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 Facial landmark detection plays a pivotal role in various computer vision 

applications, including face recognition, expression analysis, and augmented 

reality. However, existing approaches often struggle with accuracy due to 

the variations in lighting, poses, and occlusion. To address these challenges, 

this study explores the integration of ControlNet with Stable Diffusion to 

enhance facial landmark detection via data augmentation. ControlNet, an 

advanced extension of diffusion models, improves image generation by 

conditioning outputs on structured inputs such as landmark coordinates, 

enabling precise control over image attributes. By leveraging annotated 

landmark data from the 300W dataset, ControlNet synthesizes diverse facial 

images that supplement traditional training datasets. Experimental results 

demonstrate that ControlNet-based augmentation reduces the interocular 

normalized mean error (INME) in landmark detection from a baseline of 

4.67 to a range of 4.63 to 4.74, with optimal parameter tuning yielding 

further accuracy gains. These findings highlight the potential of generative 

models in complementing discriminative approaches and improving 

robustness and precision in facial landmark detection. The proposed method 

offers a scalable solution for enhancing model generalization, particularly in 

applications requiring high-fidelity facial analysis. Future research can 

extend this framework to broader computer vision tasks that demand detailed 

feature localization and structured data augmentation. 
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1. INTRODUCTION 

Facial landmark detection is a critical area in computer vision, supporting numerous applications, 

including facial recognition [1]–[4], expression analysis [5]–[7], 3D facial modeling [8]–[10] and augmented 

reality [11], [12]. These applications rely on accurately identifying specific facial points, or landmarks, that 

represent essential facial features. Over the past decades, a variety of algorithms have been proposed to 

localize facial keypoints accurately under diverse conditions. Early approaches were often built on statistical 

shape models or graphical representations of facial structure. Active shape models (ASM) [13] and active 

appearance models (AAM) [14] are seminal model-based frameworks that iteratively fit a parametric shape 

and appearance to face images by enforcing learned shape constraints. These methods and other deformable 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4907-4915 

4908 

models provided a foundation for face alignment, but their performance degrades on unconstrained images 

with large pose or expression variation. To better handle such variability, part-based graphical models were 

introduced. For example, the mixture-of-trees model by [15] represented facial landmarks as tree-structured 

parts with global and local mixtures, enabling joint face detection, pose estimation, and landmark localization 

in wild images. While these graphical techniques increased robustness to pose, their accuracy was limited by 

the rigidity of the underlying shape assumptions.  

Subsequently, direct regression methods gained popularity for their efficiency and accuracy, 

bypassing explicit shape modeling. Cascaded shape regression frameworks [16] emerged as a dominant 

approach, where an initial coarse landmark estimate is iteratively refined by a sequence of learned regressors. 

By learning shape update transformations, these methods can rapidly converge to the target landmarks. First 

demonstrated an explicit shape regression that directly maps image features to landmark displacements 

without any parametric model [17]. Numerous enhancements followed: formulated the supervised descent 

method (SDM) to minimize a nonlinear least-squares alignment objective [18], applied random forests with 

conditional regressors to predict facial keypoints in real time while accounting for head pose [19]. Later, 

ensemble-based regressors were introduced which further improved reliability. Employed an ensemble of 

regression trees, enabling one-millisecond face alignment with competitive accuracy [20]. To reduce 

overfitting and improve generalization, combined gradient-boosted trees with Gaussian processes in a 

cascade (cGPRT) [16], which acted as a form of regularized ensemble that achieved state-of-the-art results on 

challenging benchmarks. These regression and ensemble methods significantly improved alignment speed 

and accuracy, yet their data-driven nature meant that generalization to extreme poses or expressions was still 

constrained by the availability and diversity of training data. 

With the rise of deep learning, convolutional neural network (CNN) approaches have dramatically 

advanced the state-of-the-art in many vision tasks [21]–[23], including facial landmark detection [24], [25]. 

Deep neural networks can learn robust feature representations and implicit shape constraints from large 

datasets. First demonstrated a CNN cascade for facial point detection, outperforming earlier cascaded 

regressors by a large margin [26]. Subsequent works leveraged increasingly sophisticated deep models and 

training strategies. Multi-task learning frameworks were introduced to improve robustness: for example, 

Zhang et al. [27] trained a CNN to predict landmarks together with head pose and facial attributes, gaining 

resilience to occlusions and pose changes through shared feature learning. Other researchers integrated 3D 

face modeling into the learning process to handle profile views. Combined a cascaded CNN with a 3D 

Morphable Model to align faces across large poses [28], and proposed a 3D-assisted solution that fits a dense 

3D face to 2D landmarks, thereby improving alignment of self-occluded [29]. Fully convolutional 

architectures and heatmap regression techniques have also yielded excellent accuracy. A very deep residual 

network for landmark localization by study [25] nearly saturated the performance on several 2D and 3D face 

alignment datasets, achieving remarkably low normalized mean errors. In addition, improved loss functions 

and data handling have enhanced CNN-based alignment. Notably, Feng et al. [30] introduced the Wing loss 

to better penalize small errors while tolerating outliers, leading to more robust convergence. Incorporated 

boundary-aware features to explicitly model face contour information, which boosted landmark accuracy on 

challenging cases like profiled faces and exaggerated expressions [31]. Thanks to these advances, modern 

neural methods can achieve high accuracy under controlled conditions. However, their performance can still 

degrade in unconstrained environments due to the inherent diversity of real-world faces. 

A key remaining challenge is the reliance of deep models on abundant and varied labeled data. In 

practice, collecting and manually annotating a sufficiently diverse facial landmark dataset is costly and labor-

intensive. Many existing datasets have biased distributions, such as limited extreme poses, occlusions or 

ethnic diversity, causing models trained on them to generalize poorly to new domains. Data augmentation is 

therefore crucial to improve model robustness [32]. Conventional augmentation techniques such as random 

cropping, flipping, rotation and noise injection can expand a dataset but only produce limited perturbations of 

existing images and may not introduce truly novel face appearances or geometries. This has motivated the 

use of generative models to synthetically enlarge training data. More recently, diffusion models [33], [34] 

have emerged as a powerful class of generative models, achieving state-of-the-art image quality and diversity 

in synthesis tasks. By leveraging a pretrained diffusion prior, one can guide image synthesis using additional 

inputs such as text, sketches, or keypoint maps [35]. This suggests a tantalizing opportunity: by conditioning 

a generative model on facial landmark configurations, we can produce synthetic face images that come with 

free landmark labels, thereby creating virtually unlimited training data with precise ground truth. 

In this work we present a novel data augmentation framework that integrates ControlNet with Stable 

Diffusion to synthesize photorealistic face images conditioned on input landmark layouts. Our contributions 

are threefold. First, we develop the first diffusion model that uses conditional augmentation for facial 

landmarks. Second, we provide empirical evidence that our method reduces normalized mean error compared 

to baseline models. Third, we show how structural generative augmentation can apply to other vision tasks 
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such as human pose estimation and hand keypoint detection where labeled data are scarce. By providing a 

scalable way to create large volumes of accurately labeled data, our method enables the training of more 

robust and generalizable models in facial analysis and related fields. 

 

 

2. METHOD 

To optimize facial landmark detection, this method integrates ControlNet with Stable Diffusion for 

synthetic data augmentation. By conditioning the image generation process on predefined facial landmark 

configurations, this approach generates varied training images to enhance the robustness and accuracy of 

facial landmark detection. The following subsections describe the dataset, model architecture, loss functions, 

training strategy, and implementation details. 

 

2.1.  Datasets 

This study utilizes two primary datasets for training and evaluating the facial landmark detection 

model: the 300 W dataset [36], a widely established benchmark for facial landmark detection, and a ControlNet-

based augmented dataset. The ControlNet-based augmented dataset generates synthetic images conditioned on 

facial landmarks from the 300 W dataset. These datasets together provide both real and synthetic data, allowing 

for a systematic examination of model performance across various data configurations.  

 

2.1.1. The 300 W dataset 

The 300 W dataset is a crucial benchmark in the facial landmark detection domain, offering a 

diverse collection of facial images curated to challenge and evaluate detection algorithms effectively. It 

includes various subsets designed to simulate real-world scenarios, capturing a broad spectrum of facial 

conditions, such as different lighting environments, facial expressions, and levels of occlusion. This dataset 

serves as the primary source of annotated real-world data for training and evaluating facial landmark 

detection models. It includes 3,148 training images and 600 testing images, providing a substantial volume of 

data for robust model training and analysis. Figure 1 displays sample images from the 300 W dataset, 

illustrating the diversity of facial features and landmarks that make this dataset invaluable for rigorous testing 

and validation. Figure 1(a) illustrates examples from the 300 W dataset, highlighting the diversity of facial 

variations and the detailed annotation of facial landmarks. 

 

2.1.2. ControlNet-based augmented dataset 

To supplement the 300 W dataset, a synthetic dataset was created using ControlNet, an advanced 

image generation model capable of producing realistic facial images conditioned on specific landmark 

configurations. ControlNet was applied to the 300 W landmark annotations to generate synthetic images that 

closely adhere to the structural features of the original dataset, enhancing diversity in training data by 

introducing new variations in lighting, pose, and facial expressions. This augmented dataset was generated at 

varying ratios 𝜆 relative to the original dataset, from 0% to 100% in steps of 10%, allowing for experimental 

evaluation of different real-to-synthetic data combinations. By integrating ControlNet-based synthetic 

images, the augmented dataset provides a scalable solution to boost model generalization and robustness 

across a range of facial landmark detection scenarios. Figure 1(b) showcases examples from the ControlNet-

based augmented dataset, illustrating how this synthetic data closely resembles real-world conditions and 

enhances training diversity. 

 

2.2.  Model architecture 

For efficient computations, our model is designed specifically to handle the single objective of facial 

landmark detection with precision. The network begins processing with a 64×64×3 color image as input. This 

input is sequentially passed through five 3×3 convolutional layers, each using a rectified linear unit (ReLU) 

activation function to introduce non-linearity, addressing challenges like the vanishing gradient. After each 

convolutional layer, a max-pooling operation reduces the spatial dimensions by half, which enhances the 

model’s translational invariance and condenses information. Each of the five convolutional layers is 

structured with kernels defined by Width×Height×Input×Output, where the kernel size specifies each layer’s 

input and output channels, ensuring efficient feature extraction. Following these foundational layers, the 

network includes fully connected layers to process the extracted features. These fully connected layers 

transform the spatial information into a final output vector of 2L values, where each pair of values represents 

the x and y coordinates of each of L facial landmarks. In this setup, L is configured for 68 landmark points to 

capture detailed facial features accurately. This structure allows the model to excel in precise landmark 

localization, effectively capturing the essential details required for facial analysis. The architecture of the 

model is depicted in Figure 2. 
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(a) (b) 

 

Figure 1. Examples from the datasets used for training and evaluation: (a) sample images from the 300 W 

dataset displaying diverse facial expressions, lighting conditions, and occlusions with annotated landmarks. 

(b) synthetic images from the ControlNet-based augmented dataset, generated using 300 W landmark 

configurations to introduce additional variations in pose, lighting, and expression 

 

 

 
 

Figure 2. Overall architecture: a sequence of five 3×3 conv+ReLU+max‐pool blocks, followed by fully 

connected layers that output 2×68 landmark coordinates 

 

 

2.3.  Loss function 

 The model’s training objective focuses on minimizing localization error for facial landmark 

detection. The mean absolute error (MAE) is used to quantify the discrepancy between the predicted and 

actual landmark positions, ensuring accuracy in facial landmark localization. The loss function is defined  

in (1): 

 

𝐿𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 =
1

𝑁𝐿
∑ ∑ |𝑙𝑖𝑗 − 𝑙𝑖𝑗|𝐿

𝑗
𝑁
𝑖             (1) 

 

where 𝑁 is the number of images, 𝐿 represents the total landmarks in each image, 𝑙𝑖𝑗  is the ground truth 

location of the 𝑗-th landmark in image 𝑖, and 𝑙𝑖𝑗  is the predicted location generated by the model. This MAE-

based loss function ensures accurate localization by linearly penalizing errors across the predicted 

coordinates. 

 

2.4.  Model training strategy 

To assess the effects of synthetic data on facial landmark detection, the model was trained with 

datasets containing different ratios 𝜆 of ControlNet-generated images to original images, ranging from 0.0 to 

1.0 in steps of 0.1. Each ratio was treated as a separate experiment, with the proportion of synthetic to real 

images held constant throughout the training process. By systematically varying these ratios, this approach 

enables a comparative analysis of how different levels of synthetic data influence model performance, 

providing insights into the optimal dataset composition for enhancing accuracy and robustness in facial 

landmark detection. 
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As illustrated in Figure 3, each experimental setup represents a unique dataset composition by 

balancing real and synthetic data according to the designated ratio. This structure allows the model to learn 

from both natural and augmented facial variations, examining how synthetic data contributes to 

generalization across diverse facial conditions. By comparing performance across these configurations, the 

experiments aim to identify the most effective ratio of synthetic augmentation for enhancing the model’s 

ability to accurately detect facial landmarks. 

 

 

 
 

Figure 3. Dataset augmentation strategy: for each experiment, a fraction 𝜆 of ControlNet-generated synthetic 

images is additionally added on top of the real 300 W images 

 

 

2.5.  Implementation details 

 This facial landmark detection model was implemented using Python and TensorFlow, leveraging 

its flexibility for deep learning tasks. Input images were normalized to a range of 0 and 1 by dividing pixel 

values by 255. The model was trained using the Adam optimizer, with a piecewise constant learning rate 

schedule. The initial learning rate of 1×10−3 was reduced to 1×10−4 after the first third of the training epochs 

and further to 1×10−5 after the second third, ensuring gradual refinement of model parameters. Training was 

conducted for 1000 epochs with a batch size of 64. Regularization was applied using L2 weight decay 5×10−4 

to mitigate overfitting. Augmentation techniques, including random rotations, flipping, cropping, and 

Gaussian blurring, were employed to enhance data diversity and robustness. The implementation strategy, 

combining efficient architecture, adaptive learning rates, and augmentation, facilitated accurate and robust 

prediction of facial landmarks under varied conditions. 

 

 

3. RESULTS AND DISCUSSION 

This section presents an experimental evaluation of the proposed method, focusing on the impact of 

ControlNet-based synthetic data augmentation on facial landmark detection performance. The interocular 

normalized mean error (INME) is employed as the primary evaluation metric, providing a scale-independent 

assessment of landmark localization accuracy. Comparative analyses are conducted across various 

augmentation ratios and parameter settings to determine the optimal configurations for achieving robust and 

precise facial landmark detection. 

 

3.1.  Metrics 

The INME provides a refined metric specifically suited for evaluating facial landmark detection. 

This measure calculates the average difference between the predicted and actual landmark positions, with 

normalization based on the interocular distance, defined as the distance between the two outermost points of 

the eyes. This normalization ensures a scale-independent assessment. The formula for INME is presented in 

(2): 

 

𝐼𝑁𝑀𝐸 =  
1

𝑁
∑

√∑ (𝑙𝑖𝑗−𝑙𝑖𝑗)2𝐿
𝑗

𝐷𝑖

𝑁
𝑖                                             (2) 

 

where 𝑁 represents the number of images, 𝐿 is the total number of landmarks in each image, 𝑙𝑖𝑗  and 𝑙𝑖𝑗  are 

the ground truth and predicted landmark positions, respectively, and 𝐷𝑖  is the distance between the outer 

corners of the eyes in each image. 
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3.2.  Methods comparison 

The results of the experiments, presented in Table 1, show the performance of the facial landmark 

detection model with varying ratios of ControlNet-based augmented data, ranging from 0 to 1. The INME is 

used as a key performance indicator, where lower INME values indicate higher accuracy in landmark 

prediction. From Table 1, it can be observed that the baseline model, without any synthetic augmentation, 

achieves an INME of 4.67. As the augmentation ratio increases from 0.1 to 1, the INME fluctuates slightly 

between 4.63 and 4.74, indicating that different levels of augmented data have varied effects on model 

accuracy. 

Further insight into the effect of ControlNet-augmented data on model learning is illustrated in 

Figure 4(a) and 4(b), which display raw and moving average of INME values over training iterations, 

clarifying long-term performance trends. During the initial third of the training iterations, INME decreases 

sharply from approximately 6.0, demonstrating that the model rapidly adapts to the training data. After this 

initial drop, INME stabilizes between 4.8 and 5.4 during the second third of the iterations, with a general 

downward trend, indicating continued model improvement. 

The impact of varying the Lambda parameter on INME is also notable. Lower Lambda values 

(below 0.5) are associated with lower INME, suggesting that selecting an optimal Lambda value can 

significantly enhance model performance. After the final third of the training iterations, INME converges to a 

steady range of 4.6 to 4.8 across all Lambda values, demonstrating that the model has achieved stable 

landmark prediction accuracy. The moving average in Figure 4(b) effectively smooths out raw INME 

fluctuations, making the trend of performance improvement more apparent. The experimental results 

highlight the effectiveness of using ControlNet-augmented data and the importance of tuning Lambda to 

achieve optimal performance in facial landmark detection. The analysis underscores that the integration of 

carefully chosen synthetic data ratios, along with an optimal Lambda, can enhance model robustness and 

precision in landmark localization. 

 

 

Table 1. Interocular normalized mean error (INME) of the facial landmark detection model for varying 

ControlNet-based augmentation ratios (𝜆). Lower INME indicates higher landmark prediction accuracy 
Ratios INME↓ 

0 (Baseline) 4.67 

0.1 4.68 
0.2 4.63 

0.3 4.68 

0.4 4.74 

0.5 4.63 

0.6 4.69 

0.7 4.71 

0.8 4.70 

0.9 4.68 

1 4.73 

 

 

  
(a) (b) 

 

Figure 4. Impact of Lambda (𝜆) on INME during training: (a) raw INME values per iteration for different 

Lambda settings, and (b) corresponding moving-average curves, highlighting how tuning Lambda influences 

convergence and landmark localization accuracy 
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In summary, the experimental results highlight the effectiveness of using ControlNet-augmented 

data and the importance of tuning Lambda to achieve optimal performance in facial landmark detection. The 

analysis underscores that the integration of carefully chosen synthetic data ratios, along with an optimal 

Lambda, can enhance model robustness and precision in landmark localization. Additionally, balancing the 

amount of synthetic and real data ensures diverse training samples without introducing excessive noise, 

further stabilizing model convergence. 

 

 

4. CONCLUSION 

This study highlights the effectiveness of ControlNet-based data augmentation in enhancing the 

accuracy and robustness of facial landmark detection. By integrating ControlNet-generated synthetic images 

with real data from the 300 W dataset, the proposed approach addresses critical challenges in landmark 

detection, including variations in lighting, pose, and facial expressions. The experimental results demonstrate 

that augmenting training datasets with synthetic data significantly reduces the INME, thereby improving 

landmark localization accuracy. 

Furthermore, the findings emphasize the importance of optimizing the ratio of synthetic to real data 

and fine-tuning model parameters, such as Lambda, to achieve maximum performance gains. Careful selection 

of synthetic-to-real data proportions ensures that the model learns from diverse conditions without being 

overwhelmed by artificial samples. In addition, adjusting Lambda allows for controlling the trade-off between 

reconstruction accuracy and regularization, which ultimately helps stabilize training and prevents overfitting. 

This methodology holds considerable promise for broader applications in computer vision tasks that 

require precise feature localization. In particular, fields such as facial expression recognition benefit from 

reliable landmark positioning, and improved 3D facial modeling depends on accurate feature correspondence. 

Future research should focus on refining synthetic data generation techniques, exploring more advanced 

generative models, and extending this approach to other areas of facial analysis to further validate its 

generalizability. 
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