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 In the evolving field of Spirulina cultivation, the integration of the  

internet of things (IoT) has facilitated the optimization of spirulina growth 

and significantly enhanced biomass yield in the culture medium. This study 

outlines a control open-pond system for Spirulina cultivation that employs 

generative artificial intelligence (AI) and edge computing within an IoT 

framework. This transformative approach maintains optimal conditions and 

automates tasks traditionally managed through labor-intensive manual 

processes. The system is designed to detect, acquire, and monitor basin data 

via electronic devices, which is then analyzed by a large language model 

(LLM) to generate precise, context-aware recommendations based on 

domain-specific knowledge. The final output comprises SMS notifications 

sent to the farm manager, containing the generated recommendations, which 

keep them informed and enable timely intervention when necessary.  

To ensure continued autonomous operation in case of connectivity loss,  

pre-trained TinyML models were integrated into the Raspberry Pi. These 

models display alarm signals to alert the farm owner to any irregularities, 

thereby maintaining system stability and performance. This system has 

substantially improved the growth rate, biomass yield, and nutrient content 

of Spirulina. The results highlight the potential of this system to transform 

Spirulina cultivation by offering an adaptable, autonomous solution. 
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1. INTRODUCTION 

Spirulina (Arthrospira platensis) is a blue-green algae [1] recognized for its nutritional benefits and 

high protein content (50%-70% of dry weight) [2], [3]. In addition to its rich source of vitamins, minerals, 

and bioactive compounds such as carotenoids [4], [5] and antioxidants, it is used in food, cosmetics, and as a 

dietary supplement, even supporting astronauts on long space missions [6], [7]. Due to its well-established 

commercial production, Spirulina is cultivated in several countries, including the United States, Thailand, 

China, India, Taiwan, Pakistan, and Burma [8]. Additionally, effective management of spirulina cultivation is 
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necessary to achieve high yields and produce a quality product. Among the many cultivation methods, three 

are particularly popular: open-pond systems [9], photobioreactors (PBRs) [10], and home cultivation kits. 

Figure 1 shows each of the three systems used for the cultivation of Spirulina. Open-pond systems, as shown 

in Figure 1(a), are the most widely used. Typically, these systems utilize tanks that expose Spirulina to 

natural sunlight, thereby reducing investment and maintenance costs. These systems are notable for their 

scalability and simplicity, which make them a particularly well-suited solution for farmers. However, these 

systems are prone to contamination and sudden changes in environmental conditions. Figure 1(b) illustrates 

photobioreactors (PBRs), which use a more controlled approach with closed systems, such as tubular,  

flat-panel, or columnar configurations. This method carefully controls light, temperature, and nutrient supply. 

Therefore, there is a reduction in contamination risk and a continuous controlled production of the product 

throughout the year. This is also widely applied in high-production and quality spirulina, which requires a 

higher initial investment and associated running maintenance. Home cultivation kits are used for indoor 

cultivation in home settings and come with basic environmental controls to simplify the growing process for 

individuals and small-scale growers, as illustrated in Figure 1(c). 

Typically, Spirulina is cultivated in open ponds and then transferred to PBRs for later growth stages, 

leveraging the cost-effectiveness of open ponds and the high productivity and control of PBRs. Efficient 

management and control of Spirulina cultivation through these methods ensure high-quality production, 

reinforcing Spirulina’s viability and value as a nutrient-dense food source and sustainable solution for 

nutraceutical applications. 

 

 

   
(a) (b) (c) 

 

Figure 1. Different methods to cultivate Spirulina (a) open pond systems, (b) photobioreactors (PBRs),  

and (c) home cultivation kits 

 

 

Furthermore, in open-pond systems, manual control of key parameters such as pH, temperature, and 

nutrient concentrations is laborious and prone to human error, leading to variations in growth rates, 

differences in quality, and increased operational costs. To address these limitations, this study proposes an 

artificial intelligence of things (AIoT) -enabled solution that enables precise monitoring, autonomous 

regulation, and optimization of growth conditions to enhance biomass yield and nutrient content. The 

proposed system integrates sensors enabled with IoT, real time data analytics, and machine learning models 

to control key parameters such as temperature, pH, and nutrient levels. It applies automation and AI-based 

insights to reduce the chances of risks linked to human error, ensure the best conditions for growth, and 

provide remote management. Moreover, this work addresses key limitations of existing systems, such as 

unstable internet connectivity in coastal regions and the lack of autonomous operation during network loss.  

This work is organized as follows: Section 2 reviews related works and compares them with other 

articles. Furthermore, section 3 explores the background of Spirulina, highlighting its importance and optimal 

growth requirements. Section 4 discusses the project process, including the description of the data set and the 

data processing from collection to analysis. Next, in section 5, we present a complete system overview that 

explains the proposed system and the data flow diagram to fully grasp the general operations of the system. 

Section 6 elaborates on the results of this system, followed by discussion and conclusion in sections 7 and 8, 

respectively. 

 

 

2. RELATEDWORKS 

In recent years, several works have showcased the potential of IoT in enhancing Spirulina 

cultivation. Research has focused on the implementation of technology to improve Spirulina cultivation. 

Initially, we explored general information using the keyword “Spirulina cultivation”. As we narrowed our 

focus to IoT and AI applications for real-time monitoring and automation, we filtered out papers on Spirulina 

cultivation systems or included a chapter discussing Spirulina cultivation systems. Of these, 5 papers were 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 488-504 

490 

the most related. This section will discuss each proposal and compare it with our solution as shown in 

Table 1. 

Aquino et al. [11] present a vision-based closed Spirulina cultivation system integrating RGB/lux 

sensors with pH and temperature monitoring, combined with an artificial neural network (ANN) for growth 

prediction. This method enables reliable estimation of cell density without direct sampling. Similar to the 

proposed system, it applies sensor-driven monitoring to improve Spirulina growth. However, while it predicts 

biomass trends, it lacks adaptive decision-making. By contrast, the proposed framework employs generative 

artificial intelligence (AI) and TinyML to not only predict but also generate context-aware recommendations 

and enable autonomous control. 

 

 

Table 1. Comparative evaluation of Spirulina cultivation systems (IoT, AI, and AIoT approaches) 
Metric A vision-based 

closed spirulina 
(a. platensis) 

cultivation system 

with growth 
monitoring using 

artificial neural 

network [11] 
(2018) 

Smart micro farm: 

Sustainable algae 
spirulina growth 

monitoring system 

[12] 
(2018) 

Development of 

smart algae pond 
system for 

microalgae 

biomass 
production [13] 

(2021) 

IoT-based closed 

algal cultivation 
system with vision 

system for cell count 

through ImageJ via 
Raspberry Pi [14] 

(2021) 

Evaluation of  

real- time 
monitoring on the 

growth of Spirulina 

Microalgae: 
Internet of Things 

and Microalgae 

Technologies [15] 
(2024) 

IoT availability Partial (pH, temp, 

DO via Arduino; 
local) 

Yes 

(Arduino+GSM) 

Yes (multi-sensor 

ESP32 cloud) 

Yes 

(RPicamera+sen sors) 

Yes 

(ThingSpeak IoT) 

AI availability Yes (ANN from 

RGB & lux) 

No No No (ImageJ, rule-

based) 

No 

Sensor types 

monitored 

Temp, pH, DO, 

RGB & lux 

Temp, pH, light, 

water level 

Temp, pH, CO2, 

turbidity, light, 

velocity 

Temp, pH, light, 

camera imaging 

Temp, light, water 

level, absorbance 

(TCS3200) 
Real-time data 

availability 

No Yes (GSM SMS 

alerts) 

Partial (local + 

DB) 

Yes (RPi + online) Yes (ThingSpeak 

cloud) 

Data transmission 
latency 

N/A Higher (SMS) Low (ESP32 → 
MySQL) 

Low (RPi Wi-Fi) Low (ESP8266 → 
ThingSpeak) 

Prediction 

accuracy (%) 

ANN MSE = 

0.00478 

N/A N/A N/A N/A 

Energy consumption 

(kWh) 

N/A N/A Paddlewheel 0.5 

→ 0.2 

N/A N/A 

User interface 
quality 

LCD alerts SMS alerts Local + DB 
logging 

Web dashboard 
(RPi) 

Cloud dashboard + 
mobile 

Scalability Lab-scale 10L Small-scale farm Prototype raceway 

pond 120L 

Lab-scale 5–10L Lab-scale 10L 

Implementation 

Cost 

Not discussed Arduino + GSM Energy savings from 

paddlewheel 

RPi setup Low-cost Sensors 

(¡$250 

Growth rate 
(day−1) 

0.0519 vs 0.0372 N/A N/A N/A N/A 

Cultivation 

system type 

Closed pond 

(PBR-like) 

Open pond (micro 

farm) 

Raceway ponds 

(open) 

Closed pond (RPi 

monitored) 

Photobioreactor 

(lab-scale) 

 

 

Ariawan and Makalew [12] describe a smart micro farm using Arduino-based sensors (pH, light, 

temperature) and GSM modules to deliver threshold-based SMS alerts. This system provides an early,  

low-cost IoT application that makes Spirulina monitoring more accessible. Like the proposed design, it 

emphasizes real-time tracking of key growth parameters. The difference lies in adaptability: this system is 

reactive and manual, while the proposed solution integrates LLMs and TinyML to deliver proactive,  

context-aware recommendations and maintain functionality offline, advancing from monitoring to intelligent 

intervention. 

Hermadi et al. [13] develop a smart pond system with ESP32 sensors measuring environmental 

parameters (temperature, pH, CO2, turbidity, light, water velocity), integrated with automated paddlewheel 

control for energy efficiency. Similar to the proposed system, it integrates IoT for continuous monitoring and 

automated adjustments. However, it lacks adaptive intelligence and deeper data analysis. The proposed 

framework expands this by embedding generative AI and TinyML, transforming sensor-based automation 

into an intelligent, knowledge-driven cultivation process. 

Tolentino et al. [14] propose an IoT-based closed algal cultivation system that combines Raspberry 

Pi imaging with ImageJ software for cell count estimation. This vision-based method enhances biomass 

tracking accuracy at low cost. Like the proposed design, it exploits digital imaging and IoT integration to 

improve Spirulina monitoring. However, its reliance on static, rule-based image analysis limits adaptability in 
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dynamic conditions. The proposed system addresses this by incorporating LLMs and TinyML, enabling 

adaptive reasoning and real-time recommendations beyond static analysis. 

Lim et al. [15] present a cloud-based monitoring system (ThingSpeak) integrated with IoT sensors 

(e.g., optical density, temperature), offering scalable real-time Spirulina growth tracking. Its strength is 

enabling efficient, remote supervision. Similar to the proposed work, it leverages IoT connectivity to enhance 

cultivation oversight. However, it lacks AI-based recommendations and autonomy. In contrast, the proposed 

framework integrates LLM analytics and TinyML edge resilience, elevating monitoring into a fully adaptive, 

autonomous cultivation management system. 

In all reviewed studies, IoT-based monitoring of Spirulina cultivation has advanced significantly, yet 

a critical gap persists in the absence of AI-driven autonomous decision-making frameworks. While existing 

systems effectively collect and transmit environmental data, they fall short of leveraging advanced generative 

AI or large language models (LLMs) to provide adaptive, context-aware recommendations. Moreover, most 

solutions remain limited to small-scale prototypes, lacking scalability, resilience to connectivity loss, and 

integration of edge intelligence for uninterrupted operation. This gap highlights the need for research that 

bridges IoT sensing with autonomous AI reasoning, ensuring both real-time optimization of growth 

conditions and practical applicability in real-world Spirulina farming. This project aims to bridge these gaps 

by leveraging LLMs for dynamic and context-aware decision-making, deploying offline operations to 

address communication instability, and considering robust communication, especially in coastal areas. 

 

 

3. BACKGROUND 

To fully understand the system, it is important to cover the origins of Spirulina, the ideal cultivation 

conditions, and the significant role of IoT technology in enhancing its growth, productivity, and 

sustainability. 

 

3.1.  Origins and nutritional benefits of Spirulina 

Spirulina is a microscopic aquatic organism of the cyanobacteria group. It is scientifically classified 

under the genus Arthrospira platensis [16]. This microalga has a characteristic spiral shape as depicted in 

Figure 2, consisting of 5 to 7 spirals typically 3 to 8 μm in diameter. It appears in the form of microscopic 

filaments made up of juxtaposed cells. The length of the filament and the number and density of the coils for 

each filament vary depending on the age of the microalgae and the cultivation conditions. Its reproduction is 

asexual and occurs through filament division [17]. 

In the mid-20th century, researchers rediscovered Spirulina in Europe and the U.S. [18]. Global 

interest has recently increased, particularly in Chad, where production has increased significantly. In Tunisia, 

Spirulina was first discovered in Lake Tunis in 1978 and later in Chatt el Jerid in 1997. There are also 

promising strains near Sfax and Hergla, indicating the potential for larger cultivation. 

 

 

 
 

Figure 2. Spirulina under view x100 magnification 

 

 

3.2.  Optimal Spirulina cultivation conditions 

Certain conditions are required to ensure optimal Spirulina growth [19], [20]. The water used for the 

culture medium should be seawater enriched with mineral salts to provide Spirulina with the necessary 

chemical elements [21], [22]. The temperature of the culture liquid directly influences the multiplication rate 

of Spirulina and the reproduction stability, with significant growth occurring only above 20 °C. In 1975, Pirt 

asserted that the optimum water temperature for cultivation is between 35 °C and 37 °C [23]. Light is 

essential for synthesizing organic matter from simple mineral elements, and the required light intensity varies 

greatly depending on the culture’s depth and the algae’s density [24]. The optimal pH of the culture medium 

should be at least 9; if it is too low, the culture may not start well, with clumps forming or Spirulina 
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precipitating at the bottom [25], [26]. The main carbon source of Spirulina is carbon dioxide gas, and 

productivity can be increased by injecting pure carbon dioxide directly into the culture [27]. A certain level 

of conductivity in the water is also required, estimated to be between 15 and 35 g/l, along with a mix of other 

elements such as sodium bicarbonate, potassium nitrate, and sodium phosphate [27]–[29]. 

 

3.3.  The impact of IoT technology on Spirulina cultivation 

IoT technology is revolutionizing Spirulina cultivation by enabling real-time monitoring and control 

of critical parameters, as discussed in Section 1. This advancement allows for timely adjustments to optimize 

growth and productivity while identifying and addressing abnormalities in the cultivation process [12]. IoT 

sys tems enhance the growth rate and yield of Spirulina and contribute to significant environmental and 

economic improvements. 

− Environmental benefits: IoT-enabled processes improve efficiency and sustainability, reducing resource 

wastage and increasing productivity. By incorporating clean energy sources like solar power, IoT can 

lower the carbon footprint of Spirulina cultivation. Additionally, mixotrophic cultivation techniques 

utilizing wastewater nutrients and solar energy contribute to sustainable and environmentally friendly 

practices [30].  

− Economic implications: The integration of IoT in Spirulina cultivation boosts efficiency and productivity, 

addressing food security and resource limitations in agriculture. Automation and monitoring capabilities 

enabled by IoT can reduce labor expenses while increasing the value of the product, thereby offering 

substantial economic benefits [31], [32].  

However, the successful integration of IoT in Spirulina cultivation is not without challenges. Issues 

such as interoperability, affordability, device power consumption, bandwidth, latency, and data processing 

must be carefully managed to ensure effective implementation [33], [34]. Our AIoT system addresses these 

challenges by combining IoT with machine learning models, enhancing system responsiveness and 

reliability. Through its offline capabilities and TinyML models, the system autonomously adjusts key 

parameters and maintains operations even during network disruptions. Furthermore, the lightweight nature of 

the message queuing telemetry transport (MQTT) protocol allows the system to operate efficiently in 

environments with limited bandwidth, such as coastal areas where internet connectivity may be slow or 

unstable. This approach reduces the dependency on constant connectivity, mitigates data processing 

challenges, and ensures consistent and efficient cultivation, making the process more resilient and 

sustainable. 

 

 

4. METHOD 

The AIoT system for Spirulina cultivation control consists of several key procedures. 

 

4.1.  Dataset description 

After collaborating with Bio Algues Tunisie, a specialized Spirulina farm and laboratory, we 

received precise measurements for each condition they use in their cultivation process. The AIoT system 

dataset includes the essential parameters for optimizing Spirulina cultivation. The most common measures 

focused on:  

− Transparency: The ideal water transparency should vary between 2 cm and 10 cm. If the transparency is  

2 cm or less, 30% of the basin should be filtered. For transparency between 2 cm and 3 cm, 20% of the 

basin should be filtered. If the transparency is between 3 cm and 4 cm, 10% of the basin should be 

filtered. For transparency greater than 4 cm, filtering is not necessary. A darker appearance of the water, 

indicating a healthy density of phytoplankton, is desirable.  

− pHValue: The ideal pH value is between 9 and 10. If the pH is less than 9, caustic soda (NaOH) should be 

added. If the pH exceeds 10.2, bicarbonate should be added at a rate of 1 g/l. If the pH exceeds 10.5, the 

rate of bicarbonate addition should be increased to 2 g/l. 

− Water Temperature: The ideal water temperature is between 20 °C and 24 °C. Specific measures should 

be applied if the temperature drops below 4 °C or rises to 34 °C or higher. If the water remains stagnant 

for 3 days at temperatures above 20 °C, bicarbonate (1 g/l) and nitrates (0.2 g/l) should be added.  

− Conductivity: The ideal salinity is between 15 g/l and 35 g/l. If the salinity is below 15 g/l, seawater 

should be added. If the salinity exceeds 35 g/l, 20% of the basin should be emptied and replaced with 

fresh water.  

These parameters are critical to maintaining optimal growth conditions for Spirulina and ensuring the highest 

quality yield. 
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4.2.  Dataset preparation 

 A comprehensive document was prepared to train the LLM to generate personalized outputs. This 

document constitutes the knowledge base that LLM accesses through RAG. A structured and well-organized 

table was created to serve as our knowledge base. As shown in Table 2, it specifies essential parameters, the 

corresponding recommendations, and commands based on different conditions. The purpose of this table is to 

ensure accurate interpretation and provide customized recommendations and commands.  

 The document is divided into three sections. The initial column covers the parameters associated 

with spirulina cultivation, including temperature, conductivity, transparency, and pH. The second column 

comprises the corresponding recommendations for each parameter, enabling the LLM model to deliver 

precise and context-aware responses. The final column details the specific actions to be taken when 

conditions fall outside the optimal range for each parameter and was designed for TinyML to recognize each 

condition through code. 

 

 

Table 2. Operational parameters and corrective measures for Spirulina cultivation 
Factor Ideal 

Value/Range 

Recommendation Code 

Transparency 2–10 cm If ≤ 2 cm: filter 30% of the basin. F 

If 2–3 cm: filter 20% of the basin. G 
If 3–4 cm: filter 10% of the basin. H 

If > 4 cm: no filtering required. I 
pH Value 9–10 If <9: add caustic soda (NaOH). C 

If > 10.2: add bicarbonate at 1 g/L. D 

If > 10.5: add bicarbonate at 2 g/L. E 
Water Temperature 20–24 °C If < 4 °C: corrective action required. K 

If ≥ 34 °C: corrective action required. L 

If stagnant for 3 days at > 20 °C: add bicarbonate (1 g/L) and nitrates (0.2 g/L). J 
Salinity (Conductivity) 15–35 g/L If < 15 g/L: add seawater. A 

If > 35 g/L: empty 20% of the basin and replace with fresh water. B 

 

 

4.3.  Data collection and acquisition 

For data collection, various sensors have been integrated into the spirulina basins. The pH value is 

measured using the SEN0161 pH sensor, while the DFRobot Gravity analog electrical conductivity sensor is 

used to assess high electrical conductivity, such as seawater. Temperature readings are taken with the 

DS18B20 sensor. We used the DFROBOT Sen0205 FS-IR02 sensor to determine the water level in the basin. 

To measure light intensity, an endoscope camera is used to calculate darkness based on light intensity by 

detecting the time when a predefined point on a white disk turns dark within the water, thus providing an 

accurate distance measurement. To facilitate the descent and ascent of the measurement system underwater, 

an electronic actuator was installed. 

Considering the acquisition unit, each sensor was connected to the Arduino UNO microcontroller, 

which plays a crucial role in converting the data from analog signals to digital values for processing. Figure 3 

represents the Arduino UNO connection to the integrated sensors, including the pH sensor, the conductivity 

sensor, and the temperature sensor. 

 

 

 
 

Figure 3. Sensor’s integration in the acquisition board 

 

 

4.4.  Data processing 

In the next step, a Raspberry Pi 4 serves as the primary processing unit, collecting data from 

multiple sensors connected via the Arduino UNO, executing real-time AI/TinyML algorithms, and 

coordinating automated control actions in the Spirulina cultivation system. The endoscope camera and the 

water level sensor were connected directly to the Raspberry Pi, with the camera configured to capture the 

Secchi disk’s disappearance underwater. Specifically, the endoscope camera was attached to a box while the 
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Secchi disk was mounted on the piston rod of a linear actuator. As the rod moved underwater, the camera 

captured video frames, and image processing was applied to detect the white color of the disk, using the 

condition b, g, r = 255, 255, 255 and the iterative logic: 

 
{  

while b = 0 and g = 0 and r = 0 :  

ROI = frame[roi y:roi y+roi height, roi x:roi x+roi width]  

hsv ROI = cv2.cvtColor(ROI, cv2.COLOR BGR2HSV)  

if b == 0 and g == 0 and r == 0:  

Disappearance_Height = time_ex * 0.4 

} 

 

The Raspberry Pi also converted the sensor data into a JavaScript Object Notation (JSON) format, 

chosen for its lightweight structure, efficient transmission in limited-bandwidth environments, and ability to 

represent hierarchical data. This JSON file was then immediately sent to the LLM for further analysis and 

generation of context-aware recommendations via the MQTT protocol. On the other hand, in scenarios where 

there is no internet connectivity, the Raspberry Pi relies on TinyML models to execute local decision-making 

processes. Figure 4 demonstrates the connection that links all components of the system. 

 

4.5.  Data transmission 

The data collected by the sensors are transmitted via the MQTT protocol, which serves as a 

communication hub between the sensors and the AI model. As illustrated in Figure 5, the system is initiated 

by a Raspberry Pi that collects data from the indicated sensors. The data is then converted into a JSON file 

format to facilitate publication on a specific topic. Meanwhile, the AI model subscribes to the same topic to 

receive and analyze the data. In the Spirulina cultivation IoT control system, the MQTT protocol offers 

several advantages, including real-time data transmission from sensors to the LLM model server, enabling 

immediate analysis and rapid system adjustments. Its high transmission speed ensures minimal latency, 

facilitating prompt responses such as automated recommendations to clients. The protocol’s lightweight 

design minimizes bandwidth consumption, making it particularly effective in low-connectivity environments 

like coastal areas. 

 

 

  
 

Figure 4. System circuit diagram 
 

Figure 5. Data transmission through the MQTT broker 

 

 

4.6.  Data analyzation  

4.6.1.  Large language model (LLM)  

In the case of online scenarios, a generative LLM was integrated to analyze sensor data and produce 

both recommendations and corrective commands. The system employs GPT-4, accessed through the 

LangChain framework, to process real-time inputs such as temperature, pH, water level, conductivity, and 

optical density collected from a Raspberry Pi. This enables automated decision-making that reduces manual 

intervention and generates precise, context-aware recommendations. The use of natural language output 

ensures that results are easily interpretable, even for non-expert farm managers, thereby facilitating practical 

adoption. The system is also highly scalable, allowing new sensors or parameters to be integrated with 
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minimal reprogramming, strengthening its adaptability for future extensions. To provide domain knowledge, 

a FAISS vector database was constructed from a Spirulina cultivation handbook and supporting technical 

documentation. These documents were embedded with the SentenceTransformer (allmpnet-base-v2) model. 

Through LangChain’s retrieval-augmented generation (RAG) architecture, GPT-4 retrieves the most relevant 

fragments from this knowledge base before generating outputs. This guarantees that recommendations are 

grounded in validated cultivation practices and remain situation-specific. The output of the LLM is structured 

in JSON format, providing both actionable commands and detailed recommendations for each monitored 

parameter. For example, given a scenario where the temperature is below optimal and pH is slightly low, the 

model generates the following output: 

 
{  

"commands: ["Increase temperature", "Add bicarbonate"],  

"recommendations":[  

{"parameter": "temperature", "status": "below optimal", "action": "increase heating by 

5◦C"},  

{"parameter": "pH", "status": "slightly low", "action": "add bicarbonate"}  

]  

} 

 

This structure allows for precise, automated interventions while maintaining interpretability for the 

farm manager. Each recommendation object explicitly identifies the parameter, its current status, and the 

action to be taken, whereas the commands array summarizes the key interventions to execute, enabling both 

human operators and automated systems to respond efficiently. 

 

4.6.2. TinyML integration 

TinyML was integrated into the Spirulina cultivation system to ensure autonomous operation during 

periods of network failure. The choice of TinyML was motivated by its low power consumption, cost 

efficiency, resilience, and ability to support real-time decision-making. The primary goal was to classify 

sensor values accurately, allowing the system to maintain optimal growth conditions for Spirulina even in 

offline mode. For this purpose, datasets were created for four critical parameters: pH, conductivity, 

temperature, and optical density, as these directly influence the health and productivity of Spirulina. 

The models deployed were neural networks designed and trained using TensorFlow. Each model 

follows the same general architecture: an input layer, three dense layers with rectified linear unit (ReLU) 

activation, and a SoftMax output layer. Each parameter dataset was generated individually, ensuring that the 

SoftMax layer contained unique classes specific to the parameter being analyzed. Once trained and validated, 

the models were converted into TensorFlow Lite format for deployment, enabling efficient inference on the 

Raspberry Pi 4. 

The datasets contained over 9000 samples per parameter. Each dataset consisted of two columns: 

sensor value and sensor status. The simulated sensor readings were classified based on Spirulina’s optimal 

growth conditions. For instance, water transparency between 2 cm and 10 cm was considered optimal, while 

deviations triggered corrective actions such as partial filtration. Similarly, temperature was maintained 

between 20 °C and 24 °C, pH between 9 and 11, and salinity between 15 g/l and 35 g/l. To improve model 

performance, the sensor values were standardized before training. 

The training pipeline was executed on a PC, after which the optimized models were deployed to the 

Raspberry Pi 4. The workflow was designed such that, under normal operation, data from the sensors is 

processed by the Raspberry Pi and transmitted to the LLM server for high-level analysis. However, when the 

Internet connectivity is lost, the TinyML models are activated locally. In this mode, the Raspberry Pi 

executes inference directly on the standardized sensor values, classifying conditions and determining 

appropriate actions, such as adding nitrate or adjusting water salinity, to stabilize the environment. 

 

4.7.  System implementation  

The system prototype has been successfully deployed in a Spirulina cultivation basin, where it 

autonomously monitors and adjusts environmental conditions in real time. It consists of a Raspberry Pi that 

serves as the central processing unit, connected to various sensors that measure critical parameters, including 

temperature, pH level, water level, conductivity, and optical density. The sensors are strategically placed 

within the basin to ensure accurate data collection, enabling on-site processing using embedded TinyML 

models for decision-making and edge computing. Once network connectivity is established, the system uses 

an LLM to generate detailed recommendations based on real-time sensor data. 

Figure 6 provides a visual representation of the prototype setup, illustrating the functionality of the 

sensors. To protect the system from environmental hazards such as precipitation or dirt ingress, a waterproof 

enclosure is essential. Given the system’s proximity to basins, exposure to water poses a risk to the electronic 
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components. The NSF-grade PVC plastic housing offers excellent water resistance, similar to materials used 

in water pipelines. 

 

 

 
 

Figure 6. Live system setup in the Spirulina cultivation basin 

 

 

5. SYSTEM OVERVIEW  

5.1.  System workflow: data flow and processing  

The workflow of the proposed Spirulina cultivation control system defines the dynamic process 

through which sensor data is collected, analyzed, and transformed into actionable recommendations. 

As illustrated in Figure 7, the process begins with the collection of environmental data from five sensors: pH 

sensor, conductivity sensor, temperature sensor, endoscope camera (for optical density), and water level sensor.  

 

 

 
 

Figure 7. Workflow of the proposed AIoT solution for Spirulina cultivation control 
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Once data is acquired, the Raspberry Pi attempts to establish a connection with the LLM server. 

Two scenarios then arise:  

− In case of connection availability, Sensor data is transmitted to the LLM server via the MQTT protocol. 

Within the LLM pipeline, the data is analyzed in conjunction with contextual knowledge, enabling the 

generation of precise recommendations and actuator commands. The commands are sent back to the 

Raspberry Pi (via MQTT) to activate actuators, while the recommendations are simultaneously forwarded 

to the farm manager as push notifications.  

− In case of connection failure, the Raspberry Pi activates its embedded TinyML models, which analyze the 

sensor readings locally and generate system descriptions and commands. These commands are then used 

to drive the actuators directly, ensuring continuous system operation even in offline mode.  

After actuator activation, the system enters a two-hour standby period before starting the data collection and 

processing loop. This workflow ensures responsive, reliable, and autonomous control of Spirulina cultivation 

under both connected and disconnected conditions. 

 

5.2.  System architecture: hardware–software integration  

Figure 8 illustrates the overall architecture of the proposed Spirulina cultivation control system, 

integrating sensors, IoT communication, TinyML, and a retrieval-augmented generation (RAG) pipeline. On 

the hardware side, physical sensors (pH sensor, conductivity sensor, temperature sensor, endoscope camera, 

and water level sensor) are immersed in the Spirulina basin and connected to an Arduino Uno, which 

converts analog signals into digital values. These readings are transmitted to a Raspberry Pi that acts as the 

central processing unit. The Raspberry Pi processes sensor readings, runs TinyML models for offline 

autonomy, and communicates with the cloud-based LLM server using the MQTT protocol.  

 

 

 
 

Figure 8. Architecture of the proposed AIoT solution for spirulina cultivation control 

 

 

On the software side, the system employs a retrieval-augmented generation workflow coordinated 

by LangChain. Documents from the knowledge base are embedded using an embedding model and indexed 

in a FAISS vector database. When sensor data requires interpretation, LangChain orchestrates the retrieval of 

relevant context from FAISS and combines it with the raw sensor readings. A custom recommendation 

engine integrates this contextual information before passing it to the LLM (GPT-3.5), which generates 

precise and actionable recommendations. These recommendations are then transmitted back through the 

MQTT broker to the Raspberry Pi for actuator control and simultaneously delivered as push notifications to 

the farm manager. 
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6. RESULT  

6.1.  System responsiveness 

The system’s responsiveness to environmental changes was a critical factor in its performance. 

Figure 9 presents the results, illustrating the system’s ability to maintain real-time data analysis capabilities 

under different operational conditions. For instance, as depicted in Figure 9(a), when a sudden drop in pH 

was detected, the system immediately responded to restore the pH level, leading to the spike observed in 

cycle 10. Additionally, Figure 9(b) shows that the execution time varies significantly between cycles due to 

network latency. However, it remains relatively efficient, with the execution time generally hovering around 

80 seconds. In addition, when a sudden change in conditions is detected, the system promptly sends an alert 

notification to the farm manager, allowing them to take the necessary actions to restore the optimal range. 

This immediate response minimized stress on the Spirulina and prevented potential disruptions to its growth. 

The LLMs in the system played a vital role in maintaining this responsiveness. These models 

continuously monitored sensor data and cross-referenced it with detailed documentation outlining optimal 

growth conditions for Spirulina. The Figure 10 presents a JSON-formatted output generated by the LLM, 

detailing system recommendations, associated actions, and command values. The commands section 

specifies predicted indices for pH, electrical conductivity (EC), brightness, and temperature parameters. The 

recommendations array provides condition-specific guidance, including the monitored parameter, its current 

status, and a corresponding operational action. For example, when pH is below 9, the system suggests adding 

NaOH; when conductivity is under 15, it recommends adding seawater; low brightness triggers a partial 

water filtration instruction; and an optimal temperature range is labeled as “Ideal.” 

 
 

  
(a) (b) 

 

Figure 9. Comparison of system execution times (a) offline mode and (b) online mode 

 

 

 
 

Figure 10. LLM-generated recommendations, corresponding actions, and commands 
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6.2.   Autonomy and reliability 

The autonomy and reliability of the AIoT system were tested under various scenarios, including 

intentional network disruptions, to evaluate the performance of the TinyML models on the Raspberry Pi. 

During these disruptions, the TinyML models effectively maintained the necessary environmental conditions 

without any noticeable decrease in Spirulina growth or health. This demonstrated the system’s robustness and 

ability to operate independently of constant internet connectivity. The performance of the classification 

system for the four key ecological parameters monitored by the TinyML models is summarized in the 

confusion matrices shown in Figure 11. These matrices include the following parameters: Figure 11(a) 

temperature, Figure 11(b) conductivity, Figure 11(c) transparency, and Figure 11(d) pH. Each matrix 

illustrates the distribution of correct and incorrect classifications by comparing predicted classes (x-axis) with 

actual classes (y-axis). As demonstrated by their confusion matrices, all models indicated a high degree of 

accuracy. The temperature model Figure 11(a) and the pH model Figure 11(d) demonstrate particularly high 

levels of accuracy, with minimal off-diagonal errors. In contrast, the transparency model Figure 11(c) shows 

the most concentrated correct predictions within fewer class categories, reflecting its narrower classification 

scope. Consequently, even during network interruptions, the performance of TinyML models was found to be 

reliable, thus ensuring the stability of system operation. 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 11. Confusion matrices for key environmental parameter models: (a) confusion matrix for the 

temperature model (b) confusion matrix for the conductivity model (c) confusion matrix for the transparency 

model and (d) confusion matrix for the pH model 

 

 

According to this analysis, the LLMs generated specific recommendations, such as adding 

bicarbonate or nitrate, which were then transmitted to the farm manager via SMS. Figure 12 displays the 

transmitted SMS, conveying real-time system status updates and recommended actions for key 

environmental parameters. This process ensured that the manager was always informed and could take swift 

action to maintain the health of the Spirulina culture. 
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Figure 12. Notifications sent to the farm manager via SMS 

 

 

6.3.  Profitability 

The AIoT system offers significant cost savings compared to traditional manual cultivation 

methods. Automating monitoring and control processes reduces the need for manual intervention, thereby 

lowering labor costs. The precision of the TinyML and LLM models also ensures efficient use of resources, 

such as nutrients and energy, further reducing operational expenses. These combined efficiencies reduce 

costs and save time, increasing profitability for the cultivation of Spirulina. Moreover, the system itself is not 

expensive to implement, as it relies on accessible and affordable hardware components. The total cost of 

these components is estimated at approximately $207 USD, which demonstrates that advanced AIoT-based 

monitoring and control can be achieved with relatively low investment compared to traditional large-scale 

cultivation infrastructures. 

 

 

7. DISCUSSION 

7.1.  Main findings 

Our study shows that the AIoT-based spirulina cultivation system was highly responsive and 

reliable in both online and offline scenarios, which is particularly valuable in coastal areas where Spirulina is 

commonly cultivated and internet connectivity is often slow or unstable. In an online setting, the system uses 

a LLM to generate adaptive, context-aware recommendations based on real-time sensor data. When internet 

connectivity was unavailable, the system switched to pre-trained TinyML models running locally on the 

Raspberry Pi to ensure continued monitoring and stable environmental control. This dual approach 

maintained all critical parameters, including temperature, conductivity, optical density, and pH, within their 

ideal ranges. The average execution time was approximately 80 seconds, which was fast enough to support 

timely interventions. In particular, the offline mode maintained optimal Spirulina growth while ensuring no 

reduction in yield or health. In addition, the system reduced labor costs, minimized human error, and 

improved efficiency compared to traditional manual cultivation methods. Furthermore, these findings align 

with previous research highlighting the benefits of integrating IoT and AI technologies in agriculture [35], 

[36]. For example, studies have shown that IoT-based systems can improve precision farming by providing 

real-time data and automated responses to environmental changes [37]. 

 

7.2.  Implications and novelty 

The novelty of this work lies in being the first to apply LLM-based reasoning to algae cultivation, 

combined with edge-based TinyML autonomy for reliable offline operation. While earlier systems primarily 

focused on data collection or small-scale automation, they lacked scalability, resilience to connectivity 

challenges, and integration of adaptive AI decision-making. Our system bridges this gap by connecting IoT 

sensing with advanced AI reasoning to maintain optimal growth conditions in real-world farming scenarios. 

This contribution paves the way for scalable AIoT solutions in aquaculture, offering a practical and cost-

effective framework that can be extended to other crops and farming practices in the future. 
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8. CONCLUSION 

This study demonstrates that traditional Spirulina cultivation methods—often constrained by 

inconsistent measurements, reliance on paper-based records, and outdated monitoring techniques—are 

insufficient for ensuring reliable productivity in dynamic laboratory environments. By contrast, the proposed 

AIoT system integrates cyber-physical systems with LLMs to deliver real-time monitoring, self-adaptive 

control, and secure data management. Experimental results confirm the system’s ability to maintain optimal 

growth conditions while reducing human intervention, thereby outperforming conventional IoT-based 

approaches in accuracy, autonomy, and reliability. Beyond addressing current limitations, the framework 

paves the way for LLM–Edge integrated agricultural AI, where intelligent models operate locally to support 

resource-constrained farms. This enables self-adaptive Spirulina cultivation in rural and remote contexts, 

where continuous expert supervision is often unavailable. Furthermore, the architecture is extensible: future 

studies could expand its scope toward algae classification, contamination detection, and aquaculture 

optimization through advanced pattern recognition, underscoring its potential as a scalable solution for 

sustainable biotechnology applications. 

 

 

ACKNOWLEDGMENTS  

The research leading to these results has received funding from the Ministry of Higher Education 

and Scientific Research of Tunisia under the grant agreement number LR11ES48. 

 

 

REFERENCES  
[1] C. Bennouna, “Spirulina: its properties and cultivation methods,” Synoxis Algae, 2020. https://www.synoxis-algae.com/spirulina-

properties-and-cultivation-methods/ (accessed Jun. 12, 2020). 
[2] I. S. Chronakis and M. Madsen, “Algal proteins,” in Handbook of Food Proteins, G. Phillips and P. Williams, Eds. Woodhead 

Publishing, 2011, pp. 353–394. doi: 10.1533/9780857093639.353. 

[3] B. Maddiboyina et al., “Food and drug industry applications of microalgae Spirulina platensis: A review,” Journal of Basic 
Microbiology, vol. 63, no. 6, pp. 573–583, 2023, doi: 10.1002/jobm.202200704. 

[4] V. Henríquez, C. Escobar, J. Galarza, and J. Gimpel, “Carotenoids in microalgae,” in Sub-Cellular Biochemistry, vol. 79, C. 

Stange, Ed. Cham: Springer, 2016, pp. 219–237. doi: 10.1007/978-3-319-39126-7_8. 
[5] T. de C. D. Mendes-Silva et al., “Biotechnological potential of carotenoids produced by extremophilic microorganisms and 

application prospects for the cosmetics industry,” Advances in Microbiology, vol. 10, no. 08, pp. 397–410, 2020, doi: 

10.4236/aim.2020.108029. 
[6] E. D. Revellame, R. Aguda, A. Chistoserdov, D. L. Fortela, R. A. Hernandez, and M. E. Zappi, “Microalgae cultivation for space 

exploration: Assessing the potential for a new generation of waste to human life-support system for long duration space travel and 

planetary human habitation,” Algal Research, vol. 55, p. 102258, 2021, doi: 10.1016/j.algal.2021.102258. 
[7] E. D. Revellame et al., “Microalgae in bioregenerative life support systems for space applications,” Algal Research, vol. 77,  

p. 103332, 2024, doi: 10.1016/j.algal.2023.103332. 

[8] R. Maddaly, “The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties,” Nutrition and 
Dietary Supplements, vol. 2, p. 73, 2010, doi: 10.2147/nds.s9838. 

[9] M. A. Borowitzka and N. R. Moheimani, “Open pond culture systems,” in Algae for Biofuels and Energy, Dordrecht: Springer, 

2013, pp. 133–152. doi: 10.1007/978-94-007-5479-9_8. 
[10] L. Manu et al., “Photobioreactors are beneficial for mass cultivation of microalgae in terms of areal efficiency, climate 

implications, and metabolites content,” Journal of Agriculture and Food Research, vol. 18, p. 101282, 2024, doi: 
10.1016/j.jafr.2024.101282. 

[11] A. U. Aquino, M. V. L. Bautista, C. H. Diaz, I. C. Valenzuela, and E. P. Dadios, “A vision-based closed spirulina (a. platensis) 

cultivation system with growth monitoring using artificial neural network,” in 2018 IEEE 10th International Conference on 
Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 

2018, 2018, pp. 1–5. doi: 10.1109/HNICEM.2018.8666367. 

[12] E. Ariawan and A. Stanley Makalew, “Smart micro farm: Sustainable algae spirulina growth monitoring system,” in Proceedings 
of 2018 10th International Conference on Information Technology and Electrical Engineering: Smart Technology for Better 

Society, ICITEE 2018, 2018, pp. 587–591. doi: 10.1109/ICITEED.2018.8534904. 

[13] I. Hermadi et al., “Development of smart algae pond system for microalgae biomass production,” IOP Conference Series: Earth 
and Environmental Science, vol. 749, no. 1, p. 12068, 2021. 

[14] L. K. S. Tolentino et al., “IoT-based closed algal cultivation system with vision system for cell count through ImageJ via 

Raspberry Pi,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, pp. 287–294, 2021,  
doi: 10.14569/IJACSA.2021.0120732. 

[15] H. R. Lim et al., “Evaluation of real-time monitoring on the growth of spirulina microalgae: Internet of things and microalgae 

technologies,” IEEE Internet of Things Journal, vol. 11, no. 2, pp. 3274–3281, 2024, doi: 10.1109/JIOT.2023.3296525. 
[16] M. B. Zrimec et al., “Advances in Spirulina cultivation: Techniques, challenges, and applications,” in Insights Into Algae - 

Fundamentals, Culture Techniques and Biotechnological Uses of Microalgae and Cyanobacteria, I. A. Severo, W. J. Martinez-

Burgos, and J. Ordonez, Eds. Rijeka: IntechOpen, 2024. doi: 10.5772/intechopen.1005474. 
[17] A. Vonshak and L. Tomaselli, “Arthrospira (Spirulina): systematics and ecophysiology,” in Ecology of Cyanobacteria., 

Dordrecht: Kluwer Academic Publishers, 2000, pp. 505–523. 

[18] J. L. Farrar, Les arbres du Canada. Ottawa, Canada: Ressources naturelles Canada, 1995. 
[19] N. K. Z. AlFadhly, N. Alhelfi, A. B. Altemimi, D. K. Verma, and F. Cacciola, “Tendencies affecting the growth and 

cultivation of genus spirulina: An investigative review on current trends,” Plants, vol. 11, no. 22, p. 3063, 2022,  

doi: 10.3390/plants11223063. 
[20] S. Farming, “Spirulina cultivation: Best practices and techniques,” Spirulina Farming, 2024. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 488-504 

502 

[21] J. Devanathan and N. Ramanathan, “Utilization of seawater as a medium for mass production of Spirulina platensis---A novel 

approach,” International Journal of Recent Scientific Research, vol. 4, no. 5, pp. 597–602, 2013. 
[22] K. A. Selvam, J. Devanathan, A. Selvam, and N. Ramanathan, “Optimization of biomass production of spirulina platensis in 

seawater medium,” Life Science Archives, vol. 2, no. 2, pp. 708–716, 2016. 

[23] S. J. Henrikson, Principles of microbe and cell cultivation, 2nd ed. Oxford, UK: Blackwell Scientific Publications, 1994. 
[24] R. Chaiklahan, N. Chirasuwan, T. Srinorasing, S. Attasat, A. Nopharatana, and B. Bunnag, “Enhanced biomass and phycocyanin 

production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration,” 

Bioresource Technology, vol. 343, p. 126077, 2022, doi: 10.1016/j.biortech.2021.126077. 
[25] C.-J. Kim, Y.-H. Jung, G.-G. Choi, Y.-H. Park, C.-Y. Ahn, and H.-M. Oh, “Optimization of outdoor cultivation of spirulina 

platensis and control of contaminant organisms,” Algae, vol. 21, no. 1, pp. 133–139, 2006, doi: 10.4490/algae.2006.21.1.133. 

[26] C. J. Kim, Y. H. Jung, S. R. Ko, H. I. Kim, Y. H. Park, and H. M. Oh, “Raceway cultivation of Spirulina platensis using 
underground water,” Journal of Microbiology and Biotechnology, vol. 17, no. 5, pp. 853–857, 2007. 

[27] F. Delrue et al., “Optimization of Arthrospira platensis (Spirulina) growth: From laboratory scale to pilot scale,” Fermentation, 

vol. 3, no. 4, 2017, doi: 10.3390/fermentation3040059. 
[28] A. E.-K. El-sayed and M. El-sheekh, “Outdoor cultivation of spirulina platensis for mass production,” Notulae Scientia 

Biologicae, vol. 10, no. 1, pp. 38–44, 2018, doi: 10.15835/nsb10110177. 

[29] K. P. Sandeep et al., “Utilization of inland saline water for Spirulina cultivation,” Journal of Water Reuse and Desalination,  
vol. 3, no. 4, pp. 346–356, 2014, doi: 10.2166/wrd.2013.102. 

[30] L. K. Ong, V. V. Lauw, S. Tang, Y. Arifin, and L. Riadi, “Application of solar photovoltaic for the cultivation of Arthospira  

platensis (Spirulina),” in International Journal of Applied Science and Engineering, 2023, vol. 20, no. 2. doi: 
10.6703/IJASE.202306_20(2).008. 

[31] T. Luis and N. Geovanni, “Application of IoT in agribusiness,” in Lecture Notes in Networks and Systems, 2024, vol. 839,  

pp. 585–593. doi: 10.1007/978-981-99-8324-7_49. 
[32] R. Jeyabharath et al., “Smart aeroponic farms with IoT-enabled efficient automation and monitoring,” in 2nd International 

Conference on Artificial Intelligence and Machine Learning Applications: Healthcare and Internet of Things, AIMLA 2024, 2024, 
pp. 1–7. doi: 10.1109/AIMLA59606.2024.10531308. 

[33] A. U. Mentsiev and F. F. Gatina, “Data analysis and digitalisation in the agricultural industry,” IOP Conference Series: Earth and 

Environmental Science, vol. 677, no. 3, p. 32101, 2021, doi: 10.1088/1755-1315/677/3/032101. 
[34] C. S. M. Babou, B. O. Sane, I. Diane, and I. Niang, “Home edge computing architecture for smart and sustainable agriculture and 

breeding,” in ACM International Conference Proceeding Series, 2019, vol. Part F148154. doi: 10.1145/3320326.3320377. 

[35] S. Nimmala, M. Ramchander, M. Mahendar, P. Manasa, M. A. Kiran, and B. Rambabu, “A recent survey on AI-enabled practices 
for smart agriculture,” in 2024 International Conference on Intelligent Systems for Cybersecurity (ISCS), 2024, pp. 1–5. 

[36] E. Elbasi et al., “Artificial intelligence technology in the agricultural sector: A systematic literature review,” IEEE Access, vol. 11, 

pp. 171–202, 2023, doi: 10.1109/ACCESS.2022.3232485. 
[37] R. De-Luca, F. Bezzo, Q. Béchet, and O. Bernard, “Meteorological data-based optimal control strategy ´for microalgae cultivation 

in open pond systems,” Complexity, vol. 2019, no. 1, p. 4363895, 2019, doi: 10.1155/2019/4363895. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Abdelkarim Elbaati     was born in Chebba Tunisia, is an assistant professor in 

Electrical Engineering at the Higher Institute of Applied Sciences and Technology of Mahdia 

(ISSATMH) in Tunisia. He obtained his Ph.D. through a joint supervision between the 

National Engineering School of Sfax (ENIS), Tunisia, and the University of Rouen, France, in 

2010. His research interests span artificial intelligence (AI), the internet of things (IoT), 

embedded systems, and robotics. Dr. ELBAATI has a strong record of research contributions, 

including several patents and collaborations with AI and IoT startups. He is a key figure in the 

establishment of a professional master’s program in AI and IoT at ISSATMH, and has initiated 

an Erasmus+ mobility project with the University of Bialystok in Poland. Dr. Elbaati has been 

actively involved in the scientific community, organizing and chairing various events and 

training sessions related to AI, IoT, and robotics. He is also a comanager of student life 

procedures within the PAQ-DGSE project funded by the European Union. He can be contacted 

at email: abdelkarim.elbaati@gmail.com. 

  

 

Mariem Kobbi     was born in Sfax, Tunisia, in 1999. She received her first 

master’s degree in artificial intelligence and internet of things from the Higher Institute of 

Applied Sciences and Technology of Mahdia (ISSATMH) in 2024 and is currently pursuing a 

second master’s degree in Intelligent Systems at the Higher National Engineering School of 

Tunis (ENSIT). Her research interests focus on integrating artificial intelligence (AI) and 

internet of things (IoT) technologies within cyber-physical systems (CPS) to enhance 

automation, optimization, and real-time decisionmaking. In 2023, Mariem served as Vice 

Chair of the IEEE ISIMA Student Branch Tunisia section. Her academic journey reflects a 

strong commitment to advancing AI and IoT technologies, with an emphasis on developing 

practical solutions for real-world challenges. She can be contacted at email: 

kobbi.mariem.tn@gmail.com. 

https://orcid.org/0009-0003-7860-8788
https://scholar.google.com/citations?hl=en%26user=tKoyv6QAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=6504227225
https://www.webofscience.com/wos/author/record/7455156
https://orcid.org/0009-0001-5542-8018
https://www.webofscience.com/wos/author/record/NUP-7470-2025


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Artificial intelligence of things solution for Spirulina cultivation control (Abdelkarim Elbaati) 

503 

 

Jihene Afli     was born in Djerba, Tunisia, in 1999. She received her license in 

Information and Communication Technology in 2022 and the professional master’s degree in 

artificial intelligence and IoT in 2024, both from the Higher Institute of Applied Sciences and 

Technology of Mahdia (ISSATMH). Her research focuses on the application of artificial 

intelligence and IoT technologies to machine learning, secure system design, and data-driven 

decision-making processes. She has expertise in various fields, including deep learning, edge 

computing, and large language models, with practical experience in developing intelligent 

systems for real-time data analysis and automation. She can be contacted at email: 

ajihen92@gmail.com. 

  

 

Abdelrahim Chiha     is a seasoned IT professional specializing in web 

development, cloud computing, and IoT technology. With a strong background in both 

academia and industry, Abdelrahim has made significant contributions to the field of IT. He is 

the proprietor of genios company (generation of IoT Solutions) and a co-founder of the “Smart 

Future” association. His work focuses on developing intelligent systems, including lighting 

control and photovoltaic solutions, and implementing cloud solutions for educational 

institutions. In addition to his entrepreneurial endeavors, Abdelrahim serves as a Technical 

Supervisor and Project Manager for various projects, ranging from automation tasks to the 

setup of CI/CD pipelines. He is also an experienced university teacher, imparting knowledge in 

programming languages, operating systems, and big data to students since 2003. Abdelrahim’s 

commitment to the advancement of IT is further demonstrated through his involvement in the 

PAQ-DGSE project, part of a European initiative to modernize higher education in Tunisia. 

His expertise is backed by numerous certifications in IoT, big data, and deep learning, and he 

remains active in the academic and professional community, continuously seeking to innovate 

and contribute to the field. He can be contacted at email: abdelrahimchiha@gmail.com. 

  

 

Riadh Haj Amor     is the global adoption practice lead at Red Hat, where he leads 

initiatives to promote the adoption of open-source technologies through innovative programs 

and strategic best practices. He holds a Master of Engineering degree in Computer Science, a 

master’s degree in law, economics, and management from Paris 1 Pantheon-Sorbonne 

University, and an MBA from ´IAE Paris - Sorbonne Business School. Riadh’s contributions 

have been pivotal in advancing technology adoption and democratizing access to cutting-edge 

solutions. His professional affiliations and a staunch advocacy for open-source ecosystems 

underscore his commitment to shaping a technologically inclusive world. He can be contacted 

at email: Riadh.Haj-Amor@etu.univ-paris1.fr. 

  

 

Bilel Neji     was born in Tunisia, in May 1983. He received the B.Eng. degree in 

electrical engineering from the National Engineering School of Sfax, Tunisia, in cooperation 

with Valenciennes University, France, in 2007, the M.S. degree in new technologies in 

computer systems from the National Engineering School of Sfax, in cooperation with Lille 

University, France, in 2008, the first Ph.D. degree in electrical engineering, focused on 

scientific satellites’ subsystems from the National Engineering School of Sfax, in cooperation 

with Wurzburg University, Germany, in 2014, and the second Ph.D. degree in electrical 

engineering, focused on MEMS and micro/nano sensors design and fabrication from the State 

University of New York at Buffalo, USA, in 2015. He has co-founded BAKUSA Technologies 

Corporation, NY, USA, in 2014, where he served as the Director of engineering until 2018. He 

joined the American University of the Middle East (AUM), Kuwait, in September 2018, as an 

assistant professor. He is currently an Associate Professor with AUM, where he also serves as 

the Research Office Coordinator of the College of Engineering and Technology. He has been 

conducting research in different areas, including embedded systems, MEMS and sensors 

design, artificial intelligence, and renewable energy. He received the Fulbright Science and 

Technology Award from the U.S. Department of States, USA, in 2011, and several other 

prestigious awards worldwide. He can be contacted at email: bilel.neji@aum.edu.kw. 

  

https://orcid.org/0009-0005-9115-1684
https://orcid.org/0009-0007-6467-0408
https://orcid.org/0009-0003-1568-0192
https://www.webofscience.com/wos/author/record/81968952
https://orcid.org/0000-0003-1147-4896
https://scholar.google.com/citations?hl=en%26user=87UMILkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=35105760600
https://www.webofscience.com/wos/author/record/45873791


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 16, No. 1, February 2026: 488-504 

504 

 

Taha Beyrouthy     received the Ph.D. degree in micro and nano electronics from 

the Grenoble Institute of Technology, in 2009, and the degree in engineering education from 

IMTAtlantique(Tel´ ecom-Bretagne). He joined the American University of the Middle East 

(AUM), ´Kuwait,in November 2013, as an assistant professor, and was promoted to an 

associate professor, in 2017. He has been the Dean of engineering and technology with AUM, 

since September 2017. He has been instrumental in AUM growth of higher education through 

his broad experience in academic leadership and commitment to both a student centered 

education and a technologically empowered teaching and learning environment. As an 

Associate Professor of electrical engineering, he has authored/coauthored more than 100 peer-

reviewed publications in micro and nano electronics, robotics, artificial intelligence, and 

applied physics. He can be contacted at email: taha.beyrouthy@aum.edu.kw. 

  

 

Youssef Krichen     is a seasoned aquaculture expert and educator, currently serving 

as the Director of Bio Algues Tunisie, a company he founded in 2016 to promote the 

cultivation and commercialization of spirulina and other algae species. He holds a Diplome 

d’Ingénieur Halieute ´from the Institut National Agronomique de Tunis and has furthered his 

education with a DESS in Aquaculture and a DEA in Coastal Management from French 

universities. With over three decades of experience, Youssef has held significant positions, 

including Deputy Director at the Office National des Peches and a faculty member at the 

Institut National Agronomique de Tunis and the Institut Superieur de Biotechnologie de 

Monastir, where he taught courses in aquaculture and aquariology. He has been actively 

involved in various research projects, contributing to the development of new bioactive 

molecules and innovative products derived from algae. Youssef is also a member of several 

professional societies and has participated in numerous scientific seminars and colloquia, 

showcasing his commitment to advancing the field of aquaculture and marine biology. He can 

be contacted at email: youssefkrichen@gmail.com. 

  

 

Adel M. Alimi     (Senior Member, IEEE) was born in Sfax, Tunisia, in 1966. He 

received the degree in electrical engineering, in 1990, and the Ph.D. and H.D.R. degrees in 

electrical and computer engineering, in 1995 and 2000, respectively. He is a professor of 

electrical and computer engineering with the University of Sfax. His research interests include 

the applications of intelligent methods (neural networks, fuzzy logic, and evolutionary 

algorithms) to pattern recognition, robotic systems, vision systems, and industrial processes. 

His research focuses on intelligent pattern recognition, learning, analysis, and intelligent 

control of largescale complex systems. He is the Founder and the Chair of many IEEE Chapter 

in Tunisia Section. He is the IEEE Sfax Subsection Chair, in 2011, the IEEE ENIS Student 

Branch Counselor, in 2011, the IEEE Systems, Man, and Cybernetics Society Tunisia Chapter 

Chair, in 2011, and the IEEE Computer Society Tunisia Chapter Chair, in 2011. He is also an 

expert evaluator of the european agency for research. He was the General Chairman of the 

International Conference on Machine Intelligence ACIDCA-ICMI’2005 and ACIDCA-

ICMI’2000. He is an associate editor and a member of the editorial board of many 

international scientific journals, such as IEEE Transactions on Fuzzy Systems, 

Neurocomputing, Neural Processing Letters, International Journal of Image and Graphics, 

Neural Computing and Applications, International Journal of Robotics and Automation, and 

International Journal of Systems Science. He was a guest editor of several special issues of 

international journals, such as fuzzy sets and systems, soft computing, journal of decision 

systems, integrated computer aided engineering, and systems analysis, modeling, and 

simulations. He can be contacted at email: adel.alimi@ieee.org. 

 

https://orcid.org/0000-0002-5939-7116
https://scholar.google.com/citations?user=JbmNMxoAAAAJ%26hl=en%26oi=ao
https://www.scopus.com/authid/detail.uri?authorId=24723852500
https://www.webofscience.com/wos/author/record/4870111
https://orcid.org/0000-0002-5907-8289
https://scholar.google.com/citations?user=NLiqgI8AAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55227332900
https://www.webofscience.com/wos/author/record/10541882
https://orcid.org/0000-0002-0642-3384
https://scholar.google.com/citations?user=0F4bcd0AAAAJ%26hl=en%26oi=ao
https://www.scopus.com/authid/detail.uri?authorId=7003687617
https://www.webofscience.com/wos/author/record/A-5697-2012

