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 Current healthcare data systems face major challenges in preventing 

unauthorized access, ensuring compliance with data privacy regulations, and 

enabling intelligent secondary use of patient information. To address these 

issues, we introduce cluster-based analysis with machine learning for enhanced 

healthcare data security (CAML-EHDS), a unified framework that combines 

homomorphic encryption, attribute-based elliptic curve cryptography (ECC), 

and semantic clustering with machine learning. CAML-EHDS improves upon 

existing models by offering fine-grained access control, adaptive threat 

detection, and data-driven insights while preserving privacy. Experimental 

results show that CAML-EHDS achieves up to 98% classification accuracy 

with low node count, and maintains 94% accuracy even at high node 

distribution levels, while ensuring encryption time under 24 seconds and 

acceptable data loss below 29%. Moreover, in comparative analysis with state-

of-the-art models (support vector machine (SVM), random forest (RF), and 

decision tree (DT)), CAML-EHDS outperforms all in key metrics with an 

accuracy of 0.96. These results demonstrate CAML-EHDS’s potential for real-

world deployment in secure, scalable, and intelligent healthcare environments, 

including privacy-aware digital marketing integration. 
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1. INTRODUCTION 

In this paper, we introduce cluster-based analysis with machine learning for enhanced healthcare 

data security (CAML-EHDS), a robust framework designed to address the escalating challenges of protecting 

sensitive healthcare data in an increasingly digital landscape. The digitization of medical records, while 

offering numerous benefits, has also heightened the risk of cyber threats, necessitating advanced analytical 

techniques to safeguard patient information [1]. Within this framework, cryptographic methods and 

authorization mechanisms are seamlessly integrated to safeguard healthcare data. Leveraging techniques such 

as homomorphic encryption and attribute-based elliptic curve cryptography (ECC) schemes [2], this model 

ensures that sensitive information remains encrypted and accessible only to authorized entities, thus 

mitigating the risk of unauthorized access or data breaches. This addresses a critical gap identified in prior 

research, where robust access control and data protection mechanisms are often lacking. 

Furthermore, CAML-EHDS incorporates cluster-based analysis with state-of-the-art machine 

learning algorithms to uncover hidden patterns and identify potential security threats within healthcare data. 

https://creativecommons.org/licenses/by-sa/4.0/
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By employing semantic clustering, ranking clusters, and computing similarity indices, the model provides 

invaluable insights into the underlying structure of healthcare datasets, thereby increasing classifier security 

and threat detection capabilities. Through the utilization of long short-term memory networks (LSTMs) [3] 

and transfer learning, specifically using pre-trained models like bidirectional encoder representations from 

transformers (BERT), the model enables healthcare organizations to classify security threats with precision 

and efficacy, therefore establishing a more secure and resilient healthcare data ecosystem. Compared to 

existing schemes such as GHZ, J, HZ, XZY, and SCH, which often lack pairing-free operations, ECC-based 

methods, or key-escrow mechanisms, CAML-EHDS offers a more comprehensive security solution. 

In addition to its core security features, the research model also offers seamless integration with 

digital marketing strategies. By leveraging insights gained from unified threat detection and cluster-based 

analysis, CAML-EHDS enables organizations to tailor their digital marketing strategies effectively. Through 

targeted advertisements and personalized content for healthcare products and services based on classified 

data and detected threats, the model facilitates enriched engagement and customer satisfaction [4]. Moreover, 

the proposed model ensures that the data used for digital marketing is secure and compliant with privacy 

regulations, thereby providing organizations with peace of mind while maximizing the effectiveness of their 

marketing efforts [5]. This integration, demonstrating the practical application of our security framework, is 

shown through comparative analyses and performance evaluations in the results section, highlighting CAML-

EHDS's superior performance in maintaining data security while optimizing marketing strategies. 

The methodological novelty of this study lies in the integration of homomorphic encryption, 

attribute-based ECC) and semantic clustering with machine learning (LSTM and transfer learning via BERT) 

within a unified framework tailored for healthcare data security. CAML-EHDS addresses critical gaps in 

existing frameworks, notably the lack of secure, privacy-compliant models capable of real-time threat 

detection and encrypted data processing. Unlike conventional models, CAML-EHDS simultaneously 

enhances data confidentiality, improves anomaly classification accuracy (96%), and supports secure digital 

marketing strategies aligned with GDPR and health insurance portability and accountability act (HIPAA). 

The comparative results presented in this paper highlight its superior encryption efficiency, reduced 

computational overhead, and increased resilience to cyberattacks. These contributions offer promising 

implications for future applications in secure healthcare infrastructures, including cloud-based systems, IoT 

environments, and AI-driven medical data services. 

 

 

2. LITERATURE REVIEW  

The escalating digitization of medical records and the increasingly sophisticated landscape of cyber 

threats have underscored the critical need for robust healthcare data security. While prior research has 

explored various facets of this challenge, significant limitations persist, which CAML-EHDS is designed to 

address. Acar et al. [6] demonstrated the promise of homomorphic encryption for safeguarding sensitive 

medical records. However, their approach lacked the fine-grained access control necessary in collaborative 

healthcare environments, leaving data vulnerable to internal breaches. Similarly, Imam et al. [7] proposed an 

attribute-based ECC scheme, but they did not adequately address the complexities of key management in 

dynamic healthcare settings, which CAML-EHDS tackles with its robust key-escrow system. Cluster-based 

analysis has also been explored for anomaly detection, as evidenced by Festag et al. [8], who investigated 

semantic clustering algorithms. However, their work did not integrate real-time machine learning for 

dynamic threat detection, a critical component of CAML-EHDS. Prasad et al. [9] explored similarity-based 

clustering, but their approach lacked the temporal analysis capabilities provided by CAML-EHDS’s LSTM-

based component. Moreover, Balhareth and Ilyas [10] utilized CNNs for security breach detection in medical 

imaging, and Rajkomar et al. [11] employed LSTMs for temporal pattern recognition in electronic health 

records; however, these studies focused on isolated aspects of data security and did not offer a 

comprehensive framework that integrates multiple security layers.  

CAML-EHDS, in contrast, combines cryptographic methods, advanced clustering, and sophisticated 

machine learning, including both LSTM and BERT, to provide a multi-layered security approach. 

Furthermore, a significant gap exists in the literature regarding the integration of security measures with 

digital marketing strategies. Prior research has largely overlooked this intersection. CAML-EHDS addresses 

this gap by leveraging insights from unified threat detection and cluster-based analysis to optimize digital 

marketing efforts while ensuring data security compliance. By tailoring targeted advertisements and 

personalized content based on classified data and detected threats, CAML-EHDS improves customer 

engagement while adhering to stringent privacy regulations. This integration of security and marketing, 

coupled with its robust cryptographic and machine learning components, distinguishes CAML-EHDS as a 

comprehensive and innovative solution, surpassing the limitations of previous models. 
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3. ARCHITECTURE OF CAML-EHDS MODEL 

CAML-EHDS architecture represents a meticulously engineered fortress, designed to provide 

unparalleled healthcare data security while simultaneously optimizing digital marketing strategies. The 

process initiates with a fortified data collection and preprocessing phase, ensuring the secure gathering and 

meticulous preparation of healthcare data, thereby establishing an impregnable foundation for subsequent 

analyses [12]. Following this, a dual-layered cryptographic shield is deployed, incorporating homomorphic 

encryption and ECC-based authorization. This robust combination guarantees impenetrable data encryption 

and enforces stringent, granular access policies, effectively thwarting unauthorized access and mitigating 

potential breaches. Next, CAML-EHDS employs an advanced cluster-based analysis, leveraging semantic 

clustering, ranking clusters with precision, computing similarity indices, and executing domain 

transformations [13]. This sophisticated process uncovers hidden patterns and bolsters classifier security, 

transforming raw data into actionable intelligence.  

The model's analytical prowess is further amplified by a powerful machine learning core. Individual 

models, including the impressive LSTMs and transfer learning models, undergo rigorous training to classify 

security threats with unmatched accuracy [14]. A pivotal model fusion stage then integrates the outputs of 

these models through weighted averaging and ensemble prediction, generating a final, exceptionally robust 

output. This fusion creates a synergistic defense, exceeding the capabilities of any single model and 

providing a unified, impenetrable threat detection system. Finally, CAML-EHDS seamlessly integrates 

digital marketing strategies, leveraging the alarming insights derived from unified threat detection and 

cluster-based analysis. This integration enables the implementation of targeted advertisements and 

personalized content, ensuring both marketing effectiveness and unwavering compliance with data security 

regulations [15]. This comprehensive architecture, with its multi-layered defenses and integrated intelligence, 

establishes CAML-EHDS as a paragon of robust and secure healthcare data management. 

The overall architecture of the CAML-EHDS model is visually summarized in Figure 1. This figure 

illustrates the end-to-end pipeline of the framework, including data preprocessing, cryptographic methods, 

cluster-based analysis, machine learning integration, unified threat detection, and digital marketing 

applications. The diagram highlights how each component interacts to enhance healthcare data security while 

supporting privacy-compliant marketing strategies. 

 
 

 
 

Figure 1. CAML-EHDS model’s architecture for securing healthcare data and optimizing 

digital marketing 
 

 

4. METHOD 

4.1.  Data collection and experimental setup 

The healthcare data, encompassing patient information on various diseases sourced from healthcare 

websites, was meticulously gathered. However, a crucial bias analysis revealed potential demographic 
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overrepresentation within the dataset. We employed data augmentation, fairness-aware machine learning 

algorithms, and sensitivity analyses, though we acknowledge that inherent biases may persist. Future work 

will focus on expanding dataset diversity and exploring advanced bias mitigation to ensure fair and 

generalizable model performance. CAML-EHDS model incorporates strategies to maintain computational 

efficiency, the framework employs optimized preprocessing techniques to reduce data dimensionality and 

complexity, and is designed to leverage parallel processing to handle large datasets without significant 

performance degradation. For the implementation and testing of the research model, Python was selected due 

to its versatility and the extensive range of libraries [16], including TensorFlow, scikit-learn, NumPy, and 

Pandas. These libraries are crucial for developing and testing machine learning models. In terms of 

simulation parameters, symmetric key encryption was employed to secure data during experiments [17], 

highlighting the critical role of efficient key management in maintaining data security. The dataset consists of 

medical data with a mean value of 507k and a standard deviation of 12.5k. For health camp IDs, the mean is 

calculated as 6.57k with a standard deviation of 13.2k. Similarly, for patient data, the mean is 387k with a 

standard deviation of 39.6k. The overall description of the dataset is detailed in Table 1.  

− https://www.kaggle.com/datasets/mehradaria/covid19-lung-ct-scans; 

− https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database; 

− https://www.kaggle.com/datasets/mathchi/diabetes-data-set; 

− https://www.kaggle.com/competitions/diabetes-classification/data; 

− https://www.kaggle.com/datasets/saurabh00007/diabetescsv; 

− https://www.kaggle.com/code/paultimothymooney/predict-diabetes-from-medical-records/data; 

− https://www.kaggle.com/datasets/kumargh/pimaindiansdiabetescsv; 

− https://www.kaggle.com/datasets/rischan/diabetes-dataset; 

− https://www.kaggle.com/datasets/jillanisofttech/diabetes-disease-updated-dataset; 

− https://www.kaggle.com/code/mathchi/diagnostic-a-patient-has-diabetes/data; 

− https://www.kaggle.com/datasets/paultimothymooney/blood-cells; 

− https://www.kaggle.com/datasets/draaslan/blood-cell-detection-dataset; 

− https://www.kaggle.com/competitions/3md3070-dlmi/data;  

 

 

Table 1. Dataset distribution 
Dataset Mean Standard deviation 

Healthcampus 507k 12.5 

Covid - 19 387k 39.6 

Lung 5856 1.28 
Heart 54.4 9.07 

Iris 75.5 43.3 

 

 

4.2.  Data cleaning and filtering 

Post-data collection, a comprehensive cleaning and filtering protocol was implemented to ensure 

data integrity and consistency. This protocol encompassed the removal of irrelevant information, error 

correction, and format standardization. Given the critical nature of missing data in healthcare analytics, a 

multifaceted imputation strategy was adopted. For numerical variables, such as patient age, mean imputation 

was utilized to provide statistically representative values. For categorical variables, including patient gender, 

mode imputation was applied, assigning the most frequent category. In instances where missing data was 

deemed analytically significant or where simple imputation could introduce substantial bias, k-nearest 

neighbors (k-NN) imputation was utilized, leveraging similar data point values to estimate missing values. 

This approach was selected to minimize data loss and preserve dataset integrity, particularly in cases where 

missing data patterns could yield valuable insights. To address the issue of imbalanced data, where certain 

security threat categories were less frequent than others, the Synthetic Minority Over-sampling Technique 

(SMOTE) was subsequently applied. SMOTE was chosen to generate synthetic instances of the minority 

classes, creating a more balanced dataset for model training. This technique helps prevent the model from 

being biased towards the majority class and improves its ability to accurately detect rare but critical security 

threats. Furthermore, textual data underwent tokenization, lowercasing, stop word removal, stemming, and 

lemmatization [18], preparing it for effective and reliable analysis [19]. 

 

4.3.  Cryptographic methods and authorization 

4.3.1. Cryptographic processes and key management 

The CAML-EHDS model implements a robust cryptographic protocol to safeguard healthcare data, 

featuring key elements such as the data owner (DO), key generation center (KGC), cloud storage (CS), 

https://www.kaggle.com/datasets/mehradaria/covid19-lung-ct-scans
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.kaggle.com/competitions/diabetes-classification/data
https://www.kaggle.com/datasets/saurabh00007/diabetescsv
https://www.kaggle.com/code/paultimothymooney/predict-diabetes-from-medical-records/data
https://www.kaggle.com/datasets/kumargh/pimaindiansdiabetescsv
https://www.kaggle.com/datasets/rischan/diabetes-dataset
https://www.kaggle.com/datasets/jillanisofttech/diabetes-disease-updated-dataset
https://www.kaggle.com/code/mathchi/diagnostic-a-patient-has-diabetes/data
https://www.kaggle.com/datasets/paultimothymooney/blood-cells
https://www.kaggle.com/datasets/draaslan/blood-cell-detection-dataset
https://www.kaggle.com/competitions/3md3070-dlmi/data


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5728-5745 

5732 

decryption server (DS), and data receiver (DR). The DO oversees data exchange and encryption for cloud 

storage, ensuring the secure transfer of patient data. The KGC coordinates key generation and integrates 

private keys based on user attributes, facilitating encrypted information exchange within the cloud [20]. 

Serving as a semi-trusted entity, the CS enables data sharing and storage while generating secret keys for 

users [21]. The DS enables decryption of transmitted information, determining decryption capabilities at the 

receiver's end [22]. Meanwhile, the DR ensures secure data analysis by integrating attribute sets during 

decryption and accommodating resource constraints for lightweight mobile devices [23]. 

 

4.3.2. Homomorphic encryption of CAML-EHDS model 

a. Setup 

The CAML-EHDS model utilizes attribute-based ECC to safeguard healthcare data, alongside a 

key-based approach and a lightweight model tailored for attribute-based ECC processing [24]. The security 

features encompass domain-specific feature parameters, leveraging an elliptical curve model for estimating 

and computing public parameters. In this setup, the CS is integrated with the KGC [25], where a random 

number is computed as 𝑎𝑖 ∈ 𝑍𝑞
∗  with the authorization of 𝑖 ∈  𝜔𝑖, where ω represented as the attributes set 

for the authorization of 𝑃𝑃 =  {𝑎1, 𝑎2, 𝑎3, … … . , 𝑎𝑛}, 𝑖 = 1 to 𝑚 and 𝑖 ∈ 𝜔. With the setup of KGC the secret 

ley for the master is computed as k ∈ Z*q with ECC for the computation of the public key stated as:  

 

𝑃𝑃𝐾𝐺𝐶 = 𝑘. 𝐺 i.e., {𝑀𝐾𝐾𝐺𝐶 = 𝑘, 𝑃𝑃𝐾𝐺𝐶 = 𝑘. 𝐺}  (1) 

 

CS Setup: The master secret key is elected based on c ∈ Z*q and the public key is estimated as: 

 

 𝑃𝑃𝐶𝑆 = 𝑐. 𝐺; {𝑀𝐾𝐶𝑆 = 𝑐, 𝑃𝑃𝐶𝑆 = 𝑐. 𝐺} (2) 

 

The public parameter output is denoted as 𝑝𝑎𝑟𝑎𝑚𝑠 = {𝑃𝑃, 𝑃𝐾𝐺𝑆, 𝑃𝑃𝐶𝑆}. 

b. Encryption and re-encryption 

Within DO, data is uploaded for message sharing and execution, using a structure with defined 

attributes for authorization, denoted as 𝜔. This phase includes computing and estimating the encrypted 

message 𝑚 for the data input 𝛬. The access tree 𝛬 is represented as T, with the message encryption of 𝑚 

using a random number estimated as 𝑠 ∈ 𝑍∗ 𝑞, for the encryption and integrity of symmetric data 

computation [26]. The CS execution process involves distributing and storing ciphertext data for the data 

generated by the DO. The ciphertext data parameters are calculated based on the input data and the CS 

master key ciphertext [27], with the master key 𝑐 generated as (3): 

 

𝐶𝑆 = (𝑇, 𝐶𝑛, 𝐶𝑖, 𝑀𝐴𝐶𝑚, 𝐶𝑚𝐶𝑆 = 𝐸𝑛𝑐(𝐶𝑚, 𝑐𝑥))  (3) 

 

Here 𝑐. 𝐺 = (𝑐𝑥, 𝑐𝑦). 

c. Key generation, key update and decryption 

The key generation phase centers on producing the KGC key K, associated with the attribute set S 

for the receiver data. The private key for the KGC [28], derived using a random number r ∈ Z*q, is expressed 

as (4): 

 𝑃𝐾𝑖𝑛𝑖𝑡 = 𝑎𝑖. 𝑟, ∀𝑖 ∈ 𝑆  (4) 

 

In this equation, the random number generated for the ai takes into account the setup phases. The CAML-

EHDS model comprises of three phases such as KGC, CS and DR for the estimation of CS and KGC. The 

key generation of the components comprises of the following steps that are stated as below: 

− Initially, the secret key is generated as 𝑘 and 𝑟 with the generation of the secret key as CS represented as 𝑐. 

− Based on the estimated values of 𝑘, 𝑟 and 𝑐 the computation process is performed with the information 

transferred through the CS.  

− With the value of reception with the CS the random number is generated 𝑑 ∈ 𝑍 ∗ 𝑞 computation of (
𝑥

𝑑
) . 𝐺 

for the KGC values.  

− The KGC values are computed with the estimation of value 𝐵 = 𝐴. 𝑘2is conversion of value B within the 

CS. 

− The estimated CS value for the components is denoted as: 

 

𝐾′ = 𝐵. 𝑑 = 𝐴. 𝑘2. 𝑑 = (
𝑥

𝑑
) . 𝐺. 𝑘2. 𝑑 = (

𝑐

𝑘
+ 𝑟) ∗  

1

𝑘
𝑘2. 𝐺 = (𝑐 + 𝑘𝑟). 𝐺  (5) 
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The decryption process is evaluated through the integration of DS and DR, emphasizing lightweight 

operations. The key components involved in this process are denoted as 𝑆𝐾𝐾𝐺𝐶 , 𝑆𝐾𝐶𝑆, 𝑆𝐾𝐷𝑅  corresponding to 

each key element required for decrypting the DR process. 

 

4.3.3. Attribute-based ECC for authorization 

Elliptic curve cryptography (ECC) utilizes specific parameters to define the elliptic curve and the 

cryptographic operations executed on it. The most commonly employed ECC parameters include the curve 

equation, the prime modulus, the base point [29], and the order of the base point. The ECC parameters for the 

commonly used NIST P-256 curve are provided: The curve parameter selected for the analysis is shown in 

equation: 

 

 𝑦2  =  𝑥3  −  3𝑥 +  𝑏  (6) 

 

The Prime modulus (field size) with the CAML-EHDS model is presented as  

 

𝑝 =  2256  −  2224  +  2192 + 296  −  1  (7) 

 

Through the equation the coordinates and value b is computed as 

 
𝑏 = 41058363725152142129326129780047268409114441015993725554835256314039467401291 

 

with based generator of G = (x, y) where: 

 
x = 48439561293906451759052585252797914202762949526041747995844080717082404635286 

 

y = 36134250956749795798585127919587881956611106672985015071877198253568414405109 

 

The order of pair is computed as: 

 
𝑛 = 115792089210356248762697446949407573529996955224135760342422259061068512044369 

 

These parameters define the elliptic curve and are used in ECC operations like key generation, point 

multiplication, and digital signatures. 

 

4.4.  Cluster-based analysis 

The construction of the cluster is assessed by considering the observed semantic domains. By 

computing the CAML-EHDS model, clusters are ranked based on the estimation of the mean value within the 

cluster group. The 𝑖th cluster relationship is evaluated based on the length of the cluster model in the domain 

as (𝑖 − 1𝑡ℎ and 𝑖 + 1𝑡ℎ). With computation of the similarity index in the 𝑖th cluster is designed with 𝑀𝑠
𝑝,𝑞

. 

Within the domain of 𝑖thcluster with domain p and q values is measured as 1 [30]. Similarly, for the domain 

p and q the assigned values is stated as 0.5 other it is assigned as the 0. The transformation of the source 

domain is evaluated by mapping the target function with the latent space d of attacks [31]. Through the 

conversion of the attacker's domain, the transformation of the latent space is assessed using abundant label 

instances to classify the healthcare target domain for security. To enhance the security of healthcare data, 

labelling is applied to the target instances with the training of the classifier [32]. With the proposed model 

deep learning focused on the assignment of the score to the cluster group for the attack prevention. Initially, 

each cluster source is assigned as the “normal” or “attacker” with the assigned labels to the cluster. The 

domain source comprises of the target domain denoted as 𝐷1
𝑡  and 𝐷2

𝑡  with the Euclidean distance. The label 

for the source in the 𝑖th cluster is ranked as the 𝑟𝑖 , 𝑟𝑖 + 1, 𝑟𝑖 − 1 in this model those are labelled as the 

follows:  

− Step 1: Initially, set the value as zero for the label 

− Step 2: Upon the ranking of the source cluster 𝑟𝑖 and attacker is denoted as α with the elimination of the 

cluster value. 

− Step 3: With the source node cluster is ranked as 𝑟𝑖 + 1 with the attack denoted as 
𝛼

2
 will be included in 

the cluster else it will be eliminated. 

− Step 4: With the source nodes the rank of cluster is stated as 𝑟𝑖 − 1 and attacker is defined as 
𝛼

2
 included 

within the system else node is eliminated from the cluster group. 
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Through the estimation of the score target as 0 and 1 the cluster instances are normalized with the 

normal or attack. With the assigned soft labels the instances for the threshold is 𝑇1 is considered as the attack 

else the threshold 𝑇2 is considered as the threshold defined as the normal”. The instances for the target are 

defined as: 𝑇1 = 𝛼 \\ Set as attack label, and 𝑇2 = 1 − 𝛼 \\ Set as a normal label in this label, the assignment 

scheme with labelled instances attacks is classified and eliminate the incorporation of the attacks in the 

network by soft labelling. Within the cluster group, labels are assigned to each cluster, incorporating three 

components of healthcare data security and classification. The node clusters should include various factors 

such as prior knowledge, probability of edges, and conditional probability table (CPT) [33]. Our process 

focuses on estimating network attacks by computing causality and integrating it with the ML-based transfer 

learning process. The CAML-EHDS process, combined with the transfer learning process for assigning 

labels and detecting attacks, is described in (8). Through the assigned label instance 𝑇1 and 𝑇2  unknown 

attacks are computed and estimated with consideration of CPT attacks 𝑈𝑖𝑗 = 𝑃(𝑋 = 𝑥𝑗|𝑈 = 𝑢𝑖). The process 

flow of our model for attack detection and prevention is evaluated with the ML model for the training and 

computation of the trust values in the database. 

 

𝑈𝑖𝑗
𝑡 = {

𝛿 + (1 − 𝛿)𝑈𝑖𝑗
𝑡−1,           𝑃(𝑢𝑖|𝑦𝑡) = 1   𝑃(𝑢𝑗|𝑦𝑡) = 1

(1 − 𝛿)𝑈𝑖𝑗
𝑡−1,                 𝑃(𝑢𝑖|𝑦𝑡) = 1   𝑃(𝑢𝑗|𝑦𝑡) = 0

𝑈ij
t-1                             otherwise

    (8) 

 

4.5.  CAML-EHDS algorithm for key management strategies 

With the assigned label instances of the attack data eliminated that was identified as 𝐷(𝐷 =
{𝑦1, 𝑦2, 𝑦3. . . . . . }) for the attack data estimation denoted as 𝑦𝑡 . The CAML-EHDS attack scenario is estimated 

as 𝑆 = (𝐼1, 𝐼2, . . . . . 𝐼𝑛) with the assigned label of ML based deep learning model for the estimation of the 

attacks. The model attacks for the estimation of the variables are computed for our model is presented in 

Algorithm 1. 

 

Algorithm 1. Parameter estimation 
Input: Network Attack = {(𝑎𝑙1, 𝑎𝑙2. . . . . )(𝑎𝑙3, 𝑎𝑙4. . . . . ). . . . } 

Output: 𝛿𝑛+1 = (𝐶𝑛+1, 𝐽𝑛+1, 𝜆𝑛+1) 
// Start 

For n = 0 estimate 𝛿𝑖
0 

For 𝑎𝑖𝑗
0 = 𝛿𝑖

0 set 𝑏𝑗(𝑘)0 

Compute the attacks those are unknown as n =0,1,2... 

   do  

Compute using (7) 

Compute using (8) 

     End for  

   End for  

Set the values for estimation 

Set values for the comparison 

   If 𝑃(𝑍𝑖 = 1|𝐼𝑖 = 1) > 𝑡𝑟𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒 
     then 

Calculate the 𝑇1 and 𝑇2 based estimated values 

   End if 

       for 𝑣𝑎𝑙𝑢𝑒(𝑍𝑖) set as the attack value 
If 𝑣𝑎𝑙𝑢𝑒(𝑍𝑖) > 𝑡𝑟𝑢𝑠𝑡𝑒𝑑𝑒𝑣𝑎𝑙𝑢𝑒then 

Calculate the set 𝑍𝑖 

End if  

     End for 

  End for 

 

The ML framework focuses on generating source mappings and constructing the target domain 

within the latent space. Upon converting the latent space, the source domain consists of probable instance 

labels for attack classification. The accuracy of the training label classifier for the targeted instances is 

evaluated using the assigned soft labels. The CAML-EHDS solution involves generating, distributing, and 

updating encryption keys for various entities, including the data owner, the cloud server, and the data 

recipient. Here are some considerations for key management in this environment: 

− Key generation: Encryption keys are paramount for safeguarding healthcare data [34]. Secure methods 

such as reliable random number generators or trusted key management systems are essential for their 

generation [35]. Furthermore, these keys must possess adequate strength to withstand brute-force attacks 

and adhere to recommended key size guidelines specified for the encryption algorithm in use [36]. 
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− Key distribution: Once encryption keys are generated, secure and reliable methods are imperative for their 

distribution to designated entities [37]. This process often involves the utilization of secure channels such 

as encrypted email or secure file transfer protocols [38]. Ensuring the secure transmission and protection 

of keys during distribution is critical to prevent unauthorized access [39]. 

− Key updates: In the dynamic healthcare landscape, regular updates to encryption keys may become 

necessary due to various factors [40]. These factors include key expiration, compromised keys, or 

changes in user access permissions. A well-defined process must manage key updates effectively, 

incorporating mechanisms for revoking and replacing keys as required [41]. 

− Access control: Proper access control mechanisms are vital to restrict access to encryption keys to only 

authorized entities [42]. This may entail implementing role-based access control, cryptographic key 

management systems, or other access control policies to safeguard sensitive information from 

unauthorized access [43]. 

− Key storage: Secure storage of encryption keys is crucial to prevent unauthorized access and potential 

breaches [44] utilizing hardware security modules (HSMs) or other secure storage solutions can help 

safeguard keys from both physical and logical attacks, thereby enhancing overall security [45]. 

− Key backup and recovery: Regular backups of encryption keys are necessary to mitigate the risk of data 

loss in the event of key compromise or system failures [46]. Establishing a robust key recovery process is 

vital to restore access to encrypted data promptly if keys are lost or become inaccessible [47]. 

− Compliance and auditing: Key management processes must comply with relevant regulatory 

requirements, such as health insurance portability and accountability act (HIPAA) for healthcare data 

[48]. Regular audits and continuous monitoring should be conducted to ensure compliance and identify 

any potential vulnerabilities in the key management system [49]. 

Implementing a comprehensive key management strategy is essential for maintaining the security 

and confidentiality of healthcare data in a dynamic environment [50]. Consulting with security experts and 

adhering to industry best practices is recommended to design and implement an effective key management 

system that meets the specific security needs of healthcare organizations [51]. 

 

4.6.  Machine learning model 

4.6.1. Long short-term memory networks (LSTMs) 

LSTMs are employed to analyze the inherent temporal dependencies within patient records, 

essential for detecting evolving security threats that manifest over time [52]. To analyze the temporal 

dependencies inherent in-patient records, crucial for detecting evolving security threats, long short-term 

memory networks (LSTMs) were selected for their optimized ability to process sequential time-series data, a 

common format in electronic health records. Unlike transformers, which excel at capturing long-range 

dependencies across entire sequences but are computationally intensive, or convolutional neural networks 

(CNNs), which are effective for spatial data but less suited for temporal patterns, LSTMs offer a balance of 

efficiency and effectiveness in identifying subtle anomalies and patterns that emerge over time. Their 

recurrent architecture allows them to maintain memory across sequences, enabling the detection of threats 

that manifest as changes in patient data over extended periods, making them a more practical and efficient 

choice for this specific application. 

For our LSTM implementation, hyperparameters were meticulously selected through a combination 

of grid search and validation set performance evaluation [53]. We utilized a multi-layered LSTM architecture 

with 128 hidden units per layer, determined to balance model complexity and computational efficiency. The 

sequence length was set to 50, exhibited efficient memory usage, requiring approximately 4 GB of GPU 

memory during training. This configuration resulted in an average training time of 3 hours on our dataset. 

The Adam optimizer was chosen with a learning rate of 0.001, and batch size was set to 32, values 

determined through grid search to optimize convergence and prevent overfitting.  

 

4.6.2. Transfer learning with pre-trained models 

Complementing LSTMs, we leverage transfer learning with BERT to improve our model's ability to 

understand the semantic context of healthcare data. BERT, pre-trained on vast amounts of text, excels in 

capturing complex relationships between words and phrases [54]. This allows for the detection of subtle 

semantic anomalies that may indicate unauthorized access or data manipulation. While LSTMs are optimized 

for temporal analysis, BERT provides a deep semantic understanding, allowing us to capture different threat 

vectors [55]. By combining LSTMs for temporal pattern recognition and BERT for semantic understanding, 

our model achieves a comprehensive analysis of healthcare data, addressing both the sequential nature and 

the complex semantic content of the information [56]. This hybrid approach optimizes threat detection by 

leveraging the strengths of both recurrent and transformer-based architectures, increasing the overall security 

of healthcare data ecosystems. 
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4.6.3. Model fusion: amplifying detection capabilities 

As the individual models emerge from the container of training, they converge harmoniously in the 

fusion phase, forging an alliance that transcends the capabilities of any single model. Here, the collective 

intelligence of LSTMs and transfer learning models combine, birthing a hybrid fusion approach prepared to 

redefine healthcare security threat detection. Employing sophisticated fusion techniques, predictions from 

individual models are combined to form a robust ensemble. Using the weighted averaging method, the fusion 

approach creates a final ensemble prediction enriched with collective wisdom. In this process, each model's 

prediction is assigned a weight based on its performance and reliability [57]. These weighted scores are then 

averaged to produce a unified prediction. This synthesis transcends the limitations of individual models by 

leveraging their diverse strengths. By carefully assigning weights, the fusion method ensures that the most 

accurate and reliable models have a greater influence on the final prediction [58]. This approach improves the 

overall resilience and efficacy of the healthcare security system, providing a comprehensive defense against 

potential threats. 

 

4.7.  Digital marketing integration 

CAML-EHDS uniquely integrates digital marketing strategies with robust data security, leveraging 

insights from unified threat detection and cluster-based analysis. This enables healthcare organizations to 

develop targeted advertisements and personalized content based on classified data and detected threats, 

improving customer engagement and marketing effectiveness. By employing advanced cryptographic 

techniques like homomorphic encryption and ECC, CAML-EHDS ensures that marketing data remains 

secure and compliant with privacy regulations. However, this integration necessitates careful consideration of 

ethical concerns. Specifically, the use of sensitive healthcare data for marketing purposes raises questions 

about informed consent, data anonymization, and the potential for discriminatory targeting. To mitigate these 

risks, CAML-EHDS incorporates mechanisms for transparent data usage, robust anonymization techniques, 

and strict adherence to privacy regulations. 

 

 

5. RESULTS 

5.1.   Evaluation of healthcare data security using CAML-EHDS model 

Using the proposed CAML-EHDS techniques, healthcare data security features are assessed with 

machine learning, focusing on three different metrics: authentication, encryption, and machine learning. The 

model includes a cryptographic process that is examined considering various features for security, 

communication overhead, and computation process. The homomorphic encryption scheme is evaluated using 

the attribute-based escrow model for analysis.  

In the proposed model, homomorphic encryption is used to store electronic medical records on the 

escrow server. This encryption method is applied to the medical healthcare records. The examined results for 

the constructed model are presented in Figure 2. In Figure 3, ECC-based authorization is conducted for the 

evaluation and computation of medical data. The examination involves authorizing users of medical 

healthcare data. Computed authorization using ECC is implemented in the cloud to enhance security. 

 

5.2.  Security features 

The CAML-EHDS model is designed to boost the security of healthcare data by incorporating 

various advanced security features. These features are evaluated and compared against existing models to 

highlight the effectiveness of our model in safeguarding sensitive information. The key security features 

assessed include pairing-free operations, ECC based methods, key-escrow mechanisms, resistance to 

collusion attacks, provable security, and key authority management. Table 2 presents a comparative analysis 

of these security features across different schemes. 

The performance of the CAML-EHDS model is compared with existing schemes such as GHZ, J, 

HZ, XZY, and SCH. The comparative analysis focuses on how each scheme handles the security features. 

CAML-EHDS model excels in all categories, demonstrating its superiority in providing comprehensive 

security for healthcare data. 

− GHZ [14] and J [15] schemes lack pairing-free operations and ECC-based methods, which are crucial for 

efficient and secure data processing in resource-constrained environments. 

− HZ [34] provides pairing-free operations but does not include ECC-based methods or key-escrow 

mechanisms, limiting its flexibility and security. 

− XZY [7] and SCH [8] incorporate both pairing-free and ECC-based methods but lack key-escrow 

features, reducing their effectiveness in key management and recovery scenarios. 

The proposed model not only addresses these shortcomings but also introduces a lightweight key-

escrow scheme and robust key authority management, making it a well-rounded solution for securing 
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healthcare data. Incorporating advanced cryptographic techniques and robust key management strategies, our 

model is the best performing model for protecting sensitive healthcare information. The evaluation and 

comparative analysis demonstrate its effectiveness in mitigating various security threats, ensuring the 

confidentiality, integrity, and availability of healthcare data. 

 

 

 
 

Figure 2. Medical records and encryption with homomorphic process 

 

 

 
 

Figure 3. Patient demographic attributes for authorization 

 

 

Table 2. Comparison of security features in CAML-EHDS 
Scheme Pairing – free ECC based Key – escrow Collusion attack Provable secured Key authority 

GHZ [14] No No Yes Yes Yes Yes 

J [15] No No Yes Yes No Yes 
HZ [34] Yes No No No Yes No 

XZY [7] Yes Yes No No Yes No 

SCH [8] Yes Yes No Yes Yes No 
Proposed CAML-EHDS Yes Yes Yes Yes Yes Yes 

 

 

5.3.  Performance analysis of node configuration in encrypted systems 

Table 3 provides a comparative analysis of encryption time, loss percentage, and accuracy 

percentage for different numbers of nodes in a system. The CAML-EHDS model demonstrates significant 

strengths in handling encryption and maintaining high accuracy in healthcare data security. The results show 

that with a low number of nodes, our model achieves exceptionally high accuracy, with 98% at 2 nodes, and 

a minimal loss percentage of 13%.  
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Table 3. Performance of CAML-EHDS 
No. of nodes Encryption time(s) Loss% Accuracy% 

2 12 13 98 
4 15 18 97 

6 18 22 96 

8 21 26 95 
10 24 29 94 

 
 

Although encryption time and information loss increase as the number of nodes rises, the model still 

maintains a commendable accuracy of 94% even at 10 nodes. This illustrates this research model's robustness 

in processing and encrypting data across varying node configurations while sustaining high accuracy levels. 

Despite the expected trade-offs in encryption time and data loss, CAML-EHDS proves to be highly effective 

and reliable in a cloud server environment for healthcare data processing, ensuring both security and 

performance as illustrated in Figure 4. 

 
 

 
 

Figure 4. Comparison of encryption time, loss and accuracy 

 

 

5.4.  Computation overhead 

Computation overhead covers the series of operations involved in encryption, decryption, key 

generation, and related tasks. The estimated balance of computation overhead includes operations such as 

bilinear pairing, exponentiation, point hashing, and scalar multiplication based on points. It also includes 

arithmetic and logical calculations. When performing authorization tasks using ECC operations for groups in 

the bilinear group, these computations are utilized × 𝐺1 → 𝐺2.  

Table 4 in this paper details the basic modular operations in ECC that estimate attributed scalar 

multiplications. Scalar multiplication is critical in ECC-based techniques and significantly impacts 

computation overhead. The attribute-based ECC scheme processes scalar points with multiplication, making 

it essential to optimize these operations for effective healthcare data analysis, especially in IoT-based 

environments. The findings highlight the importance of minimal computation overhead to ensure efficient 

and secure data handling. 
 

 

Table 4. Computational overhead comparison of security schemes 
Scheme Initialization Encryption Key generation Decryption Total 

GHZ [14] 𝑃 + 2𝐸 ≈ 24S 𝑃 + (3 + 𝑙)𝐸 ≈ 46S (10 + 4𝑢)𝐸 ≈ 60S 3𝑃 ≈ 60S 190S 

J [15] 𝑃 + 3𝐸 ≈ 26S 𝑃 + (3 + 𝑙)𝐸 ≈ 46S (4 + 2𝑢)𝐸 ≈ 28S 3𝑃 ≈ 60S 160S 

XZY [7] (𝑛 + 1)𝑆 ≈ 31S (𝑙 + 1)𝑆 ≈ 11S - (𝑢 + 1)𝑆 ≈ 6S 48S 

SCH [8] (𝑛 + 1)𝑆 ≈ 31S (3𝑙 + 1)𝑆 ≈ 31S - (3 + 𝑢)𝑆 ≈ 8S 70S 

CAML-EHDS 4S (4 + 𝑙)𝑆 ≈ 12S 8S (2 + 𝑢)𝑆 ≈ 7S 31S 

 

 

The comparison of computation overhead among different schemes reveals insightful findings. GHZ 

[14] exhibits the highest total overhead (190S), primarily attributed to its extensive key generation and 

decryption steps. Although J [15] demonstrates a lower total overhead (160S), its significant encryption and 

decryption processes still contribute to computational load. XZY [7] achieves a notably lower total overhead 

(48S) with minimal encryption and decryption requirements, indicating its efficiency. SCH [8] presents a 

moderate total overhead (70S) with a balanced approach to encryption and decryption steps. In contrast, the 

CAML-EHDS model demonstrates the lowest total overhead (31S) due to its efficient initialization, 
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encryption, key generation, and decryption processes. This emphasizes the model effectiveness in healthcare 

data analysis in IoT environments, ensuring both high security and low computational resource consumption, 

thereby making it a promising solution for secure healthcare data management. 

 

5.5.  CAML-EHDS performance with varied memory sizes 

In this section, we explore the performance of various healthcare data security categories concerning 

different memory sizes. The simulation analysis of the proposed model is evaluated for healthcare data of 

different file sizes, ranging from 500 MB to 4 GB. To assess real-time usability, the model was tested  

under simulated high-traffic conditions with data input rates ranging from 100 to 1000 requests per second. 

In Figure 5, the x-axis represents distinct categories: denial of service (DoS), user-to-root (U2R),  

remote-to-local (R2L), Probe, unknown, and CAML-EHDS. Each category corresponds to specific activities 

or behaviors within healthcare data security. On the y-axis, values range between approximately 1.68 to 1.88, 

reflecting memory sizes of 500 MB, 1 GB, 2 GB, 3 GB, and 4 GB, with each size represented by unique line 

styles and colors. The observations reveal intriguing insights into each category's behavior across varying 

memory capacities. DoS consistently registers the highest values across all memory sizes, indicating a 

persistent danger that remains relatively stable even with increased memory. 

U2R and R2L categories exhibit lower values compared to DoS but display slight upward trends with 

larger memory sizes, indicating potential vulnerabilities in these areas. Probe values, while relatively stable 

across memory sizes, remain lower than DoS but higher than U2R and R2L, suggesting a moderate level of risk. 

Unknown category values remain consistent and lower than Probe. Notably, this model values consistently rank 

the lowest across all categories, demonstrating its efficacy in preventing security breaches, with a slight 

decrease observed with larger memory sizes. Overall, the graph suggests that while the CAML-EHDS model 

excels in security breach prevention, DoS attacks pose a persistent threat, highlighting the importance of robust 

defense mechanisms. Additionally, the trend implies that larger memory sizes may offer performance 

improvements in certain categories, warranting further investigation and optimization strategies. 

 

 

 
 

Figure 5. Analysis of different attacks vs CAML-EHDS 

 

 

5.6.  Comparative analysis of machine learning models 

To evaluate the efficacy of our proposed CAML-EHDS model, we compared its performance 

against traditional classification methods: support vector machine (SVM), random forest (RF), and decision 

tree (DT). The performance of all models was assessed using key metrics: sensitivity, specificity, and 

accuracy. The results of this comparison are presented in Table 5. Additionally, as illustrated in Figure 6, 

CAML-EHDS demonstrates the highest values across all performance metrics, indicating superior 

performance compared to the other evaluated methods. Specifically, CAML-EHDS achieved a sensitivity of 

0.85, a specificity of 0.997, and an accuracy of 0.96. To provide a measure of the precision and reliability of 

these estimates, we calculated 95% confidence intervals: accuracy [0.94-0.98], sensitivity [0.82-0.88], and 

specificity [0.995-0.999]. These findings suggest that our model is particularly effective for the classification 

task at hand, offering enhanced capabilities in correctly identifying both positive and negative instances 

within the dataset. 

While traditional models like RF (accuracy: 0.89) and DT (accuracy: 0.93) provide competitive 

accuracy, they present real-world implementation challenges for privacy-sensitive healthcare applications. 
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Their inability to directly process encrypted data necessitates expensive and complex pre-processing and 

secure computation methods, creating significant hurdles in terms of operational costs and adherence to strict 

data privacy regulations. Beyond overall classification performance, a detailed error analysis revealed that 

CAML-EHDS demonstrated a notably lower false positive rate compared to SVM (accuracy: 0.82) and RF, 

particularly in the classification of normal and benign instances. However, a higher number of false negatives 

was observed in underrepresented attack classes such as R2L and U2R, suggesting that while the model is 

efficient overall, it may require further optimization for rare event detection. This highlights the importance of 

continued work on balancing detection sensitivity across all classes, especially in security-critical applications. 

 

 

Table 5. Comparison of classification models performance 
Methods Sensitivity Specificity Accuracy 

SVM 0.2 0.95 0.82 

RF 0.8 0.984 0.89 
DT 0.75 0.983 0.93 

CAML-EHDS 0.85 0.997 0.96 

  

 

 
 

Figure 6. Performance metrics of ML models for CAML-EHDS 

 

 

6. DISCUSSION 

The integration of security measures into digital marketing strategies within healthcare 

organizations has been a significantly under-explored area in scholarly research. However, CAML-EHDS, as 

presented in this study, effectively bridges this gap. By leveraging insights from unified threat detection and 

cluster-based analysis, CAML-EHDS optimizes digital marketing efforts while ensuring robust data security. 

This novel approach, which utilizes tailored advertisements and personalized content derived from classified 

data and detected threats, significantly improves customer engagement while maintaining strict adherence to 

data security regulations. This includes compliance with regulatory frameworks such as the general data 

protection regulation (GDPR) and the health insurance portability and accountability act (HIPAA), by 

ensuring that personal health data is encrypted, access-controlled, and processed without compromising user 

privacy. Building upon existing cryptographic, clustering, and machine learning techniques, CAML-EHDS 

offers a comprehensive solution that surpasses the limitations of previous models.  

As illustrated in Table 6, CAML-EHDS achieves a superior accuracy of 96%, outperforming SVM 

(82%), RF (89%), and DT (93%). This demonstrates CAML-EHDS's developed capability in accurately 

classifying both positive and negative instances, crucial for robust security threat detection. Furthermore, 

CAML-EHDS exhibits the lowest total computational overhead (31S) compared to GHZ, J, XZY, and SCH. 

This low overhead, combined with high accuracy, signifies the model's efficiency and reliability in 

processing and encrypting healthcare data. The model's robustness is further demonstrated, showcasing its 

ability to handle increased system complexity without significant performance degradation. Additionally, the 

model's ability to maintain high accuracy and low overhead, even when tested with large files sizes ranging 

from 500MB to 4GB, and under various attack scenarios, shows its incredible strength. 

CAML-EHDS distinguishes itself by achieving a 96% threat detection accuracy, a notable 

improvement over contemporary healthcare security study. While Bercea et al. reported a 92% anomaly 

detection accuracy using federated learning [59], and Bilot et al. achieved 94% in intrusion detection with 

graph neural networks [60], CAML-EHDS's integrated cryptographic, clustering, and machine learning 

approach demonstrates its superior efficacy. Similarly, Ali et al. [61] and Hamid et al. [62] reported 

accuracies of 93% and 91% respectively, utilizing hybrid cryptographic machine learning systems and data 

mining for fraud detection. This superior performance underscores CAML-EHDS's ability to seamlessly 
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combine diverse security mechanisms for a more robust and accurate healthcare data protection framework. 

CAML-EHDS is a standout solution in the field, offering a comprehensive and efficient approach to 

safeguarding healthcare data while optimizing digital marketing strategies. Its advanced cryptographic, 

clustering, and machine learning techniques, coupled with low computational overhead and high accuracy, 

establish it as a leading model in the evolving landscape of healthcare data security. 

 

 

7. CONCLUSION 

In conclusion, CAML-EHDS presents a robust framework designed to revolutionize healthcare data 

security and digital marketing integration, addressing the critical need for safeguarding sensitive patient 

information while optimizing marketing strategies. By integrating advanced cryptographic techniques, 

cluster-based analysis, and machine learning algorithms, CAML-EHDS ensures data confidentiality, 

integrity, and availability, effectively mitigating unauthorized access. Its unique ability to seamlessly 

integrate digital marketing with stringent security protocols allows healthcare organizations to tailor 

marketing efforts for developed customer engagement while maintaining regulatory compliance. Looking 

ahead, several avenues for future work will improve CAML-EHDS's applicability and impact. Firstly, to 

facilitate industry adoption, a detailed integration roadmap will be developed, outlining step-by-step 

procedures for businesses to incorporate CAML-EHDS into existing systems. This roadmap will include API 

specifications, deployment guidelines, and case studies demonstrating successful implementation in various 

healthcare settings.  

Secondly, to address ethical concerns, future research will focus on implementing mechanisms to 

prevent misuse in marketing. This includes developing robust auditing tools to monitor data usage, ensuring 

transparency in marketing practices, and establishing clear guidelines for data anonymization and consent 

management. Furthermore, a comprehensive robustness evaluation will be conducted to assess the model’s 

performance under adversarial attacks. This evaluation will involve simulating various attack scenarios, 

including data poisoning, model evasion, and privacy breaches, to quantify the model’s resilience and 

identify potential vulnerabilities. Techniques such as adversarial training and robust optimization will be 

explored to enhance the model’s defense mechanisms. Additionally, continued research will focus on 

optimizing the framework's performance and scalability, exploring new cryptographic methods, refining 

clustering algorithms, and improving machine learning models to better detect emerging security threats. 

Ongoing collaboration with healthcare practitioners and industry stakeholders will be crucial for validating 

the effectiveness of CAML-EHDS settings and ensuring its seamless integration into existing healthcare 

systems. By remaining committed to innovation, ethical considerations, and robust evaluation, we can 

continue to advance the field of healthcare data security and digital marketing integration, ultimately 

improving patient outcomes and driving positive change in the healthcare industry. 
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