature for cultivation is between 35 °C and 37 °C [23]. Light is
essential for synthesizing organic matter from simple mineral elements, and the required light intensity varies
greatly depending on the culture’s depth and the algae’s density [24]. The optimal pH of the culture medium
should be at least 9; if it is too low, the culture may not start well, with clumps forming or Spirulina
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precipitating at the bottom [25], [26]. The main carbon source of Spirulina is carbon dioxide gas, and
productivity can be increased by injecting pure carbon dioxide directly into the culture [27]. A certain level
of conductivity in the water is also required, estimated to be between 15 and 35 g/, along with a mix of other
elements such as sodium bicarbonate, potassium nitrate, and sodium phosphate [27]-[29].

3.3. The impact of IoT technology on Spirulina cultivation

IoT technology is revolutionizing Spirulina cultivation by enabling real-time monitoring and control
of critical parameters, as discussed in Section 1. This advancement allows for timely adjustments to optimize
growth and productivity while identifying and addressing abnormalities in the cultivation process [12]. IoT
sys tems enhance the growth rate and yield of Spirulina and contribute to significant environmental and
economic improvements.

— Environmental benefits: loT-enabled processes improve efficiency and sustainability, reducing resource
wastage and increasing productivity. By incorporating clean energy sources like solar power, IoT can
lower the carbon footprint of Spirulina cultivation. Additionally, mixotrophic cultivation techniques
utilizing wastewater nutrients and solar energy contribute to sustainable and environmentally friendly
practices [30].

— Economic implications: The integration of IoT in Spirulina cultivation boosts efficiency and productivity,
addressing food security and resource limitations in agriculture. Automation and monitoring capabilities
enabled by IoT can reduce labor expenses while increasing the value of the product, thereby offering
substantial economic benefits [31], [32].

However, the successful integration of IoT in Spirulina cultivation is not without challenges. Issues
such as interoperability, affordability, device power consumption, bandwidth, latency, and data processing
must be carefully managed to ensure effective implementation [33], [34]. Our AloT system addresses these
challenges by combining IoT with machine learning models, enhancing system responsiveness and
reliability. Through its offline capabilities and TinyML models, the system autonomously adjusts key
parameters and maintains operations even during network disruptions. Furthermore, the lightweight nature of
the message queuing telemetry transport (MQTT) protocol allows the system to operate efficiently in
environments with limited bandwidth, such as coastal areas where internet connectivity may be slow or
unstable. This approach reduces the dependency on constant connectivity, mitigates data processing
challenges, and ensures consistent and efficient cultivation, making the process more resilient and
sustainable.

4. METHOD
The AloT system for Spirulina cultivation control consists of several key procedures.

4.1. Dataset description

After collaborating with Bio Algues Tunisie, a specialized Spirulina farm and laboratory, we
received precise measurements for each condition they use in their cultivation process. The AloT system
dataset includes the essential parameters for optimizing Spirulina cultivation. The most common measures
focused on:

— Transparency: The ideal water transparency should vary between 2 cm and 10 cm. If the transparency is
2 cm or less, 30% of the basin should be filtered. For transparency between 2 cm and 3 cm, 20% of the
basin should be filtered. If the transparency is between 3 cm and 4 cm, 10% of the basin should be
filtered. For transparency greater than 4 cm, filtering is not necessary. A darker appearance of the water,
indicating a healthy density of phytoplankton, is desirable.

— pHValue: The ideal pH value is between 9 and 10. If the pH is less than 9, caustic soda (NaOH) should be
added. If the pH exceeds 10.2, bicarbonate should be added at a rate of 1 g/I. If the pH exceeds 10.5, the
rate of bicarbonate addition should be increased to 2 g/I.

— Water Temperature: The ideal water temperature is between 20 °C and 24 °C. Specific measures should
be applied if the temperature drops below 4 °C or rises to 34 °C or higher. If the water remains stagnant
for 3 days at temperatures above 20 °C, bicarbonate (1 g/1) and nitrates (0.2 g/1) should be added.

— Conductivity: The ideal salinity is between 15 g/l and 35 g/l. If the salinity is below 15 g/l, seawater
should be added. If the salinity exceeds 35 g/l, 20% of the basin should be emptied and replaced with
fresh water.

These parameters are critical to maintaining optimal growth conditions for Spirulina and ensuring the highest

quality yield.
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4.2. Dataset preparation

A comprehensive document was prepared to train the LLM to generate personalized outputs. This
document constitutes the knowledge base that LLM accesses through RAG. A structured and well-organized
table was created to serve as our knowledge base. As shown in Table 2, it specifies essential parameters, the
corresponding recommendations, and commands based on different conditions. The purpose of this table is to
ensure accurate interpretation and provide customized recommendations and commands.

The document is divided into three sections. The initial column covers the parameters associated
with spirulina cultivation, including temperature, conductivity, transparency, and pH. The second column
comprises the corresponding recommendations for each parameter, enabling the LLM model to deliver
precise and context-aware responses. The final column details the specific actions to be taken when
conditions fall outside the optimal range for each parameter and was designed for TinyML to recognize each
condition through code.

Table 2. Operational parameters and corrective measures for Spirulina cultivation

Factor Ideal Recommendation Code
Value/Range
Transparency 2-10 cm If < 2 cm: filter 30% of the basin. F
If 2-3 cm: filter 20% of the basin. G
If 3-4 cm: filter 10% of the basin. H
If > 4 cm: no filtering required. I
pH Value 9-10 If <9: add caustic soda (NaOH). C
If > 10.2: add bicarbonate at 1 g/L. D
If>10.5: add bicarbonate at 2 g/L. E
Water Temperature 20-24 °C If <4 °C: corrective action required. K
If > 34 °C: corrective action required. L
If stagnant for 3 days at > 20 °C: add bicarbonate (1 g/L) and nitrates (0.2 g/L). J
Salinity (Conductivity) 15-35 g/L If < 15 g/L: add seawater. A
If > 35 g/L: empty 20% of the basin and replace with fresh water. B

4.3. Data collection and acquisition

For data collection, various sensors have been integrated into the spirulina basins. The pH value is
measured using the SENO161 pH sensor, while the DFRobot Gravity analog electrical conductivity sensor is
used to assess high electrical conductivity, such as seawater. Temperature readings are taken with the
DS18B20 sensor. We used the DFROBOT Sen0205 FS-IR02 sensor to determine the water level in the basin.
To measure light intensity, an endoscope camera is used to calculate darkness based on light intensity by
detecting the time when a predefined point on a white disk turns dark within the water, thus providing an
accurate distance measurement. To facilitate the descent and ascent of the measurement system underwater,
an electronic actuator was installed.

Considering the acquisition unit, each sensor was connected to the Arduino UNO microcontroller,
which plays a crucial role in converting the data from analog signals to digital values for processing. Figure 3
represents the Arduino UNO connection to the integrated sensors, including the pH sensor, the conductivity
sensor, and the temperature sensor.

l— — |

:L:} — »_

Figure 3. Sensor’s integration in the acquisition board

4.4. Data processing

In the next step, a Raspberry Pi 4 serves as the primary processing unit, collecting data from
multiple sensors connected via the Arduino UNO, executing real-time AI/TinyML algorithms, and
coordinating automated control actions in the Spirulina cultivation system. The endoscope camera and the
water level sensor were connected directly to the Raspberry Pi, with the camera configured to capture the
Secchi disk’s disappearance underwater. Specifically, the endoscope camera was attached to a box while the
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Secchi disk was mounted on the piston rod of a linear actuator. As the rod moved underwater, the camera
captured video frames, and image processing was applied to detect the white color of the disk, using the
condition b, g, r =255, 255, 255 and the iterative logic:

{

while b = 0 and g = 0 and r = 0 :
ROI = frame[roi y:roi y+roi height, roi x:roi x+roi width]
hsv ROI = cv2.cvtColor (ROI, cv2.COLOR BGR2HSV)

if b == 0 and g == 0 and r == 0:
Disappearance Height = time ex * 0.4

}

The Raspberry Pi also converted the sensor data into a JavaScript Object Notation (JSON) format,
chosen for its lightweight structure, efficient transmission in limited-bandwidth environments, and ability to
represent hierarchical data. This JSON file was then immediately sent to the LLM for further analysis and
generation of context-aware recommendations via the MQTT protocol. On the other hand, in scenarios where
there is no internet connectivity, the Raspberry Pi relies on TinyML models to execute local decision-making
processes. Figure 4 demonstrates the connection that links all components of the system.

4.5. Data transmission

The data collected by the sensors are transmitted via the MQTT protocol, which serves as a
communication hub between the sensors and the Al model. As illustrated in Figure 5, the system is initiated
by a Raspberry Pi that collects data from the indicated sensors. The data is then converted into a JSON file
format to facilitate publication on a specific topic. Meanwhile, the Al model subscribes to the same topic to
receive and analyze the data. In the Spirulina cultivation IoT control system, the MQTT protocol offers
several advantages, including real-time data transmission from sensors to the LLM model server, enabling
immediate analysis and rapid system adjustments. Its high transmission speed ensures minimal latency,
facilitating prompt responses such as automated recommendations to clients. The protocol’s lightweight
design minimizes bandwidth consumption, making it particularly effective in low-connectivity environments

like coastal areas.
N/ Convert Data —_—
into JSON format ———>TSON
2 “ ; —
u E | I Publish JSON file

to MQTT Brocker

Collect Sensors Data

|

) )
«9) * Subscribe to MQTT Brocker

and Receive JSON file
S (22
= &

Figure 4. System circuit diagram Figure 5. Data transmission through the MQTT broker

4.6. Data analyzation
4.6.1. Large language model (LLM)

In the case of online scenarios, a generative LLM was integrated to analyze sensor data and produce
both recommendations and corrective commands. The system employs GPT-4, accessed through the
LangChain framework, to process real-time inputs such as temperature, pH, water level, conductivity, and
optical density collected from a Raspberry Pi. This enables automated decision-making that reduces manual
intervention and generates precise, context-aware recommendations. The use of natural language output
ensures that results are easily interpretable, even for non-expert farm managers, thereby facilitating practical
adoption. The system is also highly scalable, allowing new sensors or parameters to be integrated with
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minimal reprogramming, strengthening its adaptability for future extensions. To provide domain knowledge,
a FAISS vector database was constructed from a Spirulina cultivation handbook and supporting technical
documentation. These documents were embedded with the SentenceTransformer (allmpnet-base-v2) model.
Through LangChain’s retrieval-augmented generation (RAG) architecture, GPT-4 retrieves the most relevant
fragments from this knowledge base before generating outputs. This guarantees that recommendations are
grounded in validated cultivation practices and remain situation-specific. The output of the LLM is structured
in JSON format, providing both actionable commands and detailed recommendations for each monitored
parameter. For example, given a scenario where the temperature is below optimal and pH is slightly low, the
model generates the following output:

{

"commands: ["Increase temperature", "Add bicarbonate"],
"recommendations": [

{"parameter": "temperature", "status": "below optimal", "action": "increase heating by
5eC"},

{"parameter": "pH", "status": "slightly low", "action": "add bicarbonate"}

1
}

This structure allows for precise, automated interventions while maintaining interpretability for the
farm manager. Each recommendation object explicitly identifies the parameter, its current status, and the
action to be taken, whereas the commands array summarizes the key interventions to execute, enabling both
human operators and automated systems to respond efficiently.

4.6.2. TinyML integration

TinyML was integrated into the Spirulina cultivation system to ensure autonomous operation during
periods of network failure. The choice of TinyML was motivated by its low power consumption, cost
efficiency, resilience, and ability to support real-time decision-making. The primary goal was to classify
sensor values accurately, allowing the system to maintain optimal growth conditions for Spirulina even in
offline mode. For this purpose, datasets were created for four critical parameters: pH, conductivity,
temperature, and optical density, as these directly influence the health and productivity of Spirulina.

The models deployed were neural networks designed and trained using TensorFlow. Each model
follows the same general architecture: an input layer, three dense layers with rectified linear unit (ReLU)
activation, and a SoftMax output layer. Each parameter dataset was generated individually, ensuring that the
SoftMax layer contained unique classes specific to the parameter being analyzed. Once trained and validated,
the models were converted into TensorFlow Lite format for deployment, enabling efficient inference on the
Raspberry Pi 4.

The datasets contained over 9000 samples per parameter. Each dataset consisted of two columns:
sensor value and sensor status. The simulated sensor readings were classified based on Spirulina’s optimal
growth conditions. For instance, water transparency between 2 cm and 10 cm was considered optimal, while
deviations triggered corrective actions such as partial filtration. Similarly, temperature was maintained
between 20 °C and 24 °C, pH between 9 and 11, and salinity between 15 g/l and 35 g/l. To improve model
performance, the sensor values were standardized before training.

The training pipeline was executed on a PC, after which the optimized models were deployed to the
Raspberry Pi 4. The workflow was designed such that, under normal operation, data from the sensors is
processed by the Raspberry Pi and transmitted to the LLM server for high-level analysis. However, when the
Internet connectivity is lost, the TinyML models are activated locally. In this mode, the Raspberry Pi
executes inference directly on the standardized sensor values, classifying conditions and determining
appropriate actions, such as adding nitrate or adjusting water salinity, to stabilize the environment.

4.7. System implementation

The system prototype has been successfully deployed in a Spirulina cultivation basin, where it
autonomously monitors and adjusts environmental conditions in real time. It consists of a Raspberry Pi that
serves as the central processing unit, connected to various sensors that measure critical parameters, including
temperature, pH level, water level, conductivity, and optical density. The sensors are strategically placed
within the basin to ensure accurate data collection, enabling on-site processing using embedded TinyML
models for decision-making and edge computing. Once network connectivity is established, the system uses
an LLM to generate detailed recommendations based on real-time sensor data.

Figure 6 provides a visual representation of the prototype setup, illustrating the functionality of the
sensors. To protect the system from environmental hazards such as precipitation or dirt ingress, a waterproof
enclosure is essential. Given the system’s proximity to basins, exposure to water poses a risk to the electronic
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components. The NSF-grade PVC plastic housing offers excellent water resistance, similar to materials used
in water pipelines.

Figure 6. Live system setup in the Spirulina cultivation basin

5. SYSTEM OVERVIEW
5.1. System workflow: data flow and processing

The workflow of the proposed Spirulina cultivation control system defines the dynamic process
through which sensor data is collected, analyzed, and transformed into actionable recommendations.
As illustrated in Figure 7, the process begins with the collection of environmental data from five sensors: pH
sensor, conductivity sensor, temperature sensor, endoscope camera (for optical density), and water level sensor.

Read Sensor Value

Establish connection between Raspberry
Piand LLM model

l

{Receive Data from Raspberry Pi (MQTT Protocol)

I

Yes [ Analyze data collected from sensors ]

|

[ Generate recommendations and commands ]

is connection

Generate Description No
(TinyML models) available ?

(Send Data to LLM model (MQTT Protocol)

Receive Commands
‘ from LLM model (MQTT Protocol) -

Farm Manager

Send Commands to Send Recommendations
Raspberry Pi to the Farm Manager
(MQTT Protocol) (Push Notification)

Activate Actuators

Wait 120
minutes

Figure 7. Workflow of the proposed AloT solution for Spirulina cultivation control
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Once data is acquired, the Raspberry Pi attempts to establish a connection with the LLM server.

Two scenarios then arise:

— In case of connection availability, Sensor data is transmitted to the LLM server via the MQTT protocol.
Within the LLM pipeline, the data is analyzed in conjunction with contextual knowledge, enabling the
generation of precise recommendations and actuator commands. The commands are sent back to the
Raspberry Pi (via MQTT) to activate actuators, while the recommendations are simultaneously forwarded
to the farm manager as push notifications.

— In case of connection failure, the Raspberry Pi activates its embedded TinyML models, which analyze the
sensor readings locally and generate system descriptions and commands. These commands are then used
to drive the actuators directly, ensuring continuous system operation even in offline mode.

After actuator activation, the system enters a two-hour standby period before starting the data collection and

processing loop. This workflow ensures responsive, reliable, and autonomous control of Spirulina cultivation

under both connected and disconnected conditions.

5.2. System architecture: hardware—software integration

Figure 8 illustrates the overall architecture of the proposed Spirulina cultivation control system,
integrating sensors, loT communication, TinyML, and a retrieval-augmented generation (RAG) pipeline. On
the hardware side, physical sensors (pH sensor, conductivity sensor, temperature sensor, endoscope camera,
and water level sensor) are immersed in the Spirulina basin and connected to an Arduino Uno, which
converts analog signals into digital values. These readings are transmitted to a Raspberry Pi that acts as the
central processing unit. The Raspberry Pi processes sensor readings, runs TinyML models for offline
autonomy, and communicates with the cloud-based LLM server using the MQTT protocol.
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Embedding
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Figure 8. Architecture of the proposed AloT solution for spirulina cultivation control

On the software side, the system employs a retrieval-augmented generation workflow coordinated
by LangChain. Documents from the knowledge base are embedded using an embedding model and indexed
in a FAISS vector database. When sensor data requires interpretation, LangChain orchestrates the retrieval of
relevant context from FAISS and combines it with the raw sensor readings. A custom recommendation
engine integrates this contextual information before passing it to the LLM (GPT-3.5), which generates
precise and actionable recommendations. These recommendations are then transmitted back through the
MQTT broker to the Raspberry Pi for actuator control and simultaneously delivered as push notifications to
the farm manager.

Artificial intelligence of things solution for Spirulina cultivation control (Abdelkarim Elbaati)



498 a ISSN: 2088-8708

6. RESULT
6.1. System responsiveness

The system’s responsiveness to environmental changes was a critical factor in its performance.
Figure 9 presents the results, illustrating the system’s ability to maintain real-time data analysis capabilities
under different operational conditions. For instance, as depicted in Figure 9(a), when a sudden drop in pH
was detected, the system immediately responded to restore the pH level, leading to the spike observed in
cycle 10. Additionally, Figure 9(b) shows that the execution time varies significantly between cycles due to
network latency. However, it remains relatively efficient, with the execution time generally hovering around
80 seconds. In addition, when a sudden change in conditions is detected, the system promptly sends an alert
notification to the farm manager, allowing them to take the necessary actions to restore the optimal range.
This immediate response minimized stress on the Spirulina and prevented potential disruptions to its growth.

The LLMs in the system played a vital role in maintaining this responsiveness. These models
continuously monitored sensor data and cross-referenced it with detailed documentation outlining optimal
growth conditions for Spirulina. The Figure 10 presents a JSON-formatted output generated by the LLM,
detailing system recommendations, associated actions, and command values. The commands section
specifies predicted indices for pH, electrical conductivity (EC), brightness, and temperature parameters. The
recommendations array provides condition-specific guidance, including the monitored parameter, its current
status, and a corresponding operational action. For example, when pH is below 9, the system suggests adding
NaOH; when conductivity is under 15, it recommends adding seawater; low brightness triggers a partial
water filtration instruction; and an optimal temperature range is labeled as “Ideal.”
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Figure 9. Comparison of system execution times (a) offline mode and (b) online mode

"commands": {
"ph_prediction": 4,
"ec_prediction”:

ightness_prediction":
"temp_prediction": 1

"recommendations™:

{

"action": "Add NaOH."

: "Brightness < 2",
"action": "Filter 3@% of basin.”

"parameter”: "Temperature”,
"status™: "20 < Temperature < 24",
"action": "Ideal"

Figure 10. LLM-generated recommendations, corresponding actions, and commands
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6.2. Autonomy and reliability

The autonomy and reliability of the AloT system were tested under various scenarios, including
intentional network disruptions, to evaluate the performance of the TinyML models on the Raspberry Pi.
During these disruptions, the TinyML models effectively maintained the necessary environmental conditions
without any noticeable decrease in Spirulina growth or health. This demonstrated the system’s robustness and
ability to operate independently of constant internet connectivity. The performance of the classification
system for the four key ecological parameters monitored by the TinyML models is summarized in the
confusion matrices shown in Figure 11. These matrices include the following parameters: Figure 11(a)
temperature, Figure 11(b) conductivity, Figure 11(c) transparency, and Figure 11(d) pH. Each matrix
illustrates the distribution of correct and incorrect classifications by comparing predicted classes (x-axis) with
actual classes (y-axis). As demonstrated by their confusion matrices, all models indicated a high degree of
accuracy. The temperature model Figure 11(a) and the pH model Figure 11(d) demonstrate particularly high
levels of accuracy, with minimal off-diagonal errors. In contrast, the transparency model Figure 11(c) shows
the most concentrated correct predictions within fewer class categories, reflecting its narrower classification
scope. Consequently, even during network interruptions, the performance of TinyML models was found to be
reliable, thus ensuring the stability of system operation.
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Figure 11. Confusion matrices for key environmental parameter models: (a) confusion matrix for the
temperature model (b) confusion matrix for the conductivity model (c) confusion matrix for the transparency
model and (d) confusion matrix for the pH model

According to this analysis, the LLMs generated specific recommendations, such as adding
bicarbonate or nitrate, which were then transmitted to the farm manager via SMS. Figure 12 displays the
transmitted SMS, conveying real-time system status updates and recommended actions for key
environmental parameters. This process ensured that the manager was always informed and could take swift
action to maintain the health of the Spirulina culture.
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Figure 12. Notifications sent to the farm manager via SMS

6.3. Profitability

The AloT system offers significant cost savings compared to traditional manual cultivation
methods. Automating monitoring and control processes reduces the need for manual intervention, thereby
lowering labor costs. The precision of the TinyML and LLM models also ensures efficient use of resources,
such as nutrients and energy, further reducing operational expenses. These combined efficiencies reduce
costs and save time, increasing profitability for the cultivation of Spirulina. Moreover, the system itself is not
expensive to implement, as it relies on accessible and affordable hardware components. The total cost of
these components is estimated at approximately $207 USD, which demonstrates that advanced AloT-based
monitoring and control can be achieved with relatively low investment compared to traditional large-scale
cultivation infrastructures.

7. DISCUSSION
7.1. Main findings

Our study shows that the AloT-based spirulina cultivation system was highly responsive and
reliable in both online and offline scenarios, which is particularly valuable in coastal areas where Spirulina is
commonly cultivated and internet connectivity is often slow or unstable. In an online setting, the system uses
a LLM to generate adaptive, context-aware recommendations based on real-time sensor data. When internet
connectivity was unavailable, the system switched to pre-trained TinyML models running locally on the
Raspberry Pi to ensure continued monitoring and stable environmental control. This dual approach
maintained all critical parameters, including temperature, conductivity, optical density, and pH, within their
ideal ranges. The average execution time was approximately 80 seconds, which was fast enough to support
timely interventions. In particular, the offline mode maintained optimal Spirulina growth while ensuring no
reduction in yield or health. In addition, the system reduced labor costs, minimized human error, and
improved efficiency compared to traditional manual cultivation methods. Furthermore, these findings align
with previous research highlighting the benefits of integrating IoT and Al technologies in agriculture [35],
[36]. For example, studies have shown that IoT-based systems can improve precision farming by providing
real-time data and automated responses to environmental changes [37].

7.2. Implications and novelty

The novelty of this work lies in being the first to apply LLM-based reasoning to algae cultivation,
combined with edge-based TinyML autonomy for reliable offline operation. While earlier systems primarily
focused on data collection or small-scale automation, they lacked scalability, resilience to connectivity
challenges, and integration of adaptive Al decision-making. Our system bridges this gap by connecting [oT
sensing with advanced Al reasoning to maintain optimal growth conditions in real-world farming scenarios.
This contribution paves the way for scalable AloT solutions in aquaculture, offering a practical and cost-
effective framework that can be extended to other crops and farming practices in the future.
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8. CONCLUSION

This study demonstrates that traditional Spirulina cultivation methods—often constrained by
inconsistent measurements, reliance on paper-based records, and outdated monitoring techniques—are
insufficient for ensuring reliable productivity in dynamic laboratory environments. By contrast, the proposed
AloT system integrates cyber-physical systems with LLMs to deliver real-time monitoring, self-adaptive
control, and secure data management. Experimental results confirm the system’s ability to maintain optimal
growth conditions while reducing human intervention, thereby outperforming conventional IoT-based
approaches in accuracy, autonomy, and reliability. Beyond addressing current limitations, the framework
paves the way for LLM—Edge integrated agricultural Al, where intelligent models operate locally to support
resource-constrained farms. This enables self-adaptive Spirulina cultivation in rural and remote contexts,
where continuous expert supervision is often unavailable. Furthermore, the architecture is extensible: future
studies could expand its scope toward algae classification, contamination detection, and aquaculture
optimization through advanced pattern recognition, underscoring its potential as a scalable solution for
sustainable biotechnology applications.
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