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 In brain magnetic resonance imaging (MRI) analysis, image clustering is 

regarded as one of the most crucial tasks. It is frequently employed to 

estimate and visualize brain anatomical structures, identify pathological 

regions, and assist in guiding surgical procedures. Fuzzy c-means algorithm 

(FCM) is widely used in the MRI image segmentation process. However, it 

has been several weaknesses such as noise sensitivity, stuck in local 

optimum and issues with parameters initialization. To address these FCM 

problems, this paper presents a novel fuzzy optimization method that 

enhances brain MRI image segmentation by integrating the artificial bee 

colony (ABC) algorithm with FCM clustering techniques. The proposed 

method seeks to optimize multiple FCM parameters simultaneously, 

including the objective function, number of clusters, and cluster center 

values. The method was evaluated on both simulated and clinical brain MR 

images, with an emphasis on segmenting white matter, grey matter, and 

cerebrospinal fluid regions. Experimental results demonstrate significant 

improvements in segmentation accuracy, achieving a Jaccard similarity (JS) 

of nearly 1, a partition coefficient index (PCI) of 0.92, and a Davies-Bouldin 

index (DBI) of 0.41, outperforming other stats of the arts methods. 
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ABBREVIATIONS 

Abbrev. Description Abbrev. Description 

ABC Artificial bee colony GMM Gaussian mixture models 

AFCM Adaptive fuzzy c-means GWA Gray wolf algorithm 

CNN Convolutional neural networks LDCFCM Local density clustering fuzzy c-means 

CSF Cerebrospinal fluid ML Machine learning 

DBI Davies-Bouldin index MRI Magnetic resonance imaging 

DL Deep learning PCI Partition coefficient index 

DPSO Dynamic particle swarm optimization PSO Particle swarm optimization 

FCM Fuzzy c-means algorithm RDO Raindrop optimizer 

FPSOFCM Fuzzy PSO for FCM SVM Support vector machines 

GA Genetic algorithm WM White matter 

GM Gray matter WOA Whale optimization algorithm 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:mokhtari.c@univ-mascara.dz


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Fuzzy clustering optimization based artificial bee colony algorithm for … (Chakir Mokhtari) 

4917 

1. INTRODUCTION 

Brain MRI image segmentation is a critical task in medical imaging, enabling the delineation and 

analysis of anatomical structures, pathological regions, and functional areas within the brain. It plays a 

pivotal role in diagnosing neurological disorders, planning treatments, and monitoring disease progression. 

Over the past few decades, significant advancements have been made in segmentation techniques, driven by 

the increasing availability of high-resolution MRI data and the development of sophisticated computational 

methods [1]. However, despite these advancements, brain MRI segmentation remains a challenging problem 

due to the inherent complexity of brain structures, variability across individuals, and limitations in imaging 

technology [2], [3]. The current state of brain MRI segmentation is characterized by a diverse array of 

methods, ranging from traditional approaches to modern deep learning-based techniques [4].  

Traditional methods for brain MRI segmentation rely on intensity values, spatial information, and 

anatomical priors to differentiate structures. Techniques include thresholding, region-based methods  

(e.g., region growing and watershed algorithm), edge detection (e.g., Sobel and Canny), active contours, 

atlas-based methods, and morphological operations. While these methods have contributed to segmentation, 

they face challenges such as intensity inhomogeneities, and anatomical variability, as well as reliance on 

manual intervention and local information, which limits their accuracy and generalizability. These limitations 

have spurred the development of advanced techniques like machine learning and deep learning, which 

automate complex pattern recognition. However, traditional methods remain relevant for specific 

applications and as preprocessing steps in modern segmentation pipelines [5], [6]. 

Machine learning, including supervised and unsupervised techniques, has significantly advanced 

brain MRI segmentation by offering more robust, data-driven approaches compared to traditional methods. 

Supervised methods like support vector machines and random forests use labeled datasets to learn complex 

patterns, improving segmentation accuracy. However, their success depends on high-quality annotated data, 

which is costly and time-consuming to produce, and they often struggle to generalize across different 

imaging protocols or populations. Unsupervised methods, such as k-means clustering, Gaussian mixture 

models, and fuzzy c-means, group pixels based on similarity without labeled data, making them useful for 

exploratory analysis. However, they lack precision for clinical applications due to reliance on low-level 

features and sensitivity to noise and artifacts. Both approaches face challenges like intensity inhomogeneities, 

noise, class imbalance, and high computational costs, which can degrade performance and limit scalability. 

While machine learning remains relevant in specific applications and hybrid pipelines, its challenges 

highlight the need for continued innovation in brain MRI segmentation [7]. 

The rise of deep learning, particularly convolutional neural networks, revolutionized brain MRI 

segmentation by enabling automatic learning of hierarchical features from raw data. Architectures like  

U-Net, with its contracting and expansive paths connected by skip connections, excelled in capturing fine 

details and achieving state-of-the-art results. Fully convolutional networks (FCNs) further advanced the field 

by enabling end-to-end, pixel-wise segmentation without handcrafted features. However, deep learning 

methods face challenges, including the need for large, high-quality annotated datasets, which are costly and 

time-consuming to produce. Limited dataset diversity can hinder model performance and generalization, even 

with data augmentation. Additionally, the high computational cost of training, especially for 3D volumetric 

data, poses scalability and accessibility issues, particularly in resource-constrained settings. Despite these 

limitations, deep learning remains a transformative approach in brain MRI segmentation [2], [8], [9]. 

In this article, we advocate for the hybridization of the fuzzy c-means method [10] applied to brain 

MRI image segmentation, positioning it as a compelling alternative to purely machine learning  and deep 

learning approaches. While ML and DL methods have revolutionized medical image segmentation with their 

ability to learn complex patterns and achieve state-of-the-art results, they come with significant challenges, 

including the need for large annotated datasets, high computational costs, and limited interpretability.  

In contrast, fuzzy c-means, a well-established unsupervised clustering technique, offers several unique 

advantages that can be enhanced through hybridization, making it a viable and efficient solution for brain 

MRI segmentation. 

FCM is particularly well-suited for medical imaging due to its ability to handle the inherent 

ambiguity and uncertainty in tissue boundaries. Unlike traditional hard clustering methods, FCM allows 

pixels to belong to multiple clusters with varying degrees of membership, reflecting the partial volume effect 

often observed in MRI data. This flexibility makes FCM highly effective for segmenting brain tissues such as 

GM, WM, and CSF, where intensity distributions often overlap. However, traditional FCM presents serious 

limitations which can degrade its performance in complex MRI datasets. 

− Firstly, it needs the right number of clusters which is not available in all cases.  

− Secondly, it is very sensitive to initialization, deferent cluster centers initialization can lead to deferent 

clustering results.  
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− Thirdly, due to the principle of the iterative optimization of a cost function, it is strongly sensitive to the 

problems of local minima. These challenges can lead to suboptimal segmentation results, particularly in 

complex MRI datasets with intensity inhomogeneities or overlapping tissue distributions. 

 To address these limitations, we propose a hybrid approach that integrates FCM with ABC 

optimization [11]. This hybrid approach, referred to as FCM-ABC optimizer, leverages the strengths of both 

methods to address the limitations of traditional FCM while enhancing its accuracy, robustness, and 

efficiency. The integration of ABC with FCM is particularly justified in the context of brain MRI 

segmentation due to the unique challenges posed by medical imaging data. Brain MRI images often exhibit 

high variability in intensity, and anatomical structures, making it difficult for traditional methods to achieve 

consistent and accurate results. ABC-FCM optimizer addresses these challenges by combining the flexibility 

of FCM in handling uncertainty with the global optimization capabilities of ABC. 

Moreover, the hybrid ABC-FCM approach aligns with the need for interpretable and clinically 

relevant segmentation methods. Unlike deep learning models, which often operate as “black boxes,” ABC-

FCM provides transparent and intuitive results, making it easier for clinicians to understand and trust the 

segmentation outcomes. This is particularly important in medical applications, where interpretability and 

explainability are critical for clinical decision-making. 

The integration of ABC with FCM addresses several key challenges in brain MRI segmentation: 

− Improved initialization: ABC's global search capabilities optimize initial cluster centers, reducing the risk 

of poor initialization and enhancing segmentation accuracy. 

− Escape from local optima: ABC helps FCM avoid local optima by exploring new regions of the solution 

space, ensuring that cluster centers converge closer to the global optimum. 

− Computational efficiency: Although ABC adds complexity, its efficient search mechanism often leads to 

faster convergence, balancing accuracy and computational cost. 

− Adaptability to complex brain structures: ABC's adaptive refinement of cluster centers makes it effective 

for segmenting complex brain structures (e.g., gray matter, white matter, cerebrospinal fluid) and 

pathological regions (e.g., tumors), handling the variability and intricacy of brain MRI data. 

Our goal is to enhance segmentation accuracy by optimizing the FCM algorithm through the 

simultaneous optimization of its key parameters, including the objective function, the number of clusters, and 

the cluster center values, using the ABC algorithm. Once the optimal number of clusters and cluster center 

values are determined, the classification of all pixels is performed using the membership degree matrix. Our 

approach leverages the ABC algorithm's strong optimization capabilities, which ensure the discovery of the 

global optimum and allow for individuals of varying sizes in the initial population. These properties 

significantly improve the FCM algorithm, leading to more effective clustering. By integrating ABC with 

FCM, our proposed method addresses critical challenges in fuzzy clustering, such as determining the 

appropriate number of clusters, identifying optimal cluster centers, and achieving the optimal value of the 

objective function, all in a unified and simultaneous manner.  

The remainder of the paper is organized as follows: section 1 introduces the paper. Section 2 

reviews relevant studies on optimizing brain MRI image segmentation using fuzzy techniques. Section 3 

presents the proposed clustering method based on the FCM-ABC optimizer. Section 4 discusses the 

experimentation and results, followed by the conclusion in section 5. 

 

 

2. RELATED WORK 

FCM method as unsupervised approach is widely studied and used as a powerful tool in a wide 

range of applications and successfully applied in medical image segmentation. In the field of brain MRI 

image segmentation, FCM algorithm is extensively utilized due to its ability to handle the uncertainty and 

complexity of medical images [12]–[15]. One of its main advantages is its ability to produce smooth and 

accurate segmentations, making it a valuable tool for medical diagnosis and treatment planning. However, 

the algorithm has some limitations, such as its sensitivity to noise and intensity inhomogeneity, which can 

lead to misclassification. Moreover, FCM requires prior knowledge of the number of clusters, and its 

computational cost can be high, especially for large medical datasets. 

In recent years, researchers often integrate FCM with preprocessing techniques, hybrid models and 

optimization methods, such as particle swarm optimization, genetic algorithms, artificial bee colony, and gray 

wolf algorithm, to improve clustering accuracy, enhance robustness, and reduce computational complexity in 

brain MRI segmentation. Song et al. [16] proposed a fuzzy c-means clustering model with spatial constraint for 

unsupervised segmentation of brain magnetic resonance images. They incorporate the spatial distance and the 

gray level information between the local neighborhood pixels, combined with the non-linear weighting form in 

the similarity measure of the fuzzy clustering. In the proposed method [17] fuzzy kernel seed selection 
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technique is used to define the complete brain MRI image into different groups of similar intensity. Among 

these groups the most accurate kernels are selected empirically that show highest resemblance with the tumor. 

The concept of fuzziness helps making the selection even at the boundary regions. 

Genetic algorithms have been applied to fuzzy clustering for MRI segmentation. In study [18] an 

innovative approach to brain MRI image segmentation was presented. The researchers enhanced the 

traditional FCM algorithm by using GA for parameter optimization, which significantly improved 

segmentation accuracy. They integrate fuzzy set theory, fuzzy metrics, and Sugeno negation principles. 

When tested on the BraTS2018 dataset, their modified approach outperforming the conventional FCM 

method. This advancement is particularly significant for medical imaging analysis, as it better handles the 

challenges of uncertainty, noise, and ambiguity in MRI images. 

Particle swarm optimization has been extensively utilized to enhance FCM by optimizing its cluster 

centers. For instance, PSO-FCM algorithms aim to reduce the impact of local minima and improve 

segmentation robustness by globally searching for better cluster configurations. These methods have shown 

promise in improving segmentation accuracy and computational efficiency. Dhanachandra and Chanu [19] 

combine dynamic particle swarm optimization (DPSO) with the FCM algorithm, addressing FCM's 

limitations such as sensitivity to initial values and noise. The proposed method dynamically adjusts inertia 

weight and learning parameters, enhancing global search capabilities while incorporating a noise reduction 

mechanism based on surrounding pixel attributes. The method shows improved robustness and accuracy in 

segmentation, making it a significant advancement in image processing. Mahesa and Wibowo [20] present an 

optimization method for brain tumor image segmentation using fuzzy c-means enhanced by PSO. The 

research addresses the inefficiencies of manual tumor segmentation, which delays patient treatment. By 

optimizing the objective function of FCM, the proposed FCM-PSO method achieved lower objective 

function values across six MRI T2 images, demonstrating improved segmentation accuracy compared to the 

original FCM. The findings suggest that integrating PSO with FCM can significantly enhance the reliability 

of automated brain tumor segmentation, facilitating timely medical decisions. Kavitha and Prabakaran [21] 

present an approach for brain tumor detection using a hybrid method combining assured convergence particle 

swarm optimization (ACPSO) and FCM clustering. It emphasizes the importance of pre-processing 

techniques, particularly the adaptive bilateral filter. The study compares various segmentation techniques, 

concluding that the proposed method significantly enhances tumor detection accuracy. Semchedine and 

Moussaoui [22] proposed a novel initialization approach for the fuzzy c-means algorithm based on fuzzy 

particle swarm optimization (FPSO) applied to brain MR image segmentation. The proposed method uses the 

FPSO algorithm to get the initial cluster centers of FCM according to a new fitness function which combines 

fuzzy cluster validity indices.  

Gray wolf optimization (GWO) has been effectively used to optimize FCM by searching for the best 

cluster centroids, leading to improved clustering accuracy and robustness. By integrating GWO with FCM, 

the optimization process avoids local minima and enhances clustering performance, making it particularly 

useful in complex image segmentation and data clustering tasks [23]. Singh et al. [24] introduce a novel 

image segmentation method combining spatial fuzzy c-means (SFCM) clustering with the GWO, termed 

SFCMGWO, to enhance the accuracy of MRI image segmentation. The study demonstrates that SFCMGWO 

outperforms traditional SFCM and GA-based SFCM (GASFCM) in segmentation tasks, as evidenced by 

improved clustering validity functions. The effectiveness of the proposed method is validated through 

comparative analysis on two brain MRI images, where it achieves superior performance. Nayak et al. [25] a 

novel objective function called fuzzy entropy clustering with local spatial information and bias correction 

(FECSB) was proposed to enhance the accuracy of MRI brain image segmentation. The proposed hybrid 

approach maximizes the efficiency of FECSB in MRI brain image segmentation by combining PSO with 

GWO. The PSO-GWO clustering method outperforms the conventional FCM method, as shown by the 

experimental findings. 

ABC has been employed to optimize FCM for MRI brain segmentation. These methods focus on 

improving convergence speed and segmentation accuracy in complex MRI datasets. For instance, the study in 

[26] introduces a new method for MRI brain tumor segmentation that combines the ABC algorithm with 

FCM clustering. It addresses the challenges of segmenting similar texture fields in MRI images by employing 

a fitness function based on two-dimensional grey entropy, derived from discrete wavelet transforms. The 

ABC algorithm optimizes threshold estimation, resulting in efficient segmentation with minimized noise. 

Experimental results demonstrate clear tumor delineation in segmented images, enhancing tumor intensity 

visibility. Alomoush et al. [27] a spatial information of fuzzy clustering-based mean best artificial bee colony 

algorithm (SFCM-MeanABC) is presented. This algorithm aims to enhance medical image segmentation, 

particularly for Phantom MRI brain images. SFCM-MeanABC integrates spatial information to mitigate 

noise effects and employs the MeanABC algorithm to balance exploration and exploitation, improving 

cluster center optimization. The method proved particularly effective at reducing noise sensitivity while 

maintaining accurate segmentation results compared to ground truth image. Authors in [28] combine the 
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concept of the FCM and four-chain quantum bee colony optimization (FQABC). The FQABC algorithm 

overcomes the drawbacks of FCM which is sensitive to initial clustering centers. Performance evaluation 

experiments with FCM, FABC and FQABC have been done on real and magnetic resonance images. The 

experimental results show that the FQABC algorithm is more effective. 

Other studies have employed the whale optimization algorithm (WOA) to enhance FCM for MRI 

brain image segmentation. By refining cluster centroids and enhancing the global search capability,  

WOA-FCM improves segmentation accuracy, speeds up convergence, and enhances robustness against noise 

and intensity variations, making it a promising approach for MRI brain analysis. A novel image segmentation 

method combining FCM with the WOA to enhance segmentation accuracy and noise reduction was presented 

in [29]. The proposed approach addresses FCM's limitations, such as sensitivity to initial values and noise, by 

utilizing WOA’s global optimization capabilities. Experimental evaluations on synthetic and MRI images 

with various noise types show that the approach surpasses existing techniques, such as FCM and standalone 

WOA, by achieving lower mean square error (MSE) and higher peak signal-to-noise ratio (PSNR).  

A study in [29] introduces a new approach for image segmentation based on the WOA and FCM algorithm. 

Since exploration and exploitation phases are performed in nearly equal numbers of iterations separately, the 

WOA simultaneously shows better avoidance from local optima and superior convergence speed. To validate 

the performance of the proposed system, experiments are conducted on synthetic and MRI Images by taking 

various types of noise and the findings indicate that the proposed method is more efficient and effective. 

Recent studies have also explored raindrop optimizer for FCM in MRI brain segmentation. In study 

[30] an improved FCM clustering method optimized with the raindrop algorithm (FCM-RO) for brain MRI 

segmentation was introduced. The proposed method incorporates a hybrid filter for noise reduction, 

achieving a well partition coefficient (PC) and partition entropy (PE) values across five MRI images, 

significantly outperforming traditional FCM. The study demonstrates that FCM-RO effectively extracts 

lesions, thereby improving diagnostic accuracy in medical imaging. 

 

 

3. PROPOSED METHOD 

In this section, prior to delving into the details of the proposed FCM-ABC optimizer method, we 

will first review the FCM and ABC algorithms. This foundational overview is essential for understanding 

how these two methodologies are integrated to address the limitations of traditional FCM, particularly in 

terms of parameter initialization, cluster center optimization, and the challenge of local minima. By revisiting 

the core principles and mechanisms of both algorithms, we aim to provide a comprehensive context for the 

development of our hybrid approach, highlighting the synergistic benefits that arise from their combination. 

Additionally, this background will facilitate a clearer understanding of how the proposed optimizer enhances 

the robustness and accuracy of brain image segmentation tasks, setting the stage for its application in 

complex real-world scenarios. 

 

3.1.  Fuzzy c-means algorithm 

The FCM algorithm belongs to the family of clustering algorithms based on fuzzy function 

optimization. The standard version is firstly introduced by Dunn and generalized by Bezdek [10]. It has 

undergone many interventions leading to a lot of algorithms. All these algorithms are considered as soft 

clustering in the way that each element of the data to be clustered may belong to more than one cluster with 

deferent degrees of membership. The objective function is optimized in an iterative way and at the end of the 

process; each element is assigned to the cluster in which it has the highest membership. 

Let 𝐼 = (𝑥1, 𝑥2, … , 𝑥𝑁) an image of N pixels to be clustered into K (2 < 𝐾 ≤ 𝑁) clusters, where 𝑥𝑖 

represents data features. The standard FCM objective function [10] is formulated as (1): 

 

𝐽(𝑈, 𝐶) = ∑ ∑ 𝑢𝑖,𝑗
𝑚 𝑑2(𝑥𝑗 , 𝑐𝑖)

𝑁
𝑗=1

𝐾
𝑖=1   (1) 

 

𝑈 and 𝐶 = (𝑐1, 𝑐2, … , 𝑐𝐾) are the memberships degrees matrix and a vector of clusters centers respectively. 

𝑚 ∈ [1, ∞[ is to control fuzziness, 𝑑2(𝑥𝑗 , 𝑐𝑖) is the grayscale Euclidean distance and 𝑢𝑖,𝑗 is the membership 

degree of the pixel 𝑗 in the 𝑖𝑡ℎ cluster 𝑐𝑖 which must check the following constraints: 

∀𝑖 ∈ [1, 𝐾], 𝑗 ∈ [1, 𝑁]: 
 

∑ 𝑢𝑖,𝑗
𝐾
𝑖=1 = 1, 𝑢𝑖𝑗 ∈  [0, 1],       0 ≤ ∑ 𝑢𝑖,𝑗 ≤ 𝑁𝑁

𝑗=1   (2) 

 

An alternate optimization is applied on the membership function 𝑢𝑖,𝑗 and clusters centers using (3) and (4): 
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𝑢𝑖,𝑗 =
(𝑑2(𝑥𝑗,𝑐𝑖))

1
1−𝑚

∑ (𝑑2(𝑥𝑗,𝑐𝑙))
1

1−𝑚𝐾
𝑙=1

  (3) 

 

and 

 

𝐶𝑖 =
∑ 𝑢𝑖,𝑗

𝑚𝑥𝑗
𝑁
𝑗=1

∑ 𝑢𝑖,𝑗
𝑚𝑁

𝑗=1

  (4) 

 

The FCM algorithm begins with a random initialization of cluster centers and iteratively updates 

them using formulas (3) and (4) until no further improvement in their positions is observed. Once the cluster 

centers are stabilized, each pixel j in the image is assigned to the cluster for which it has the maximum fuzzy 

membership degree. This process ensures that every pixel is associated with the most relevant cluster based 

on its degree of belongingness, as determined by the algorithm's iterative optimization. 

As discussed in section 2, formulating a global solution that effectively accounts for all parameters 

of FCM algorithm presents significant challenges. In fact, to address these challenges and solve the complex 

optimization problem posed by the FCM algorithm, we propose in this work an evolutionary algorithm (EA) 

based on the ABC algorithm. By integrating the ABC algorithm into the FCM framework, our proposed 

method seeks to simultaneously optimize multiple parameters, including the number of clusters, their 

initialization, and the overall objective function. The strengths of the ABC algorithm such as its strong global 

search capability, simplicity, and ease of implementation are leveraged to ensure that the FCM algorithm 

operates at its full potential, delivering more accurate and reliable results.  

 

3.2.  Artificial bee colony algorithm  

ABC algorithm is an evolutionary algorithm bio-inspired [11]. It imitates the honey bee swarms in 

food foraging and successfully applied in various optimization problems. It operates through the 

collaboration of three types of bees: employed bees, onlooker bees, and scout bees, each with distinct roles in 

the search for nectar (or optimal solutions). 

The employed bees are responsible for exploiting known food sources. Each employed bee 

represents a potential solution and assesses its quality based on a fitness function. They search in the vicinity 

of their assigned food source and can adjust their position to improve the solution. If a bee finds a better 

solution, it shares this information with the onlooker bees. The later monitor the quality of food sources 

shared by employed bees. They utilize a probability-based selection mechanism to choose which food source 

to explore based on its fitness. By concentrating on the most promising sources, onlooker bees contribute to 

the exploitation phase of the algorithm called also local search, further refining the search for optimal 

solutions. The scout bees present the explorative phase and they are responsible for exploring new areas of 

the search space to discover new food sources. Their random search helps maintain diversity in the 

population and prevents the algorithm from getting trapped in local optima. Through the coordinated efforts 

of these three types of bees, the ABC algorithm efficiently explores and exploits the solution space. The ABC 

algorithm begins food foraging (solution search) by producing randomly an initial population of NS bees in 

search space according to (5): 

 

𝑏𝑖 = 𝑏𝑚𝑖𝑛 +  𝑟𝑎𝑛𝑑(0,1) ∗ (𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛)         𝑖 = 1, … , 𝑁𝑆  (5) 

 

where 𝑏𝑖 is a bee, 𝑏𝑚𝑖𝑛  and 𝑏𝑚𝑎𝑥  are the upper and the lower values of the search space respectively. 

After the initialization phase, the ABC algorithm evaluates the initial population and performs the 

three following steps until convergence to the optimal global solution (satisfactory fitness) or maximum 

iterations.  

Step 1: Employed bee phase 

− Each employed bee generates a new solution in the neighborhood using expression (6): 

 

𝑏𝑖
𝑘+1 = 𝑏𝑖

𝑘 + 𝜑𝑞(𝑏𝑖
𝑘 − 𝑏𝐵

𝑘)          𝑖 = 1, … , 𝑁𝑆  (6) 

 

where 𝜑𝑞 is a random number in the range [−1,1], 𝑏𝑖
𝑘 and 𝑏𝐵

𝑘 are the ith solution and the best solution of 

kth iteration respectively and 𝑏𝑖
𝑘+1 represents the updated solution. 

− Evaluate the new solution’s fitness. 

− If the new solution is better, update the current solution and memorize the new one. 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4916-4932 

4922 

Step 2: Onlooker bee phase 

− Each onlooker bee selects a source food 𝑏𝑖 with a probability proportionally to the quality of the nectar 

(the solution). The probability 𝑃𝑖of selecting the source food 𝑏𝑖 is calculated according to (7): 

 

𝑃𝑖 =
𝑓(𝑏𝑖)

∑ 𝑓(𝑏𝑗)𝑁𝑆
𝑗=1

          𝑖 = 1, … , 𝑁𝑆  (7) 

 

where 𝑓(𝑏𝑖) is the fitness of the solution 𝑏𝑖. 

− Generate new solution for the selected food source using (6) 

− Update solutions if improvements are found. 

Step 3: Scout bee phase 

− If any food source presents no improvements for a number of cycles, it is abandoned. 

− If so, replace it with a new random food source using (5). 

− Return to the employed bee phase. 

Step 4: Termination 

− If the stopping criterion is met or the maximal iteration number is reached, return the best bee (optimal 

solution). 

To reach the global optimum, the ABC Algorithm balance between exploitative search and exploratory 

search and the both in random manner. 

 

3.3.  Proposed FCM-ABC optimizer method 

In this work, a new enhancement of FCM called FCM-ABC optimizer is introduced; it is based on 

the ABC algorithm. Although the FCM has advantages like efficacy, simplicity and computational efficiency, 

it nonetheless has major drawbacks such as number of clusters, cluster centers values and is easily trapped in 

local optima. So, the main objective is to overcome these major drawbacks that will affect the clustering in 

term of precision. For this purpose, we improve the FCM clustering by exploiting ABC algorithm in order to 

find simultaneously the right number of clusters and the optimal clusters centers for a given image I of N 

pixels. ABC algorithm combines between exploitation and exploration to find the optimal values of FCM 

parameters. It ensures the searching in all directions in the solution space. 

To achieve this objective, first, each bee bi consists of a vector comprising two parts. The first part 

maintains the number of clusters while the second maintains the values of the centers of these clusters in 

Figure 1. 

 

 

Nbci 𝑉𝑎𝑙1
𝑖

 𝑉𝑎𝑙2
𝑖  …………. 𝑉𝑎𝑙𝑁𝑏𝑐

𝑖
 

 

Figure 1. Structure of a bee 

 

 

where 𝑁𝑏𝑐𝑖 is the number of clusters of the image to be segmented. This number is between 2 and maximum 

number of clusters (𝑀𝑎𝑥𝑁𝑏𝑐). 𝑉𝑎𝑙𝑗
𝑖 is the value of the center 𝑐𝑗 of the bee bi which is the grey levels of the 

input image I. 

Second, we develop a new objective function F in order to evaluate solutions fitness. This function 

ensures the optimal values of the cluster’s centers and the right number of clusters. It exploits the objective 

function of the FCM algorithm and a validity index. It is defined as: 

 

𝐹(𝑏𝑖) = 𝑊1𝐹1(𝑏𝑖) + 𝑊2𝐹2(𝑏𝑖)        𝑖 = 1, … , 𝑁𝑆  (8) 

 

where 𝐹1(𝑏𝑖) corresponds to the standard FCM objective function, which minimizes the weighted sum of 

squared distances between data points and cluster centers. The second term, 𝐹2(𝑏𝑖), represents a clustering 

validity index that evaluates the quality of the resulting partitions in terms of compactness and separation. The 

weights W1 and W2 control the relative importance of each component in the overall optimization process. 

The motivation behind this hybrid formulation lies in addressing the limitations of using FCM alone. 

While FCM effectively minimizes intra-cluster variance, it does not inherently ensure well-separated or 

meaningful clusters, especially when the optimal number of clusters is unknown or the data contains 

overlapping structures. Incorporating a validity index as an additional criterion enhances the ability of the 

algorithm to identify more compact and distinct clusters, thereby improving overall segmentation quality.  
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By combining both objectives, the proposed function enables a balanced trade-off between 

minimizing within-cluster distortion (via FCM) and maximizing cluster validity (via the index). This dual-

objective approach proves particularly beneficial in complex applications such as brain MRI segmentation, 

where accurate and interpretable clustering is essential for diagnostic reliability.  

Both weights W1 and W2 can be adjusted depending on the specific requirements of the application or 

based on prior knowledge about the data structure. According to the structure of bee bi, 𝐹1 is defined as (9): 

 

𝐹1(𝑏𝑖) = ∑ ∑ 𝑢𝑘,𝑗
𝑚 𝑑2(𝑥𝑗 , 𝑉𝑎𝑙𝑘

𝑖 )𝑁
𝑗=1

𝑁𝑏𝑐𝑖
𝑘=1   (9) 

 

𝑥𝑗 are the image pixels and 𝑑 are the Euclidean distance. 

𝐹2 is a cluster validity index, known as the IMbalanced index (IMI Index), proposed by Liu et al. 

[31] to identify the optimal number of clusters. It is formally defined in (10). 

 

𝐹2(𝑏𝑖) =  

∑
∑ 𝑢𝑘,𝑗

𝑚 𝑑2(𝑥𝑗,𝑉𝑎𝑙𝑘
𝑖 )𝑁

𝑗=1

∑ 𝑢𝑘,𝑗
2𝑁

𝑗=1

𝑁𝑏𝑐𝑖
𝑘=1

𝑚𝑖𝑛
𝑙≠𝑘

𝛿𝑙,𝑘𝑑2(𝑉𝑎𝑙𝑙
𝑖,𝑉𝑎𝑙𝑘

𝑖 )+ 
𝑚𝑒𝑑𝑖𝑎𝑛

𝑙≠𝑘
𝛿𝑙,𝑖𝑑2(𝑉𝑎𝑙𝑙

𝑖,𝑉𝑎𝑙𝑘
𝑖 )

  (10) 

 

where 𝛿𝑙,𝑘 =
∑ 𝑢𝑙,𝑗

𝑁
𝑗=1

∑ 𝑢𝑘,𝑗
𝑁
𝑗=1

. 

 

3.3.1. General steps of the FCM-ABC optimizer 

The general steps of the FCM-ABC optimizer method are outlined as follows, integrating the 

strengths of the FCM algorithm and the ABC optimization technique to achieve robust and accurate 

segmentation results: 

Step 1: Initialization: we set the maximum number of clusters 𝑀𝑎𝑥𝑁𝑏𝑐, and the number of cycle 𝑁𝐵𝑐𝑦𝑐𝑙𝑒, 

then an initial population of 𝑁𝑆 bees is generated in which each bee 𝑏𝑖, in its first part ought to be 

assigned a random value in the range [2, 𝑀𝑎𝑥𝑁𝑏𝑐],while each value 𝑉𝑎𝑙𝑗
𝑖 in second part is initialized 

randomly using (5) according to the grey levels of the image I. For each bee bi, we set the counter 

“no-improvement-cycle” to 0. 

Step 2: Fitness evaluation: after calculating the membership value 𝑢𝑘,𝑗
𝑖  for each cluster centers 𝑐𝑘

𝑖  of the bee 

𝑏𝑖 (𝑖 = 1, … , 𝑁𝑆) using (3), we evaluate the fitness of all the bees in the population, 𝐹(𝑏𝑖) according 

to the (8). The bee with the best configuration is stored. 

Step 3: Employed bee phase: in this step, each employed bee generates a new solution in the neighborhood 

according to (6). It consists of modifying each center 𝑐𝑘
𝑖  of each bee 𝑏𝑖 slightly to find a better position 

through local exploration without affecting the number of clusters 𝑁𝑏𝑐𝑖 . Then, the new solution’s 

fitness is evaluated. If the new solution is better, update the current solution. Otherwise increase the 

counter “no-improvement-cycle”. 

Step 4: Onlooker bee phase: based on the fitness values, we assign probability to each solution 𝑏𝑖 using (7). 

According to these probabilities, each onlooker bee chooses a solution and applies modifications using 

(6) to further refine the clusters centers. 

Step 5: Scout bee phase: to enhance the capability to exploit the global search, we sort the bees according to 

(10) and we abandon all bees that the “no-improvement-cycle” exceeds 𝑁𝐵𝑐𝑦𝑐𝑙𝑒. If any abandoned 

bee belongs to the 𝐿 highest bees, we replace the abandoned bees with new configurations, a random 

number of clusters and new cluster centers using (5), else we keep the number of clusters and we reset 

randomly only the cluster centers. 

Step 6: Loop: steps from 2 to 5 are repeated until the objective function 𝐹 became less than a threshold or 

maximum number of iterations is reached. 

Step 7: Termination: finally, we use the best configuration stored of the number of clusters and their centers to 

perform a last calculation of pixel memberships 𝑢𝑖,𝑗 according to FCM. We assign each pixel of the 

image 𝐼 to center for which the memberships 𝑢𝑖,𝑗 is higher for the purpose to generate the segmented 

image. 

 

3.3.2. FCM-ABC optimizer algorithm 

Our proposed method is summarized in the pseudocode presented in Figure 2. The pseudocode 

outlines the key steps and logic of the FCM-ABC optimizer, highlighting how the ABC algorithm is 

integrated with the FCM framework to achieve robust and accurate segmentation results. Each step in the 

pseudocode corresponds to a specific phase of the optimization process, ensuring clarity and reproducibility 

of the method. 
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FCM-ABC optimizer algorithm  

Input: original image I 

1. fix the parameters MaxNbc, NS, є, NBcycle, L lowest bees, MaxIteration. 

2. generate randomly an initial population of bees 𝑏𝑖    (𝑖 = 1, 2, … , 𝑁𝑆).  
3. it=0 

4. for each bee𝑏𝑖, fix “no-improvement-cycle” to 0. 

5. repeat 

6. it=it+1 

7. for each bee 𝑏𝑖 

calculate the membership value 𝑢𝑖,𝑗 using (3) 

calculate the fitness function 𝐹(𝑏𝑖) according to (8).  
8. endfor 

9. select the lowest fitness Fl, memorize the best solution Bbest. 

10. for each bee 𝑏i 

generate a new solution bnew according to (6). 

evaluate the bnew’s fitness. 

If bnew is better, bi=bnew. 

else “no-improvement-cycle”++. 

calculate the solution probability using (7). 

11. endfor 

12. applied greedy algorithm to update solutions that have the highest probabilities 

using (6). 

13. evaluate their fitness according to (10). 

14. ElitBee =L lowest bees 

15. for each bee 𝑏𝑖 

if “no-improvement-cycle”>NBcycle 

if 𝒃𝒊 ∈ 𝑬𝒍𝒊𝒕𝑩𝒆𝒆, replace 𝒃𝒊 with new clusters centers without affecting the number of 

clusters Nbci 

else generate a new solution for 𝒃𝒊 according to (5). 

16. endfor 

17. until (Fl < є or it >= MaxIteration) 

18. Calculate the membership value 𝒖𝒊,𝒋 according to Bbest. 

 

Figure 2. Pseudo code of FCM-ABC optimizer 

 

 

4. EXPERIMENTAL RESULTS 

The performance of the FCM-ABC optimizer algorithm depends on several key parameters. These 

parameters are selected to balance exploration, exploitation, and computational efficiency. The population size 

refers to the total number of bees, including employed, onlooker, and scout bees, typically set between 50 and 

100. This range balances exploration and computational efficiency: a larger population enhances solution 

diversity and search space exploration, helping avoid local optima, while a smaller size reduces computational 

overhead. For brain MRI segmentation, a population size of 50 is chosen as it effectively explores the high-

dimensional search space of cluster centers without incurring excessive computational costs. 

In our implementation, the maximum number of iterations is set to 300. Typically, values between 100 

and 500 iterations are recommended in optimization tasks, including medical image segmentation. The number 

of iterations plays a crucial role in balancing exploration and computational efficiency, the higher the number, 

the more thoroughly the algorithm can explore the search space and refine potential solutions. However, this 

also results in increased computation time. In the context of brain MRI segmentation, where convergence is 

often achieved within this range, 300 iterations provide a reasonable trade-off between accuracy and 

performance, allowing the algorithm to converge effectively without unnecessary resource consumption. 

To avoid stagnation in a local minimum, we set maximum number of cycles (𝑀𝑎𝑥𝑁𝑏𝑐) to 10, which 

limits the number of consecutive cycles without improvement and helps maintain a balance between exploration 

and exploitation during the optimization process. In the objective function, the weights 𝑊1 and 𝑊2 are both set 

to 0.5, ensuring a balanced contribution of the individual components in the optimization process. 

 

4.1.  Metrics used for segmentation evaluation 

The evaluation of brain MRI segmentation performance relies on several metrics to quantify 

accuracy, robustness, and consistency [32]. In cases where the ground truth is available, we use Jaccard 

Similarity Metric. In cases where the ground truth is unavailable, it becomes necessary to rely on internal 

validation indices to evaluate the quality of the clustering results. By utilizing these indices in combination, 

we can obtain a comprehensive evaluation of the clustering outcomes, ensuring that the proposed method 

achieves optimal performance even in the absence of ground truth information. This approach not only 
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enhances the reliability of the segmentation process but also enables meaningful comparisons with other 

clustering techniques under similar conditions.  

 

4.1.1. Jaccard similarity metric 

The Jaccard similarity (or Jaccard Index) measures the overlap between two sets, in this case, the 

segmented region and the ground truth. It is defined as (11): 

 

𝐽𝑆𝑘 =
|𝐴𝑘∩𝐵𝑘|

|𝐴𝑘∪𝐵𝑘|
 (11) 

 

where 𝐴𝑖 and 𝐵𝑖  are the total number of pixels labeled into the cluster k identified by the clustering algorithm 

and the ground truth respectively. The cluster k is well detected when the value of 𝐽𝑆𝑘 is near 1. 

 

4.1.2. Partition coefficient index 

The partition coefficient index (PCI) measures the fuzziness of the clustering result. It is defined as 

(12): 

 

𝑃𝐶𝐼 =  
1

𝑁
∑ ∑ 𝑢𝑖𝑗

2𝐶
𝑗=1

𝑁
𝑖=1   (12) 

 

4.1.3. Partition entropy index 

The partition entropy index (PEI) measures the uncertainty or randomness in the clustering result. It 

is defined as (13): 

 

𝑃𝐸𝐼 =  
1

𝑁
∑ ∑ 𝑢𝑖𝑗

𝐶
𝑗=1

𝑁
𝑖=1 𝑙𝑜𝑔(𝑢𝑖𝑗)  (13) 

 

4.1.4. Davies-Bouldin index 

The Davies-Bouldin index (DBI) measures the compactness and separation of clusters. It is defined 

as (14): 

 

𝐷𝐵𝐼 =  
1

𝐾
∑

𝑚𝑎𝑥
𝑖 ≠ 𝑗 (

𝑆𝑖+𝑆𝑗

𝐷𝑖,𝑗
)𝐾

𝑖=1   (14) 

 

where Si is the mean distance between the center of the cluster I and all the points belonging to this cluster 

and 𝐷𝑖,𝑗 denotes the distance between the centroids of the clusters I and J. 

 

4.2.  Experimental results on simulated brain MR images 

The following experiments were conducted using simulated brain database (SBD) [33]. The SBD 

provides synthetic MRI brain images with known ground truth segmentations, making it ideal for validating 

segmentation algorithms. The images simulate different intensity inhomogeneities, and slice thicknesses, 

mimicking real-world MRI challenges. This database includes ground truth information for tissue of WM, 

GM, and CSF. It offers a controlled setting to assess the algorithm’s accuracy and its ability to handle 

intensity inhomogeneity effectively. 

The proposed FCM-ABC optimizer method was initially tested on a T1-weighted brain MR image 

with dimensions of 217 × 181 pixels, which includes 20% grayscale non-uniformity to simulate real-world 

imaging challenges. The primary objective of this application was to accurately segment and identify critical 

brain regions, namely WM, GM, and CSF. These tissue types are fundamental for radiologists in their 

analysis and diagnosis of various neurological disorders and diseases. 

Figure 3 provides a visual representation of the segmentation results, allowing for a direct 

comparison of the performance of four different algorithms: FCM, GA-FCM, FCMA-ES, and the proposed 

FCM-ABC optimizer method. To provide context, the original brain image is shown in Figure 3(a), while 

its corresponding ground truths for WM, GM, and CSF are displayed in Figure 3(b). The segmented 

images produced by the FCM, GA-FCM, FCMA-ES, and FCM-ABC optimizer methods are presented in 

Figures 3(c), 3(d), 3(e), and 3(f), respectively.  

From Figure 3, it is clear that the proposed FCM-ABC optimizer method outperforms the other 

methods in terms of accurately extracting brain tissues. A closer examination reveals that the FCM-ABC 

optimizer method effectively maintains regional homogeneity, ensuring that the segmented regions are 

consistent and uniform. Additionally, the algorithm preserves more detailed information from the original 

MR image, which is crucial for maintaining the integrity of the anatomical structures being analyzed. This 

ability to retain fine details is particularly advantageous in medical imaging applications, where subtle 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4916-4932 

4926 

variations in tissue types can have significant diagnostic implications. Furthermore, the FCM-ABC optimizer 

method demonstrates superior performance in delineating the boundaries between different tissue types. It 

accurately marks out the WM and GM regions, ensuring that these critical structures are well-defined and 

distinct achieving a level of precision that surpasses the other methods. 

 
 

(a) 

 

 

  

    

(b) 

   
    

(c) 

   
    

(d) 

   
    

(e) 

   
    

(f) 

   
 

Figure 3. Segmentation results of the four methods on the simulated MRI image (a) original image, (b) ground 

truth image (WM, GM, CSF), (c) FCM, (d) GA-FCM, (e) FCMA-ES, and (f) FCM-ABC optimizer 

 

 

4.3.  Experimental results on clinical brain MR images 

To further evaluate the performance of the algorithm, real clinical MRI images were selected from 

the open access series of imaging studies (OASIS) dataset [34]. OASIS is a publicly available dataset 

containing real brain MRI scans from healthy and Alzheimer’s disease patients. It includes T1-weighted 

images with diverse anatomical variations and pathologies. It ensures the algorithm’s applicability to real-

world clinical data, including pathological cases, enhancing its practical utility. 
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Experiments were conducted on multiple images from this database. The performance of the 

proposed FCM-ABC optimizer method was compared with the FCM and FCMA-ES methods. The 

effectiveness of the three methods was evaluated using the DBI, PCI and PEI metrics where the results are 

shown in Table 1. 

 

 

Table 1. Performance results with DBI, PCI, and PEI metrics on the clinical brain MR images 
Original image Index FCM FCMA-ES FCM-ABC optimizer 

Image1 DBI 0.42 0.41 0.36 

PCI 0.90 0.92 0.96 

PEI 0.19 0.15 0.12 

Image 2 DBI 0.44 0.42 0.43 
PCI 0.89 0.93 0.91 

PEI 0.21 0.19 0.14 

Image 3 DBI 0.52 0.47 0.42 
PCI 0.87 0.89 0.92 

PEI 0.23 0.22 0.16 

Image 4 DBI 0.46 0.45 0.46 
PCI 0.88 0.89 0.88 

PEI 0.21 0.21 0.21 

Image 5 DBI 0.61 0.38 0.41 
PCI 0.85 0.95 0.91 

PEI 0.31 0.13 0.18 
Image 6 DBI 0.46 0.39 0.37 

PCI 0.89 0.94 0.96 

PEI 0.22 0.15 0.12 
Image 7 DBI 0.45 0.49 0.42 

PCI 0.89 0.88 0.91 

PEI 0.23 0.24 0.21 
Image 8 DBI 0.51 0.46 0.43 

PCI 0.86 0.89 0.91 

PEI 0.25 0.21 0.19 
Image 9 DBI 0.44 0.41 0.42 

PCI 0.88 0.93 0.93 

PEI 0.21 0.19 0.19 
Image 10 DBI 0.46 0.41 0.41 

PCI 0.87 0.93 0.93 

PEI 0.22 0.18 0.19 
Mean result DBI 0.47 0.43 0.41 

PCI 0.87 0.91 0.92 

PEI 0.23 0.19 0.17 

 

 

Figure 4 illustrates the segmentation results obtained from processing 10 brain images using three 

different methods: FCM, FCMA-ES, and the proposed FCM-ABC optimizer method. The figure is organized 

into four columns for ease of comparison. The first column displays the original images, providing a 

reference for the subsequent segmentation outcomes. The second column shows the results produced by the 

traditional FCM algorithm, while the third column presents the segmentations generated by the FCMA-ES 

method. Finally, the fourth column highlights the segmentations achieved using the proposed FCM-ABC 

optimizer approach.  

By visually comparing the segmented images across the three methods, it becomes evident that the 

FCM-ABC optimizer method offers superior performance in terms of clarity, detail preservation, and 

accurate delineation of tissue boundaries. This visual comparison aligns with the quantitative evaluations 

presented in Table 1, reinforcing the conclusion that the proposed FCM-ABC optimizer method represents a 

significant advancement in brain MRI image segmentation.  

From the results presented in Table 1, a detailed comparison between the proposed method and the 

traditional FCM and FCMA-ES algorithms reveals that our algorithm consistently achieves superior 

performance across various evaluation metrics. These metrics provide a comprehensive assessment of the 

clustering quality, highlighting the strengths of the proposed approach in terms of both compactness and 

separation of clusters, as well as the clarity and certainty of cluster assignments.  

Firstly, when considering the DBI, which evaluates the quality of clustering by simultaneously 

assessing the compactness of individual clusters and their separation from one another, our algorithm 

demonstrates a significant advantage. In this regard, our algorithm achieved an average DBI value of 0.41, 

which is notably lower than those obtained by the FCM and FCMA-ES methods. This result strongly 

suggests that the proposed method is more effective at ensuring that the final clusters in the image are well-

defined and distinctly separated, thereby improving the overall segmentation quality.  
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 Original image FCM FCMA-ES FCM-ABC optimizer 
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Figure 4. Segmentation results on the clinical brain MR images with FCM, FCMA-ES and FCM-ABC 

optimizer 

 

 

Secondly, the PCI further corroborates the superiority of our algorithm. The PCI measures the degree 

of fuzziness in the clustering process, with higher values indicating clearer partitioning and less overlap between 

clusters. Our algorithm achieved an impressive average PCI value of 0.92, surpassing the results of the other 

methods. This high PCI value, which remains consistent across all test images, indicates that the cluster 

memberships are predominantly closer to 0 or 1. In other words, the data points are assigned to clusters with 

greater certainty, resulting in reduced fuzziness and a more definitive partitioning of the image.  
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Lastly, the PEI provides additional evidence of the robustness of our algorithm. The PEI quantifies 

the uncertainty or randomness in the membership assignments, with lower values reflecting more certain and 

well-defined clusters. Our algorithm achieved an exceptionally low average PEI value of 0.17, significantly 

outperforming the other methods. This low PEI value underscores the minimal overlap between clusters and 

highlights the algorithm's ability to assign data points to clusters with greater confidence and precision. 

In order to evaluate the effectiveness of our proposal FCM-ABC optimizer, its performance is compared with 

other related works using simulated and real brain MRI. 

The Jaccard similarity scores presented in Table 2 provide a comprehensive comparison of various 

fuzzy clustering methods for segmenting WM and GM in brain MRI images. The proposed FCM-ABC 

optimizer demonstrates superior performance, achieving the highest Jaccard scores for both WM (0.91) and 

GM (0.83) segmentation. This indicates that our method better captures the complex tissue boundaries and 

spatial distributions compared to existing approaches. The improved performance of our method can be 

attributed to several factors. First, the ABC optimization helps escape local minima during clustering, leading 

to more accurate segmentation. Second, the adaptive parameter tuning in our approach better handles the 

intensity inhomogeneity common in brain MRI, particularly in GM regions. Third, the method demonstrates 

robust performance across both tissue types, unlike some approaches that excel in one but falter in the other. 

 

 

Table 2. Jaccard similarity scores for WM and GM segmentation across different fuzzy clustering methods 
Method WM GM 

GA-FCM [12] 0.89 0.83 

FCMA-ES [12] 0.91 0.82 

FSMIB [15] 0.85 0.79 
AFCM [16] 0.82 0.71 

LDCFCM [17] 0.83 0.74 

FCM [35] 0.88 0.80 
FCM-ABC optimizer (Proposed) 0.91 0.83 

 

 

The PCI and PEI scores in Table 3 provide crucial insights into the effectiveness of different fuzzy 

clustering algorithms. Our proposed FCM-ABC optimizer demonstrates superior performance, achieving the 

highest PCI score (0.92) and one of the lowest PEI scores (0.17), indicating excellent clustering quality with 

minimal uncertainty. The proposed method's PCI score of 0.92 surpasses all other approaches, including 

FQABC (0.90) and FPSOFCM/DPSO (both 0.89). This significant improvement suggests our proposed 

FCM-ABC optimizer produces more distinct and well-separated partitions. The standard FCM [35] shows the 

weakest PCI performance (0.70), highlighting the limitations of conventional fuzzy clustering without 

optimization. Notably, while FABC [28] incorporates ABC principles, its PCI (0.81) is substantially lower 

than our method, emphasizing the importance of our specific implementation improvements. Our method's 

PEI score of 0.17 is only slightly better than DPSO (0.18) and significantly lower than FABC (0.36) and 

standard FCM (0.42). This indicates our clusters have less ambiguity and overlap compared to these methods. 

Interestingly, FQABC (0.18) and FPSOFCM (0.21) show competitive PEI scores, but our method maintains 

an advantage while also achieving superior PCI performance. The high PEI of FABC (0.36) suggests that 

while basic ABC integration helps, our enhanced approach better manages partition uncertainty. 

 

 

Table 3. PCI and PEI scores for various fuzzy clustering algorithms 
Method PCI PEI 

AFCM [16] 0.86 0.07 

FPSOFCM [22] 0.89 0.21 
FABC [28] 0.81 0.36 

FQABC [28] 0.90 0.18 

FCM [35] 0.70 0.42 
DPSO [36] 0.89 0.18 

FCM-ABC optimizer (Proposed) 0.92 0.17 

 

 

The experimental results presented in this study demonstrate the effectiveness and superiority of the 

proposed FCM-ABC optimizer for brain MRI image segmentation. By integrating the ABC algorithm with 

the FCM framework, our method addresses several key limitations of traditional FCM, including sensitivity 

to initialization, local minima, and the need for prior knowledge of the number of clusters. The results 

highlight the robustness, accuracy, and adaptability of the FCM-ABC optimizer, making it a promising tool 

for medical image analysis. The implication of the results is summarized as follows: 
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a. Improved segmentation accuracy: 

− The FCM-ABC optimizer consistently outperformed traditional FCM, GA-FCM, and FCMA-ES 

methods across both simulated and clinical datasets. This is evidenced by higher JS values for critical 

brain tissues such as WM, GM, and CSF. For example, on the simulated dataset, the FCM-ABC 

optimizer achieved an average JS score of 0.8917, surpassing the scores of FCM (0.86), GA-FCM 

(0.87), and FCMA-ES (0.88). 

− The improved accuracy is particularly significant in clinical applications, where precise segmentation 

of brain tissues is crucial for diagnosing and monitoring neurological disorders such as Alzheimer's 

disease, brain tumors, and ischemic strokes. The ability of the FCM-ABC optimizer to maintain region 

homogeneity while preserving fine details ensures that subtle anatomical structures are accurately 

delineated, which is essential for reliable diagnosis and treatment planning. 

b. Superior clustering quality: 

− The evaluation using internal validation indices such as the DBI, PCI, and PEI further underscores the 

superiority of the FCM-ABC optimizer. The method achieved an average DBI of 0.41, indicating well-

defined and distinctly separated clusters. Additionally, the high PCI value of 0.92 and low PEI value of 

0.17 suggest that the clustering results are less fuzzy and more certain, with minimal overlap between 

clusters. 

− These results are particularly significant in the context of brain MRI segmentation, where overlapping 

intensity distributions between tissues (e.g., GM and WM) often lead to ambiguous clustering results. 

The FCM-ABC optimizer's ability to produce clear and definitive clusters ensures more accurate and 

interpretable segmentation outcomes. 

 

 

5. CONCLUSION 

In this work, we have successfully introduced a novel FCM-ABC optimizer method that addresses a 

significant limitation in traditional FCM-based brain MRI image segmentation. By integrating the strengths 

of the ABC algorithm with the FCM framework, the proposed method enhances the performance, robustness, 

and adaptability of the segmentation process. A key innovation of our approach lies in its ability to 

simultaneously optimize multiple critical parameters of the FCM algorithm, including the objective function, 

the number of clusters, and the initial cluster center values. This capability significantly improves the 

flexibility and accuracy of the segmentation process, enabling it to better handle the complexities inherent in 

medical imaging data. 

Our experimental results, conducted on both simulated (SBD) and clinical (OASIS) brain MRI 

datasets, demonstrate the effectiveness and superiority of the proposed FCM-ABC optimizer compared to 

conventional approaches such as standard FCM, GA-based FCM, and fuzzy covariance matrix adaptation 

evolution strategy. The proposed method consistently achieved higher accuracy, as measured by metrics such 

as JS, PCI, PEI, and DBI, across diverse imaging conditions, including varying intensity inhomogeneity. One 

of the standouts features of the proposed method is its ability to maintain region homogeneity while 

preserving detailed information from the original MR images. This is essential for accurately segmenting 

critical brain regions, such as gray matter, white matter, and cerebrospinal fluid, which are often challenging 

due to their subtle intensity variations and spatial overlaps. The FCM-ABC optimizer's robustness to noise 

and its ability to handle pathological cases further highlight its potential for real-world clinical applications. 

Future research directions for the proposed method include extending it to multi-modal MRI data 

(e.g., T1-weighted, T2-weighted, FLAIR) to enhance segmentation accuracy and robustness, optimizing the 

FCM-ABC optimizer for real-time applications such as surgical planning and intraoperative imaging, and 

generalizing its use to other imaging modalities like CT and PET for broader applicability. 
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