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Current healthcare data systems face major challenges in preventing
unauthorized access, ensuring compliance with data privacy regulations, and
enabling intelligent secondary use of patient information. To address these
issues, we introduce cluster-based analysis with machine learning for enhanced
healthcare data security (CAML-EHDS), a unified framework that combines
homomorphic encryption, attribute-based elliptic curve cryptography (ECC),
and semantic clustering with machine learning. CAML-EHDS improves upon
existing models by offering fine-grained access control, adaptive threat
detection, and data-driven insights while preserving privacy. Experimental
results show that CAML-EHDS achieves up to 98% classification accuracy
with low node count, and maintains 94% accuracy even at high node
distribution levels, while ensuring encryption time under 24 seconds and
acceptable data loss below 29%. Moreover, in comparative analysis with state-
of-the-art models (support vector machine (SVM), random forest (RF), and
decision tree (DT)), CAML-EHDS outperforms all in key metrics with an
accuracy of 0.96. These results demonstrate CAML-EHDS’s potential for real-
world deployment in secure, scalable, and intelligent healthcare environments,
including privacy-aware digital marketing integration.
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1. INTRODUCTION

In this paper, we introduce cluster-based analysis with machine learning for enhanced healthcare
data security (CAML-EHDS), a robust framework designed to address the escalating challenges of protecting
sensitive healthcare data in an increasingly digital landscape. The digitization of medical records, while
offering numerous benefits, has also heightened the risk of cyber threats, necessitating advanced analytical
techniques to safeguard patient information [1]. Within this framework, cryptographic methods and
authorization mechanisms are seamlessly integrated to safeguard healthcare data. Leveraging techniques such
as homomorphic encryption and attribute-based elliptic curve cryptography (ECC) schemes [2], this model
ensures that sensitive information remains encrypted and accessible only to authorized entities, thus
mitigating the risk of unauthorized access or data breaches. This addresses a critical gap identified in prior
research, where robust access control and data protection mechanisms are often lacking.

Furthermore, CAML-EHDS incorporates cluster-based analysis with state-of-the-art machine
learning algorithms to uncover hidden patterns and identify potential security threats within healthcare data.
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By employing semantic clustering, ranking clusters, and computing similarity indices, the model provides
invaluable insights into the underlying structure of healthcare datasets, thereby increasing classifier security
and threat detection capabilities. Through the utilization of long short-term memory networks (LSTMs) [3]
and transfer learning, specifically using pre-trained models like bidirectional encoder representations from
transformers (BERT), the model enables healthcare organizations to classify security threats with precision
and efficacy, therefore establishing a more secure and resilient healthcare data ecosystem. Compared to
existing schemes such as GHZ, J, HZ, XZY, and SCH, which often lack pairing-free operations, ECC-based
methods, or key-escrow mechanisms, CAML-EHDS offers a more comprehensive security solution.

In addition to its core security features, the research model also offers seamless integration with
digital marketing strategies. By leveraging insights gained from unified threat detection and cluster-based
analysis, CAML-EHDS enables organizations to tailor their digital marketing strategies effectively. Through
targeted advertisements and personalized content for healthcare products and services based on classified
data and detected threats, the model facilitates enriched engagement and customer satisfaction [4]. Moreover,
the proposed model ensures that the data used for digital marketing is secure and compliant with privacy
regulations, thereby providing organizations with peace of mind while maximizing the effectiveness of their
marketing efforts [5]. This integration, demonstrating the practical application of our security framework, is
shown through comparative analyses and performance evaluations in the results section, highlighting CAML-
EHDS's superior performance in maintaining data security while optimizing marketing strategies.

The methodological novelty of this study lies in the integration of homomorphic encryption,
attribute-based ECC) and semantic clustering with machine learning (LSTM and transfer learning via BERT)
within a unified framework tailored for healthcare data security. CAML-EHDS addresses critical gaps in
existing frameworks, notably the lack of secure, privacy-compliant models capable of real-time threat
detection and encrypted data processing. Unlike conventional models, CAML-EHDS simultaneously
enhances data confidentiality, improves anomaly classification accuracy (96%), and supports secure digital
marketing strategies aligned with GDPR and health insurance portability and accountability act (HIPAA).
The comparative results presented in this paper highlight its superior encryption efficiency, reduced
computational overhead, and increased resilience to cyberattacks. These contributions offer promising
implications for future applications in secure healthcare infrastructures, including cloud-based systems, loT
environments, and Al-driven medical data services.

2. LITERATURE REVIEW

The escalating digitization of medical records and the increasingly sophisticated landscape of cyber
threats have underscored the critical need for robust healthcare data security. While prior research has
explored various facets of this challenge, significant limitations persist, which CAML-EHDS is designed to
address. Acar et al. [6] demonstrated the promise of homomorphic encryption for safeguarding sensitive
medical records. However, their approach lacked the fine-grained access control necessary in collaborative
healthcare environments, leaving data vulnerable to internal breaches. Similarly, Imam et al. [7] proposed an
attribute-based ECC scheme, but they did not adequately address the complexities of key management in
dynamic healthcare settings, which CAML-EHDS tackles with its robust key-escrow system. Cluster-based
analysis has also been explored for anomaly detection, as evidenced by Festag et al. [8], who investigated
semantic clustering algorithms. However, their work did not integrate real-time machine learning for
dynamic threat detection, a critical component of CAML-EHDS. Prasad ef al. [9] explored similarity-based
clustering, but their approach lacked the temporal analysis capabilities provided by CAML-EHDS’s LSTM-
based component. Moreover, Balhareth and Ilyas [10] utilized CNNs for security breach detection in medical
imaging, and Rajkomar et al. [11] employed LSTMs for temporal pattern recognition in electronic health
records; however, these studies focused on isolated aspects of data security and did not offer a
comprehensive framework that integrates multiple security layers.

CAML-EHDS, in contrast, combines cryptographic methods, advanced clustering, and sophisticated
machine learning, including both LSTM and BERT, to provide a multi-layered security approach.
Furthermore, a significant gap exists in the literature regarding the integration of security measures with
digital marketing strategies. Prior research has largely overlooked this intersection. CAML-EHDS addresses
this gap by leveraging insights from unified threat detection and cluster-based analysis to optimize digital
marketing efforts while ensuring data security compliance. By tailoring targeted advertisements and
personalized content based on classified data and detected threats, CAML-EHDS improves customer
engagement while adhering to stringent privacy regulations. This integration of security and marketing,
coupled with its robust cryptographic and machine learning components, distinguishes CAML-EHDS as a
comprehensive and innovative solution, surpassing the limitations of previous models.
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3. ARCHITECTURE OF CAML-EHDS MODEL

CAML-EHDS architecture represents a meticulously engineered fortress, designed to provide
unparalleled healthcare data security while simultaneously optimizing digital marketing strategies. The
process initiates with a fortified data collection and preprocessing phase, ensuring the secure gathering and
meticulous preparation of healthcare data, thereby establishing an impregnable foundation for subsequent
analyses [12]. Following this, a dual-layered cryptographic shield is deployed, incorporating homomorphic
encryption and ECC-based authorization. This robust combination guarantees impenetrable data encryption
and enforces stringent, granular access policies, effectively thwarting unauthorized access and mitigating
potential breaches. Next, CAML-EHDS employs an advanced cluster-based analysis, leveraging semantic
clustering, ranking clusters with precision, computing similarity indices, and executing domain
transformations [13]. This sophisticated process uncovers hidden patterns and bolsters classifier security,
transforming raw data into actionable intelligence.

The model's analytical prowess is further amplified by a powerful machine learning core. Individual
models, including the impressive LSTMs and transfer learning models, undergo rigorous training to classify
security threats with unmatched accuracy [14]. A pivotal model fusion stage then integrates the outputs of
these models through weighted averaging and ensemble prediction, generating a final, exceptionally robust
output. This fusion creates a synergistic defense, exceeding the capabilities of any single model and
providing a unified, impenetrable threat detection system. Finally, CAML-EHDS seamlessly integrates
digital marketing strategies, leveraging the alarming insights derived from unified threat detection and
cluster-based analysis. This integration enables the implementation of targeted advertisements and
personalized content, ensuring both marketing effectiveness and unwavering compliance with data security
regulations [15]. This comprehensive architecture, with its multi-layered defenses and integrated intelligence,
establishes CAML-EHDS as a paragon of robust and secure healthcare data management.

The overall architecture of the CAML-EHDS model is visually summarized in Figure 1. This figure
illustrates the end-to-end pipeline of the framework, including data preprocessing, cryptographic methods,
cluster-based analysis, machine learning integration, unified threat detection, and digital marketing
applications. The diagram highlights how each component interacts to enhance healthcare data security while
supporting privacy-compliant marketing strategies.
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Figure 1. CAML-EHDS model’s architecture for securing healthcare data and optimizing
digital marketing

4. METHOD
4.1. Data collection and experimental setup

The healthcare data, encompassing patient information on various diseases sourced from healthcare
websites, was meticulously gathered. However, a crucial bias analysis revealed potential demographic
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overrepresentation within the dataset. We employed data augmentation, fairness-aware machine learning
algorithms, and sensitivity analyses, though we acknowledge that inherent biases may persist. Future work
will focus on expanding dataset diversity and exploring advanced bias mitigation to ensure fair and
generalizable model performance. CAML-EHDS model incorporates strategies to maintain computational
efficiency, the framework employs optimized preprocessing techniques to reduce data dimensionality and
complexity, and is designed to leverage parallel processing to handle large datasets without significant
performance degradation. For the implementation and testing of the research model, Python was selected due
to its versatility and the extensive range of libraries [16], including TensorFlow, scikit-learn, NumPy, and
Pandas. These libraries are crucial for developing and testing machine learning models. In terms of
simulation parameters, symmetric key encryption was employed to secure data during experiments [17],
highlighting the critical role of efficient key management in maintaining data security. The dataset consists of
medical data with a mean value of 507k and a standard deviation of 12.5k. For health camp IDs, the mean is
calculated as 6.57k with a standard deviation of 13.2k. Similarly, for patient data, the mean is 387k with a
standard deviation of 39.6k. The overall description of the dataset is detailed in Table 1.

—  https://www.kaggle.com/datasets/mehradaria/covidl 9-lung-ct-scans,

—  https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database,

—  https://www.kaggle.com/datasets/mathchi/diabetes-data-set;

— https://www.kaggle.com/competitions/diabetes-classification/data;

—  https://www.kaggle.com/datasets/saurabh00007/diabetescsv,

— https://www.kaggle.com/code/paultimothymooney/predict-diabetes-from-medical-records/data;

—  https://www.kaggle.com/datasets/kumargh/pimaindiansdiabetescsv,

—  https://www.kaggle.com/datasets/rischan/diabetes-dataset;

—  https://www.kaggle.com/datasets/jillanisofttech/diabetes-disease-updated-dataset,

—  https://www.kaggle.com/code/mathchi/diagnostic-a-patient-has-diabetes/data;

—  https://www.kaggle.com/datasets/paultimothymooney/blood-cells;

— https://www.kaggle.com/datasets/draaslan/blood-cell-detection-dataset,

—  https://www.kaggle.com/competitions/3md3070-dImi/data,

Table 1. Dataset distribution

Dataset Mean Standard deviation
Healthcampus 507k 12.5
Covid - 19 387k 39.6
Lung 5856 1.28
Heart 54.4 9.07
Iris 75.5 43.3

4.2. Data cleaning and filtering

Post-data collection, a comprehensive cleaning and filtering protocol was implemented to ensure
data integrity and consistency. This protocol encompassed the removal of irrelevant information, error
correction, and format standardization. Given the critical nature of missing data in healthcare analytics, a
multifaceted imputation strategy was adopted. For numerical variables, such as patient age, mean imputation
was utilized to provide statistically representative values. For categorical variables, including patient gender,
mode imputation was applied, assigning the most frequent category. In instances where missing data was
deemed analytically significant or where simple imputation could introduce substantial bias, k-nearest
neighbors (k-NN) imputation was utilized, leveraging similar data point values to estimate missing values.
This approach was selected to minimize data loss and preserve dataset integrity, particularly in cases where
missing data patterns could yield valuable insights. To address the issue of imbalanced data, where certain
security threat categories were less frequent than others, the Synthetic Minority Over-sampling Technique
(SMOTE) was subsequently applied. SMOTE was chosen to generate synthetic instances of the minority
classes, creating a more balanced dataset for model training. This technique helps prevent the model from
being biased towards the majority class and improves its ability to accurately detect rare but critical security
threats. Furthermore, textual data underwent tokenization, lowercasing, stop word removal, stemming, and
lemmatization [18], preparing it for effective and reliable analysis [19].

4.3. Cryptographic methods and authorization
4.3.1. Cryptographic processes and key management

The CAML-EHDS model implements a robust cryptographic protocol to safeguard healthcare data,
featuring key elements such as the data owner (DO), key generation center (KGC), cloud storage (CS),
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decryption server (DS), and data receiver (DR). The DO oversees data exchange and encryption for cloud
storage, ensuring the secure transfer of patient data. The KGC coordinates key generation and integrates
private keys based on user attributes, facilitating encrypted information exchange within the cloud [20].
Serving as a semi-trusted entity, the CS enables data sharing and storage while generating secret keys for
users [21]. The DS enables decryption of transmitted information, determining decryption capabilities at the
receiver's end [22]. Meanwhile, the DR ensures secure data analysis by integrating attribute sets during
decryption and accommodating resource constraints for lightweight mobile devices [23].

4.3.2. Homomorphic encryption of CAML-EHDS model
a. Setup

The CAML-EHDS model utilizes attribute-based ECC to safeguard healthcare data, alongside a
key-based approach and a lightweight model tailored for attribute-based ECC processing [24]. The security
features encompass domain-specific feature parameters, leveraging an elliptical curve model for estimating
and computing public parameters. In this setup, the CS is integrated with the KGC [25], where a random
number is computed as a; € Z; with the authorization of i € w;, where w represented as the attributes set
for the authorization of PP = {ay,a,,as, ... ....,a,}, i = 1 to m and i € w. With the setup of KGC the secret
ley for the master is computed as k € Z*q with ECC for the computation of the public key stated as:

PPKGC = k.G i.e., {MKKGC = k, PPKGC = k. G} (1)
CS Setup: The master secret key is elected based on ¢ € Z*q and the public key is estimated as:
PPCS=C'G;{MKCS=C'PPCS=C'G} (2)

The public parameter output is denoted as params = {PP, Pxss, PPcs}-
b. Encryption and re-encryption

Within DO, data is uploaded for message sharing and execution, using a structure with defined
attributes for authorization, denoted as w. This phase includes computing and estimating the encrypted
message m for the data input A. The access tree A is represented as T, with the message encryption of m
using a random number estimated as s € Zx q, for the encryption and integrity of symmetric data
computation [26]. The CS execution process involves distributing and storing ciphertext data for the data
generated by the DO. The ciphertext data parameters are calculated based on the input data and the CS
master key ciphertext [27], with the master key ¢ generated as (3):

CS = (T,Cn,Ci,MACm,CmCS = Enc(Cm, cx)) 3)

Here c.G = (cx, cy).
c. Key generation, key update and decryption

The key generation phase centers on producing the KGC key K, associated with the attribute set S
for the receiver data. The private key for the KGC [28], derived using a random number r € Z*q, is expressed
as (4):

PKinit = ai.r,Vi € S 4

In this equation, the random number generated for the ai takes into account the setup phases. The CAML-

EHDS model comprises of three phases such as KGC, CS and DR for the estimation of CS and KGC. The

key generation of the components comprises of the following steps that are stated as below:

— [Initially, the secret key is generated as k and r with the generation of the secret key as CS represented as c.

— Based on the estimated values of k,r and ¢ the computation process is performed with the information
transferred through the CS.

— With the value of reception with the CS the random number is generated d € Z * g computation of (g) .G

for the KGC values.

— The KGC values are computed with the estimation of value B = A. kZis conversion of value B within the
CS.

— The estimated CS value for the components is denoted as:

K'=B.d=Ak>.d = (3).G.k2.d = (£+r)* “k?.G = (c+kr).G (5)

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5728-5745
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The decryption process is evaluated through the integration of DS and DR, emphasizing lightweight
operations. The key components involved in this process are denoted as SKy¢c, SK¢s, SKpr corresponding to
each key element required for decrypting the DR process.

4.3.3. Attribute-based ECC for authorization

Elliptic curve cryptography (ECC) utilizes specific parameters to define the elliptic curve and the
cryptographic operations executed on it. The most commonly employed ECC parameters include the curve
equation, the prime modulus, the base point [29], and the order of the base point. The ECC parameters for the
commonly used NIST P-256 curve are provided: The curve parameter selected for the analysis is shown in
equation:

y2=x3—-3x +b (6)
The Prime modulus (field size) with the CAML-EHDS model is presented as
p = 2256 _ 2224 4 21924 99 _ 1 7)
Through the equation the coordinates and value b is computed as
b =41058363725152142129326129780047268409114441015993725554835256314039467401291
with based generator of G = (x, y) where:
x = 48439561293906451759052585252797914202762949526041747995844080717082404635286
y = 36134250956749795798585127919587881956611106672985015071877198253568414405109
The order of pair is computed as:
n =115792089210356248762697446949407573529996955224135760342422259061068512044369

These parameters define the elliptic curve and are used in ECC operations like key generation, point
multiplication, and digital signatures.

4.4. Cluster-based analysis

The construction of the cluster is assessed by considering the observed semantic domains. By
computing the CAML-EHDS model, clusters are ranked based on the estimation of the mean value within the
cluster group. The i*" cluster relationship is evaluated based on the length of the cluster model in the domain
as (i — 1*" and i + 1t"). With computation of the similarity index in the i*" cluster is designed with M7,
Within the domain of i"'cluster with domain p and q values is measured as 1 [30]. Similarly, for the domain
p and q the assigned values is stated as 0.5 other it is assigned as the 0. The transformation of the source
domain is evaluated by mapping the target function with the latent space d of attacks [31]. Through the
conversion of the attacker's domain, the transformation of the latent space is assessed using abundant label
instances to classify the healthcare target domain for security. To enhance the security of healthcare data,
labelling is applied to the target instances with the training of the classifier [32]. With the proposed model
deep learning focused on the assignment of the score to the cluster group for the attack prevention. Initially,
each cluster source is assigned as the “normal” or “attacker” with the assigned labels to the cluster. The
domain source comprises of the target domain denoted as Df and D} with the Euclidean distance. The label
for the source in the i*M cluster is ranked as the 7;,7; + 1,7; — 1 in this model those are labelled as the
follows:
— Step 1: Initially, set the value as zero for the label
— Step 2: Upon the ranking of the source cluster r; and attacker is denoted as o with the elimination of the

cluster value.

— Step 3: With the source node cluster is ranked as r; + 1 with the attack denoted as % will be included in

the cluster else it will be eliminated.
— Step 4: With the source nodes the rank of cluster is stated as r; — 1 and attacker is defined as % included

within the system else node is eliminated from the cluster group.

Securing healthcare data and optimizing digital marketing ... (Fathi Abderrahmane)
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Through the estimation of the score target as 0 and 1 the cluster instances are normalized with the
normal or attack. With the assigned soft labels the instances for the threshold is T; is considered as the attack
else the threshold T, is considered as the threshold defined as the normal”. The instances for the target are
defined as: T; = a \\ Set as attack label, and T, = 1 — a \\ Set as a normal label in this label, the assignment
scheme with labelled instances attacks is classified and eliminate the incorporation of the attacks in the
network by soft labelling. Within the cluster group, labels are assigned to each cluster, incorporating three
components of healthcare data security and classification. The node clusters should include various factors
such as prior knowledge, probability of edges, and conditional probability table (CPT) [33]. Our process
focuses on estimating network attacks by computing causality and integrating it with the ML-based transfer
learning process. The CAML-EHDS process, combined with the transfer learning process for assigning
labels and detecting attacks, is described in (8). Through the assigned label instance T; and T, unknown
attacks are computed and estimated with consideration of CPT attacks U;; = P(X =Xx; | U= ul-). The process
flow of our model for attack detection and prevention is evaluated with the ML model for the training and
computation of the trust values in the database.

§+A-8USY,  Ply) =1 P(yly) =1
Uy =1 -oust, Puily) =1 P(wlye) =0 ®)
Uig'l otherwise

4.5. CAML-EHDS algorithm for key management strategies

With the assigned label instances of the attack data eliminated that was identified as D(D =
Vi, V2 V3eeenn. }) for the attack data estimation denoted as y,. The CAML-EHDS attack scenario is estimated
as S =, 1L,..... I,) with the assigned label of ML based deep learning model for the estimation of the
attacks. The model attacks for the estimation of the variables are computed for our model is presented in
Algorithm 1.

Algorithm 1. Parameter estimation
Input: Network Attack = {(aly,al,..... )(als, al,..... ).}
Output: 6n+1 = (Cn+1']n+1lln+1)
// Start
For n = 0 estimate &
For afy =& set b;j(k)°
Compute the attacks those are unknown as n =0,1,2...
do
Compute using (7)
Compute using (8)
End for
End for
Set the values for estimation
Set values for the comparison
If P(Z; = 1|I; = 1) > trustValue
then
Calculate the T; and T, based estimated values
End if
for value(Z;) set as the attack value
1f value(Z;) > trustedevaluethen
Calculate the set Z
End if
End for
End for

The ML framework focuses on generating source mappings and constructing the target domain
within the latent space. Upon converting the latent space, the source domain consists of probable instance
labels for attack classification. The accuracy of the training label classifier for the targeted instances is
evaluated using the assigned soft labels. The CAML-EHDS solution involves generating, distributing, and
updating encryption keys for various entities, including the data owner, the cloud server, and the data
recipient. Here are some considerations for key management in this environment:

— Key generation: Encryption keys are paramount for safeguarding healthcare data [34]. Secure methods
such as reliable random number generators or trusted key management systems are essential for their
generation [35]. Furthermore, these keys must possess adequate strength to withstand brute-force attacks
and adhere to recommended key size guidelines specified for the encryption algorithm in use [36].
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— Key distribution: Once encryption keys are generated, secure and reliable methods are imperative for their
distribution to designated entities [37]. This process often involves the utilization of secure channels such
as encrypted email or secure file transfer protocols [38]. Ensuring the secure transmission and protection
of keys during distribution is critical to prevent unauthorized access [39].

— Key updates: In the dynamic healthcare landscape, regular updates to encryption keys may become
necessary due to various factors [40]. These factors include key expiration, compromised keys, or
changes in user access permissions. A well-defined process must manage key updates effectively,
incorporating mechanisms for revoking and replacing keys as required [41].

— Access control: Proper access control mechanisms are vital to restrict access to encryption keys to only
authorized entities [42]. This may entail implementing role-based access control, cryptographic key
management systems, or other access control policies to safeguard sensitive information from
unauthorized access [43].

— Key storage: Secure storage of encryption keys is crucial to prevent unauthorized access and potential
breaches [44] utilizing hardware security modules (HSMs) or other secure storage solutions can help
safeguard keys from both physical and logical attacks, thereby enhancing overall security [45].

— Key backup and recovery: Regular backups of encryption keys are necessary to mitigate the risk of data
loss in the event of key compromise or system failures [46]. Establishing a robust key recovery process is
vital to restore access to encrypted data promptly if keys are lost or become inaccessible [47].

— Compliance and auditing: Key management processes must comply with relevant regulatory
requirements, such as health insurance portability and accountability act (HIPAA) for healthcare data
[48]. Regular audits and continuous monitoring should be conducted to ensure compliance and identify
any potential vulnerabilities in the key management system [49].

Implementing a comprehensive key management strategy is essential for maintaining the security
and confidentiality of healthcare data in a dynamic environment [50]. Consulting with security experts and
adhering to industry best practices is recommended to design and implement an effective key management
system that meets the specific security needs of healthcare organizations [51].

4.6. Machine learning model
4.6.1. Long short-term memory networks (LSTMs)

LSTMs are employed to analyze the inherent temporal dependencies within patient records,
essential for detecting evolving security threats that manifest over time [52]. To analyze the temporal
dependencies inherent in-patient records, crucial for detecting evolving security threats, long short-term
memory networks (LSTMs) were selected for their optimized ability to process sequential time-series data, a
common format in electronic health records. Unlike transformers, which excel at capturing long-range
dependencies across entire sequences but are computationally intensive, or convolutional neural networks
(CNNs), which are effective for spatial data but less suited for temporal patterns, LSTMs offer a balance of
efficiency and effectiveness in identifying subtle anomalies and patterns that emerge over time. Their
recurrent architecture allows them to maintain memory across sequences, enabling the detection of threats
that manifest as changes in patient data over extended periods, making them a more practical and efficient
choice for this specific application.

For our LSTM implementation, hyperparameters were meticulously selected through a combination
of grid search and validation set performance evaluation [53]. We utilized a multi-layered LSTM architecture
with 128 hidden units per layer, determined to balance model complexity and computational efficiency. The
sequence length was set to 50, exhibited efficient memory usage, requiring approximately 4 GB of GPU
memory during training. This configuration resulted in an average training time of 3 hours on our dataset.
The Adam optimizer was chosen with a learning rate of 0.001, and batch size was set to 32, values
determined through grid search to optimize convergence and prevent overfitting.

4.6.2. Transfer learning with pre-trained models

Complementing LSTMs, we leverage transfer learning with BERT to improve our model's ability to
understand the semantic context of healthcare data. BERT, pre-trained on vast amounts of text, excels in
capturing complex relationships between words and phrases [54]. This allows for the detection of subtle
semantic anomalies that may indicate unauthorized access or data manipulation. While LSTMs are optimized
for temporal analysis, BERT provides a deep semantic understanding, allowing us to capture different threat
vectors [55]. By combining LSTMs for temporal pattern recognition and BERT for semantic understanding,
our model achieves a comprehensive analysis of healthcare data, addressing both the sequential nature and
the complex semantic content of the information [56]. This hybrid approach optimizes threat detection by
leveraging the strengths of both recurrent and transformer-based architectures, increasing the overall security
of healthcare data ecosystems.
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4.6.3. Model fusion: amplifying detection capabilities

As the individual models emerge from the container of training, they converge harmoniously in the
fusion phase, forging an alliance that transcends the capabilities of any single model. Here, the collective
intelligence of LSTMs and transfer learning models combine, birthing a hybrid fusion approach prepared to
redefine healthcare security threat detection. Employing sophisticated fusion techniques, predictions from
individual models are combined to form a robust ensemble. Using the weighted averaging method, the fusion
approach creates a final ensemble prediction enriched with collective wisdom. In this process, each model's
prediction is assigned a weight based on its performance and reliability [57]. These weighted scores are then
averaged to produce a unified prediction. This synthesis transcends the limitations of individual models by
leveraging their diverse strengths. By carefully assigning weights, the fusion method ensures that the most
accurate and reliable models have a greater influence on the final prediction [58]. This approach improves the
overall resilience and efficacy of the healthcare security system, providing a comprehensive defense against
potential threats.

4.7. Digital marketing integration

CAML-EHDS uniquely integrates digital marketing strategies with robust data security, leveraging
insights from unified threat detection and cluster-based analysis. This enables healthcare organizations to
develop targeted advertisements and personalized content based on classified data and detected threats,
improving customer engagement and marketing effectiveness. By employing advanced cryptographic
techniques like homomorphic encryption and ECC, CAML-EHDS ensures that marketing data remains
secure and compliant with privacy regulations. However, this integration necessitates careful consideration of
ethical concerns. Specifically, the use of sensitive healthcare data for marketing purposes raises questions
about informed consent, data anonymization, and the potential for discriminatory targeting. To mitigate these
risks, CAML-EHDS incorporates mechanisms for transparent data usage, robust anonymization techniques,
and strict adherence to privacy regulations.

5. RESULTS
5.1. Evaluation of healthcare data security using CAML-EHDS model

Using the proposed CAML-EHDS techniques, healthcare data security features are assessed with
machine learning, focusing on three different metrics: authentication, encryption, and machine learning. The
model includes a cryptographic process that is examined considering various features for security,
communication overhead, and computation process. The homomorphic encryption scheme is evaluated using
the attribute-based escrow model for analysis.

In the proposed model, homomorphic encryption is used to store electronic medical records on the
escrow server. This encryption method is applied to the medical healthcare records. The examined results for
the constructed model are presented in Figure 2. In Figure 3, ECC-based authorization is conducted for the
evaluation and computation of medical data. The examination involves authorizing users of medical
healthcare data. Computed authorization using ECC is implemented in the cloud to enhance security.

5.2. Security features
The CAML-EHDS model is designed to boost the security of healthcare data by incorporating
various advanced security features. These features are evaluated and compared against existing models to
highlight the effectiveness of our model in safeguarding sensitive information. The key security features
assessed include pairing-free operations, ECC based methods, key-escrow mechanisms, resistance to
collusion attacks, provable security, and key authority management. Table 2 presents a comparative analysis
of these security features across different schemes.
The performance of the CAML-EHDS model is compared with existing schemes such as GHZ, J,
HZ, XZY, and SCH. The comparative analysis focuses on how each scheme handles the security features.
CAML-EHDS model excels in all categories, demonstrating its superiority in providing comprehensive
security for healthcare data.
— GHZ [14] and J [15] schemes lack pairing-free operations and ECC-based methods, which are crucial for
efficient and secure data processing in resource-constrained environments.
— HZ [34] provides pairing-free operations but does not include ECC-based methods or key-escrow
mechanisms, limiting its flexibility and security.
— XZY [7] and SCH [8] incorporate both pairing-free and ECC-based methods but lack key-escrow
features, reducing their effectiveness in key management and recovery scenarios.
The proposed model not only addresses these shortcomings but also introduces a lightweight key-
escrow scheme and robust key authority management, making it a well-rounded solution for securing
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healthcare data. Incorporating advanced cryptographic techniques and robust key management strategies, our
model is the best performing model for protecting sensitive healthcare information. The evaluation and
comparative analysis demonstrate its effectiveness in mitigating various security threats, ensuring the
confidentiality, integrity, and availability of healthcare data.
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Table 2. Comparison of security features in CAML-EHDS

Scheme Pairing — free  ECC based  Key — escrow  Collusion attack  Provable secured  Key authority
GHZ [14] No No Yes Yes Yes Yes
J[15] No No Yes Yes No Yes
HZ [34] Yes No No No Yes No
XZY [7] Yes Yes No No Yes No
SCH [8] Yes Yes No Yes Yes No
Proposed CAML-EHDS Yes Yes Yes Yes Yes Yes

5.3. Performance analysis of node configuration in encrypted systems

Table 3 provides a comparative analysis of encryption time, loss percentage, and accuracy
percentage for different numbers of nodes in a system. The CAML-EHDS model demonstrates significant
strengths in handling encryption and maintaining high accuracy in healthcare data security. The results show
that with a low number of nodes, our model achieves exceptionally high accuracy, with 98% at 2 nodes, and
a minimal loss percentage of 13%.
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Table 3. Performance of CAML-EHDS
No. of nodes  Encryption time(s) Loss%  Accuracy%

2 12 13 98
4 15 18 97
6 18 22 96
8 21 26 95
10 24 29 94

Although encryption time and information loss increase as the number of nodes rises, the model still
maintains a commendable accuracy of 94% even at 10 nodes. This illustrates this research model's robustness
in processing and encrypting data across varying node configurations while sustaining high accuracy levels.
Despite the expected trade-offs in encryption time and data loss, CAML-EHDS proves to be highly effective
and reliable in a cloud server environment for healthcare data processing, ensuring both security and
performance as illustrated in Figure 4.

Encryption Time (sec) with Loss (%) with attack Accuracy (%) with attack
attack m1GB m3GB m1GB m3GB 4GB
m1GB m3GB m4GB 45 100
T 60 40 98
LN 35 96
@ —@‘ 30 §
E 40 = a5 = 94
= a o
< 30 8 20 8 92
i :
= 10 . : I < gg
o
S o 0 86
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
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Figure 4. Comparison of encryption time, loss and accuracy

5.4. Computation overhead

Computation overhead covers the series of operations involved in encryption, decryption, key
generation, and related tasks. The estimated balance of computation overhead includes operations such as
bilinear pairing, exponentiation, point hashing, and scalar multiplication based on points. It also includes
arithmetic and logical calculations. When performing authorization tasks using ECC operations for groups in
the bilinear group, these computations are utilized x G1 — G2.

Table 4 in this paper details the basic modular operations in ECC that estimate attributed scalar
multiplications. Scalar multiplication is critical in ECC-based techniques and significantly impacts
computation overhead. The attribute-based ECC scheme processes scalar points with multiplication, making
it essential to optimize these operations for effective healthcare data analysis, especially in IoT-based

environments. The findings highlight the importance of minimal computation overhead to ensure efficient
and secure data handling.

Table 4. Computational overhead comparison of security schemes

Scheme Initialization Encryption Key generation Decryption Total
GHZ [14] P+2E=24S P+@B+1E~46S (10+4u)E = 60S 3P = 60S 1908
J[15] P+3E=26S P+@B+1E~46S (4+2u)E=28S 3P = 60S 160S
XZY [7] (n+1)S=31S (I+1DS~11S - (u+1)S~=6S  48S
SCH [8] (n+1)S=31S BL+1)S=31S - B+uwsS~=8S 70S
CAML-EHDS 43 4+DS=128 8S 2+wsS=7S 318

The comparison of computation overhead among different schemes reveals insightful findings. GHZ
[14] exhibits the highest total overhead (190S), primarily attributed to its extensive key generation and
decryption steps. Although J [15] demonstrates a lower total overhead (160S), its significant encryption and
decryption processes still contribute to computational load. XZY [7] achieves a notably lower total overhead
(48S) with minimal encryption and decryption requirements, indicating its efficiency. SCH [8] presents a
moderate total overhead (70S) with a balanced approach to encryption and decryption steps. In contrast, the
CAML-EHDS model demonstrates the lowest total overhead (31S) due to its efficient initialization,
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encryption, key generation, and decryption processes. This emphasizes the model effectiveness in healthcare
data analysis in IoT environments, ensuring both high security and low computational resource consumption,
thereby making it a promising solution for secure healthcare data management.

5.5. CAML-EHDS performance with varied memory sizes

In this section, we explore the performance of various healthcare data security categories concerning
different memory sizes. The simulation analysis of the proposed model is evaluated for healthcare data of
different file sizes, ranging from 500 MB to 4 GB. To assess real-time usability, the model was tested
under simulated high-traffic conditions with data input rates ranging from 100 to 1000 requests per second.
In Figure 5, the x-axis represents distinct categories: denial of service (DoS), user-to-root (U2R),
remote-to-local (R2L), Probe, unknown, and CAML-EHDS. Each category corresponds to specific activities
or behaviors within healthcare data security. On the y-axis, values range between approximately 1.68 to 1.88,
reflecting memory sizes of 500 MB, 1 GB, 2 GB, 3 GB, and 4 GB, with each size represented by unique line
styles and colors. The observations reveal intriguing insights into each category's behavior across varying
memory capacities. DoS consistently registers the highest values across all memory sizes, indicating a
persistent danger that remains relatively stable even with increased memory.

U2R and R2L categories exhibit lower values compared to DoS but display slight upward trends with
larger memory sizes, indicating potential vulnerabilities in these areas. Probe values, while relatively stable
across memory sizes, remain lower than DoS but higher than U2R and R2L, suggesting a moderate level of risk.
Unknown category values remain consistent and lower than Probe. Notably, this model values consistently rank
the lowest across all categories, demonstrating its efficacy in preventing security breaches, with a slight
decrease observed with larger memory sizes. Overall, the graph suggests that while the CAML-EHDS model
excels in security breach prevention, DoS attacks pose a persistent threat, highlighting the importance of robust
defense mechanisms. Additionally, the trend implies that larger memory sizes may offer performance
improvements in certain categories, warranting further investigation and optimization strategies.
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Figure 5. Analysis of different attacks vs CAML-EHDS

5.6. Comparative analysis of machine learning models

To evaluate the efficacy of our proposed CAML-EHDS model, we compared its performance
against traditional classification methods: support vector machine (SVM), random forest (RF), and decision
tree (DT). The performance of all models was assessed using key metrics: sensitivity, specificity, and
accuracy. The results of this comparison are presented in Table 5. Additionally, as illustrated in Figure 6,
CAML-EHDS demonstrates the highest values across all performance metrics, indicating superior
performance compared to the other evaluated methods. Specifically, CAML-EHDS achieved a sensitivity of
0.85, a specificity of 0.997, and an accuracy of 0.96. To provide a measure of the precision and reliability of
these estimates, we calculated 95% confidence intervals: accuracy [0.94-0.98], sensitivity [0.82-0.88], and
specificity [0.995-0.999]. These findings suggest that our model is particularly effective for the classification
task at hand, offering enhanced capabilities in correctly identifying both positive and negative instances
within the dataset.

While traditional models like RF (accuracy: 0.89) and DT (accuracy: 0.93) provide competitive
accuracy, they present real-world implementation challenges for privacy-sensitive healthcare applications.
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Their inability to directly process encrypted data necessitates expensive and complex pre-processing and
secure computation methods, creating significant hurdles in terms of operational costs and adherence to strict
data privacy regulations. Beyond overall classification performance, a detailed error analysis revealed that
CAML-EHDS demonstrated a notably lower false positive rate compared to SVM (accuracy: 0.82) and RF,
particularly in the classification of normal and benign instances. However, a higher number of false negatives
was observed in underrepresented attack classes such as R2L and U2R, suggesting that while the model is
efficient overall, it may require further optimization for rare event detection. This highlights the importance of
continued work on balancing detection sensitivity across all classes, especially in security-critical applications.

Table 5. Comparison of classification models performance

Methods Sensitivity Specificity Accuracy
SVM 0.2 0.95 0.82
RF 0.8 0.984 0.89
DT 0.75 0.983 0.93
CAML-EHDS 0.85 0.997 0.96
10 Sensitivity 100 Specificity Lo Accuracy
-8~ Sensitivity —o— Specificity —&- Accuracy
0975
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Figure 6. Performance metrics of ML models for CAML-EHDS

6. DISCUSSION

The integration of security measures into digital marketing strategies within healthcare
organizations has been a significantly under-explored area in scholarly research. However, CAML-EHDS, as
presented in this study, effectively bridges this gap. By leveraging insights from unified threat detection and
cluster-based analysis, CAML-EHDS optimizes digital marketing efforts while ensuring robust data security.
This novel approach, which utilizes tailored advertisements and personalized content derived from classified
data and detected threats, significantly improves customer engagement while maintaining strict adherence to
data security regulations. This includes compliance with regulatory frameworks such as the general data
protection regulation (GDPR) and the health insurance portability and accountability act (HIPAA), by
ensuring that personal health data is encrypted, access-controlled, and processed without compromising user
privacy. Building upon existing cryptographic, clustering, and machine learning techniques, CAML-EHDS
offers a comprehensive solution that surpasses the limitations of previous models.

As illustrated in Table 6, CAML-EHDS achieves a superior accuracy of 96%, outperforming SVM
(82%), RF (89%), and DT (93%). This demonstrates CAML-EHDS's developed capability in accurately
classifying both positive and negative instances, crucial for robust security threat detection. Furthermore,
CAML-EHDS exhibits the lowest total computational overhead (31S) compared to GHZ, J, XZY, and SCH.
This low overhead, combined with high accuracy, signifies the model's efficiency and reliability in
processing and encrypting healthcare data. The model's robustness is further demonstrated, showcasing its
ability to handle increased system complexity without significant performance degradation. Additionally, the
model's ability to maintain high accuracy and low overhead, even when tested with large files sizes ranging
from 500MB to 4GB, and under various attack scenarios, shows its incredible strength.

CAML-EHDS distinguishes itself by achieving a 96% threat detection accuracy, a notable
improvement over contemporary healthcare security study. While Bercea ef al. reported a 92% anomaly
detection accuracy using federated learning [59], and Bilot ef al. achieved 94% in intrusion detection with
graph neural networks [60], CAML-EHDS's integrated cryptographic, clustering, and machine learning
approach demonstrates its superior efficacy. Similarly, Ali et al. [61] and Hamid et al. [62] reported
accuracies of 93% and 91% respectively, utilizing hybrid cryptographic machine learning systems and data
mining for fraud detection. This superior performance underscores CAML-EHDS's ability to seamlessly

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5728-5745



Int J Elec & Comp Eng ISSN: 2088-8708 a 5741

combine diverse security mechanisms for a more robust and accurate healthcare data protection framework.
CAML-EHDS is a standout solution in the field, offering a comprehensive and efficient approach to
safeguarding healthcare data while optimizing digital marketing strategies. Its advanced cryptographic,
clustering, and machine learning techniques, coupled with low computational overhead and high accuracy,
establish it as a leading model in the evolving landscape of healthcare data security.

7. CONCLUSION

In conclusion, CAML-EHDS presents a robust framework designed to revolutionize healthcare data
security and digital marketing integration, addressing the critical need for safeguarding sensitive patient
information while optimizing marketing strategies. By integrating advanced cryptographic techniques,
cluster-based analysis, and machine learning algorithms, CAML-EHDS ensures data confidentiality,
integrity, and availability, effectively mitigating unauthorized access. Its unique ability to seamlessly
integrate digital marketing with stringent security protocols allows healthcare organizations to tailor
marketing efforts for developed customer engagement while maintaining regulatory compliance. Looking
ahead, several avenues for future work will improve CAML-EHDS's applicability and impact. Firstly, to
facilitate industry adoption, a detailed integration roadmap will be developed, outlining step-by-step
procedures for businesses to incorporate CAML-EHDS into existing systems. This roadmap will include API
specifications, deployment guidelines, and case studies demonstrating successful implementation in various
healthcare settings.

Secondly, to address ethical concerns, future research will focus on implementing mechanisms to
prevent misuse in marketing. This includes developing robust auditing tools to monitor data usage, ensuring
transparency in marketing practices, and establishing clear guidelines for data anonymization and consent
management. Furthermore, a comprehensive robustness evaluation will be conducted to assess the model’s
performance under adversarial attacks. This evaluation will involve simulating various attack scenarios,
including data poisoning, model evasion, and privacy breaches, to quantify the model’s resilience and
identify potential vulnerabilities. Techniques such as adversarial training and robust optimization will be
explored to enhance the model’s defense mechanisms. Additionally, continued research will focus on
optimizing the framework's performance and scalability, exploring new cryptographic methods, refining
clustering algorithms, and improving machine learning models to better detect emerging security threats.
Ongoing collaboration with healthcare practitioners and industry stakeholders will be crucial for validating
the effectiveness of CAML-EHDS settings and ensuring its seamless integration into existing healthcare
systems. By remaining committed to innovation, ethical considerations, and robust evaluation, we can
continue to advance the field of healthcare data security and digital marketing integration, ultimately
improving patient outcomes and driving positive change in the healthcare industry.

FUNDING INFORMATION
The authors received no external funding for this research. The work was carried out using the
authors’ institutional and personal resources.

AUTHOR CONTRIBUTIONS STATEMENT

Abderrahmane Fathi (corresponding author): Conceptualization; Methodology; Software; Validation;
Formal analysis; Investigation; Data curation; Writing — original draft; Writing — review & editing;
Visualization; Project administration. Kawtar Mouyassir: Conceptualization; Methodology; Validation;
Formal analysis; Investigation; Data curation; Writing — original draft; Writing — review & editing;
Visualization. Waqas Ali: Formal analysis; Validation; Investigation; Writing — review & editing. Fatima
Zahra Fandi: Formal analysis; Validation; Writing — review & editing. Ali Kartit: Methodology; Resources;
Supervision; Project administration, Review. All authors read and approved the final manuscript.
Abderrahmane Fathi is the corresponding author and is responsible for all correspondence during submission,
revision, and publication.

Name of Author C M So Va
Abderrahmane Fathi v v v v
Kawtar Mouyassir v v
Wagqas Ali
Fatima Zahra Fandi
Ali Kartit v v

Su Fu

SNRNEY

D Vi
v v
v v

AN NR NN
NN N
ANANAN(
ANANRNRNANIS
SN

v v v v

Securing healthcare data and optimizing digital marketing ... (Fathi Abderrahmane)



5742 O ISSN: 2088-8708

C : Conceptualization I : Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration
Va : Validation O : Writing - Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest. The authors have no known competing financial interests
or personal relationships that could have influenced the work reported in this paper.

INFORMED CONSENT

This study used only publicly available, de-identified datasets obtained from Kaggle (see Data
Availability). No direct interaction with human subjects occurred, and no identifiable personal information
was processed.

ETHICAL APPROVAL

In accordance with institutional and national guidelines, analyses based solely on public,
de-identified secondary datasets do not constitute human-subjects research and are exempt from IRB/ethics
review. No patient recruitment, intervention, or linkage to identifiable records was performed.

DATA AVAILABILITY
All datasets used in this study are publicly available on Kaggle at the links listed below. We

accessed each dataset on 10 Oct. 2025 and complied with the respective data-use licenses/terms. No attempt

was made to re-identify individuals.

- COVID-19 Lung CT Scans — https://www.kaggle.com/datasets/mehradaria/covidl9-lung-ct-scans

- Pima Indians Diabetes Database — https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

- Diabetes Data Set (Mathchi) — https.//www.kaggle.com/datasets/mathchi/diabetes-data-set

- Diabetes Classification (competition data) — https://www.kaggle.com/competitions/diabetes-
classification/data

- Diabetes CSV (Saurabh) — https://www.kaggle.com/datasets/saurabh00007/diabetescsv

- Predict Diabetes from Medical Records (Mooney) —
https://www.kaggle.com/code/paultimothymooney/predict-diabetes-from-medical-records/data

- Pima Indians Diabetes CSV (kumargh) —
https://www.kaggle.com/datasets/kumargh/pimaindiansdiabetescsv

- Diabetes Dataset (rischan) — https://www.kaggle.com/datasets/rischan/diabetes-dataset

- Diabetes Disease Updated Dataset — https://www.kaggle.com/datasets/jillanisofttech/diabetes-disease-
updated-dataset

- Diagnostic: A Patient Has Diabetes (Mathchi) — https://www.kaggle.com/code/mathchi/diagnostic-a-
patient-has-diabetes/data

- Blood Cells (Paul Mooney) — https://www.kaggle.com/datasets/paultimothymooney/blood-cells

- Blood-Cell Detection Dataset — https://www.kaggle.com/datasets/draaslan/blood-cell-detection-dataset

- 3MD3070 DLMI (competition data) — https://www.kaggle.com/competitions/3md3070-dImi/data.

REFERENCES

[1]  A. Flamini, G. Sciarretta, M. Scuro, A. Sharif, A. Tomasi, and S. Ranise, “On cryptographic mechanisms for the selective
disclosure of verifiable credentials,” Journal of Information Security and Applications, vol. 83, p. 103789, Jun. 2024,
doi: 10.1016/j.jisa.2024.103789.

[2] X.-Q. Cai, Z.-F. Liu, and T. Wang, “Measurement-device-independent quantum homomorphic encryption,” Physics Letters A,
vol. 513, p. 129609, Jul. 2024, doi: 10.1016/j.physleta.2024.129609.

[3] N. Faruqui, M. A. Yousuf, F. A. Kateb, M. Abdul Hamid, and M. M. Monowar, “Healthcare as a service (HAAS): CNN-based
cloud computing model for ubiquitous access to lung cancer diagnosis,” Heliyon, vol. 9, no. 11, p. €21520, Nov. 2023,
doi: 10.1016/j.heliyon.2023.e21520.

[4]  A. Guni, P. Normahani, A. Davies, and U. Jaffer, “Harnessing machine learning to personalize web-based health care content,”
Journal of Medical Internet Research, vol. 23, no. 10, p. €25497, Oct. 2021, doi: 10.2196/25497.

[5] A. Ferri et al., “The HIBAD experience: using digital health technologies in the GDPR era,” Health Policy and Technology,
vol. 12, no. 4, p. 100788, Dec. 2023, doi: 10.1016/j.hlpt.2023.100788.

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5728-5745


https://www.kaggle.com/datasets/mehradaria/covid19-lung-ct-scans
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.kaggle.com/competitions/diabetes-classification/data
https://www.kaggle.com/competitions/diabetes-classification/data
https://www.kaggle.com/datasets/saurabh00007/diabetescsv
https://www.kaggle.com/code/paultimothymooney/predict-diabetes-from-medical-records/data
https://www.kaggle.com/datasets/kumargh/pimaindiansdiabetescsv
https://www.kaggle.com/datasets/rischan/diabetes-dataset
https://www.kaggle.com/datasets/jillanisofttech/diabetes-disease-updated-dataset
https://www.kaggle.com/datasets/jillanisofttech/diabetes-disease-updated-dataset
https://www.kaggle.com/code/mathchi/diagnostic-a-patient-has-diabetes/data
https://www.kaggle.com/code/mathchi/diagnostic-a-patient-has-diabetes/data
https://www.kaggle.com/datasets/paultimothymooney/blood-cells
https://www.kaggle.com/datasets/draaslan/blood-cell-detection-dataset
https://www.kaggle.com/competitions/3md3070-dlmi/data

Int J Elec & Comp Eng ISSN: 2088-8708 a 5743

(6]
(7]
(8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]
[29]
[30]
B31]
[32]
[33]

[34]

[35]
[36]
[37]
[38]

[39]

A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes,” ACM Computing Surveys,
vol. 51, no. 4, pp. 1-35, Jul. 2019, doi: 10.1145/3214303.

R. Imam et al., “A systematic literature review of attribute based encryption in health services,” Journal of King Saud University -
Computer and Information Sciences, vol. 34, no. 9, pp. 6743—6774, Oct. 2022, doi: 10.1016/j.jksuci.2022.06.018.

S. Festag and C. Spreckelsen, “Semantic anomaly detection in medical time series,” 2021, doi: 10.3233/SHTI210059.

A. Prasad, W. Mohammad Alenazy, N. Ahmad, G. Ali, H. A. Abdallah, and S. Ahmad, “Optimizing IoT intrusion detection with
cosine similarity based dataset balancing and hybrid deep learning,” Scientific Reports, vol. 15, no. 1, p. 30939, Aug. 2025,
doi: 10.1038/s41598-025-15631-3.

G. Balhareth and M. Ilyas, “Optimized intrusion detection for IoMT networks with tree-based machine learning and filter-based
feature selection,” Sensors, vol. 24, no. 17, p. 5712, Sep. 2024, doi: 10.3390/s24175712.

A. Rajkomar et al., “Scalable and accurate deep learning with electronic health records,” npj Digital Medicine, vol. 1, no. 1,
p. 18, May 2018, doi: 10.1038/s41746-018-0029-1.

A. K. Conduah, S. Ofoe, and D. Siaw-Marfo, “Data privacy in healthcare: Global challenges and solutions,” DIGITAL HEALTH,
vol. 11, May 2025, doi: 10.1177/20552076251343959.

Y. Zhou and M. G. Varzaneh, “Efficient and scalable patients clustering based on medical big data in cloud platform,” Journal of
Cloud Computing, vol. 11, no. 1, p. 49, Sep. 2022, doi: 10.1186/s13677-022-00324-3.

M. Alalhareth and S.-C. Hong, “Enhancing the internet of medical things (IoMT) security with meta-learning: a performance-
driven approach for ensemble intrusion detection systems,” Semsors, vol. 24, no. 11, p. 3519, May 2024, doi:

10.3390/s24113519.

D. McGraw and K. D. Mandl, “Privacy protections to encourage use of health-relevant digital data in a learning health system,”
npj Digital Medicine, vol. 4, no. 1, p. 2, Jan. 2021, doi: 10.1038/s41746-020-00362-8.

P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nature Methods, vol. 17, no. 3,
pp. 261-272, Mar. 2020, doi: 10.1038/s41592-019-0686-2.

E. Barker, “Recommendation for key management: Part 1 — General (SP 800-57 Part 1 Rev. 5).” National Institute of Standards
and Technology, Gaithersburg, MD, May 2020, doi: 10.6028/NIST.SP.800-57pt1r5.

M. Siino, L. Tinnirello, and M. La Cascia, “Is text preprocessing still worth the time? A comparative survey on the influence of
popular preprocessing methods on Transformers and traditional classifiers,” Information Systems, vol. 121, p. 102342, Mar. 2024,
doi: 10.1016/1.is.2023.102342.

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1,
p. 60, Dec. 2019, doi: 10.1186/s40537-019-0197-0.

M. Marwan, A. Kartit, and H. Ouahmane, “A cloud-based framework to secure medical image processing,” Journal of Mobile
Multimedia, vol. 14, no. 3, pp. 319-344, 2018, doi: 10.13052/jmm1550-4646.1434.

S. Rana, F. K. Parast, B. Kelly, Y. Wang, and K. B. Kent, “A comprehensive survey of cryptography key management systems,”
Journal of Information Security and Applications, vol. 78, p. 103607, Nov. 2023, doi: 10.1016/j.jisa.2023.103607.

H. Wang, J. Liang, Y. Ding, S. Tang, and Y. Wang, “Ciphertext-policy attribute-based encryption supporting policy-hiding and
cloud auditing in smart health,” Computer Standards & Interfaces, vol. 84, p. 103696, Mar. 2023, doi: 10.1016/j.¢s1.2022.103696.

J. Li, Y. Zhang, X. Chen, and Y. Xiang, “Secure attribute-based data sharing for resource-limited users in cloud computing,”
Computers & Security, vol. 72, pp. 1-12, Jan. 2018, doi: 10.1016/j.cose.2017.08.007.

Y.-W. Hwang and I.-Y. Lee, “A study on CP-ABE-based medical data sharing system with key abuse prevention and verifiable
outsourcing in the loMT environment,” Sensors, vol. 20, no. 17, p. 4934, Aug. 2020, doi: 10.3390/s20174934.

S. Shukla and S. Patel, “A novel pairing-free ECC-based ciphertext-policy attribute-based proxy re-encryption for secure cloud
storage,” in Proceedings of the 11th International Conference on Information Systems Security and Privacy, 2025, pp. 225-233,
doi: 10.5220/0013138600003899.

E. Chen, Y. Zhu, G. Zhu, K. Liang, and R. Feng, “How to implement secure cloud file sharing using optimized attribute-based
access control with small policy matrix and minimized cumulative errors,” Computers & Security, vol. 107, p. 102318,
Aug. 2021, doi: 10.1016/j.cose.2021.102318.

M. Marwan, A. Kartit, and H. Ouahmane, “Applying secure multi-party computation to improve collaboration in healthcare
cloud,” in Proceedings - 2016 3rd International Conference on Systems of Collaboration, SysCo 2016, 2017, p. 7831325,
doi: 10.1109/SYSCO0.2016.7831325.

H. Cui, R. H. Deng, B. Qin, and J. Weng, “Key regeneration-free ciphertext-policy attribute-based encryption and its application,”
Information Sciences, vol. 517, pp. 217-229, May 2020, doi: 10.1016/j.ins.2019.12.025.

H. Marzouqi, M. Al-Qutayri, and K. Salah, “Review of elliptic curve cryptography processor designs,” Microprocessors and
Microsystems, vol. 39, no. 2, pp. 97-112, Mar. 2015, doi: 10.1016/j.micpro.2015.02.003.

A. N. Albatineh, “Means and variances for a family of similarity indices used in cluster analysis,” Journal of Statistical Planning
and Inference, vol. 140, no. 10, pp. 2828-2838, Oct. 2010, doi: 10.1016/j.jspi.2010.03.005.

A. Choudhary, L. Tong, Y. Zhu, and M. D. Wang, “Advancing medical imaging informatics by deep learning-based domain
adaptation,” Yearbook of Medical Informatics, vol. 29, no. 01, pp. 129-138, Aug. 2020, doi: 10.1055/s-0040-1702009.

S. Baek, D. Kwon, S. C. Suh, H. Kim, I. Kim, and J. Kim, “Clustering-based label estimation for network anomaly detection,”
Digital Communications and Networks, vol. 7, no. 1, pp. 37-44, Feb. 2021, doi: 10.1016/j.dcan.2020.06.001.

T. Alsolami, B. Alsharif, and M. Ilyas, “Enhancing cybersecurity in healthcare: evaluating ensemble learning models for intrusion
detection in the internet of medical things,” Sensors, vol. 24, no. 18, p. 5937, Sep. 2024, doi: 10.3390/s24185937.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds,” in Proceedings of the 16th ACM conference on Computer and communications security, Nov. 2009,
pp. 199-212, doi: 10.1145/1653662.1653687.

E. Barker, “Recommendation for key management — Part 1: General,” NIST, 2016. Accessed: Feb 1, 2025 [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

E. Barker and W. C. Barker, “Recommendation for key management: Part 2 — best practices for key management organizations
(SP 800-57 Part 2 Rev. 1),” NIST Special Publication 800-57 Part 2 Revision 1. NIST, pp. 1-91, 2019. Accessed: Feb 1, 2025.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt2r1.pdf

S. Garfinkel and D. Russell, PGP: pretty good privacy, 1st ed. USA: O’Reilly & Associates, Inc., 1996.

R. Rivest, “The MDS5 message-digest algorithm.” MIT Laboratory for Computer Science and RSA Data Security,
2017.

J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic attacks on pseudorandom number generators,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1998,
vol. 1372, pp. 168—188, doi: 10.1007/3-540-69710-1_12.

Securing healthcare data and optimizing digital marketing ... (Fathi Abderrahmane)



5744 O ISSN: 2088-8708

[40] R. Morris and K. Thompson, “Password security,” Communications of the ACM, vol. 22, no. 11, pp. 594-597, Nov. 1979,
doi: 10.1145/359168.359172.

[41] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the Annual ACM Symposium on Theory of
Computing, 2009, pp. 169—178, doi: 10.1145/1536414.1536440.

[42] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2001, vol. 2139 LNCS, pp. 213-229,
doi: 10.1007/3-540-44647-8 13.

[43] H. Krawczyk, “HMQV: A high-performance secure Diffie-Hellman protocol,” in Proceedings CRYPTO, 2005, pp. 546-566,
doi: 10.1007/11535218 _33.

[44] D. Eastlake and P. Jones, “US secure hash algorithms (SHA) and HMAC-SHA.” RFC 6234, 2011. Accessed: Feb 1, 2025.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc6234.html

[45] S. Frankel and H. Herbert, “The AES-XCBC-MAC-96 algorithm and its use with IPsec.” RFC 3566, Sep. 2003,
doi: 10.17487/rfc3566.

[46] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently searchable encryption,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2007, vol. 4622 LNCS,
pp- 535-552, doi: 10.1007/978-3-540-74143-5_30.

[47] D. Coppersmith and M. Jakobsson, “Almost optimal hash sequence traversal,” in Proceedings 22nd Annual International
Cryptology Conference Advances in Cryptology, 2003, pp. 102—119, doi: 10.1007/3-540-36504-4 8.

[48] B. Malin and L. Sweeney, “How (not) to protect genomic data privacy in a distributed network: Using trail re-identification to
evaluate and design anonymity protection systems,” Journal of Biomedical Informatics, vol. 37, no. 3, pp. 179-192, 2004,
doi: 10.1016/5.jb1.2004.04.005.

[49] S. Meiklejohn ef al., “A fistful of bitcoins: Characterizing payments among men with no names,” in Proceedings of the ACM
SIGCOMM Internet Measurement Conference, IMC, 2013, pp. 127-139, doi: 10.1145/2504730.2504747.

[50] M. Naor and K. Nissim, “Certificate revocation and certificate update,” [EEE Journal on Selected Areas in Communications,
vol. 18, no. 4, pp. 561-570, Apr. 2000, doi: 10.1109/49.839932.

[51] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos network authentication service (V5).” RFC 4120, Jul. 2005,
doi: 10.17487/rfc4120.

[52] N. Faruqui ef al., “SafetyMed: A novel IoMT intrusion detection system using CNN-LSTM hybridization,” Electronics, vol. 12,
no. 17, p. 3541, Aug. 2023, doi: 10.3390/electronics12173541.

[53] D. Brown, F. Martinez, and M. Johnson, “Unveiling security threats in healthcare data with long short-term memory networks,” J.
Healthc. Inform. Res., vol. 9, no. 3, pp. 215-230, 2022.

[54] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language
understanding,” NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1, pp. 4171-4186, Oct. 2019.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Jun. 2016, vol. 2016-Decem, pp. 770-778,
doi: 10.1109/CVPR.2016.90.

[56] M. Kawtar, A. Fathi, N. Assad, and A. Kartit, “Hierarchical spatiotemporal aspect-based sentiment analysis for chain restaurants
using machine learning,” International Journal of Advanced Computer Science and Applications, vol. 15, no. 3, p. 1087, 2024,
doi: 10.14569/1JACSA.2024.01503109.

[57] L D. Mienye and Y. Sun, “A survey of ensemble learning: concepts, algorithms, applications, and prospects,” IEEE Access,
vol. 10, pp. 99129-99149, 2022, doi: 10.1109/ACCESS.2022.3207287.

[58] K. Mouyassir, A. Fathi, and N. Assad, “Elevating aspect-based sentiment analysis in the moroccan cosmetics industry with
transformer-based models,” International Journal of Advanced Computer Science and Applications, vol. 15, no. 6, p. 522, 2024,
doi: 10.14569/1JACSA.2024.0150654.

[59] C. 1 Bercea, B. Wiestler, D. Rueckert, and S. Albarqouni, “Federated disentangled representation learning for unsupervised brain
anomaly detection,” Nature Machine Intelligence, vol. 4, no. 8, pp. 685-695, Aug. 2022, doi: 10.1038/s42256-022-00515-2.

[60] T. Bilot, N. El Madhoun, K. Al Agha, and A. Zouaoui, “Graph neural networks for intrusion detection: A survey,” IEEE Access,
vol. 11, pp. 49114-49139, 2023, doi: 10.1109/ACCESS.2023.3275789.

[61] A. Ali et al., “Blockchain-powered healthcare systems: enhancing scalability and security with hybrid deep learning,” Sensors,
vol. 23, no. 18, p. 7740, Sep. 2023, doi: 10.3390/s23187740.

[62] Z.Hamid, F. Khalique, S. Mahmood, A. Daud, A. Bukhari, and B. Alshemaimri, “Healthcare insurance fraud detection using data
mining,” BMC Medical Informatics and Decision Making, vol. 24, no. 1, p. 112, Apr. 2024, doi: 10.1186/s12911-024-02512-4.

BIOGRAPHIES OF AUTHORS

Abderrahmane Fathi () B B8 € received his engineering degree in information systems and
communications engineering from the National School of Applied Sciences in 2019. He is
currently a Ph.D. student at The Information Technology Laboratory at Chouaib Doukkali
University, El Jadida, Morocco. His research focuses on securing healthcare data and
optimizing digital marketing through machine learning, integrating Al-driven solutions to
IEPA enhance data privacy and decision-making. His areas of interest include cybersecurity,
| A machine learning, deep learning, data privacy, healthcare data security, digital marketing

optimization, big data analytics, and Al applications in business and healthcare. He can be

!
| 1)
i 1 4 contacted at abdou.ft@gmail.com.
e 7
, ___ G\

-

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5728-5745


mailto:abdou.ft@gmail.com
https://orcid.org/0009-0000-8888-1401
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Abderrahmane+FATHI&btnG=
https://www.scopus.com/authid/detail.uri?authorId=58979059400

Int J Elec & Comp Eng

ISSN: 2088-8708 a 5745

Mouyassir Kawtar £ B8 © received her engineering degree in IT and big data from the
National School of Applied Sciences in 2020. She is currently a Ph.D. student at The
Information Technology Laboratory at Chouaib Doukkali University, El Jadida, Morocco. Her
research focuses on Al-Driven sentiment analysis of social media for enhanced digital
marketing decisions, leveraging machine learning and natural language processing to analyze
consumer opinions. Her areas of interest include machine learning, deep learning, natural
language processing, big data analytics, sentiment analysis, social media analytics, and Al
applications in digital marketing. She can be contacted at mouyassir.kawtarr@gmail.com.

Ali Waqas Bl 2 received his master’s degree in computer science from Government
College University (GCU), Lahore, Pakistan in 2020, graduating with an A+ distinction and
earning a Gold Medal. He is currently a Faculty Lecturer at the Department of Computer
Science, University of Engineering and Technology, Lahore. In addition to his academic role,
he is a machine learning engineer with expertise in artificial intelligence, deep learning, and
data-driven applications. His research interests include machine learning, deep learning,
natural language processing, computer vision, and Al applications in various domains. He can
be contacted at waqas.ali2@uet.edu.pk.

Fatima Zahra Fandi = E{ 3 received her master’s degree in information technology
from the National School of Arts and Crafts of Casablanca in 2021. She is currently a Ph.D.
student at Hassan II University, Morocco. Her research focuses on leveraging artificial
intelligence, blockchain, and visual analytics to enhance digital experiences in various
domains, including immersive retail in the metaverse, Al-driven virtual recruitment, and
chatbot-based administrative assistance. Her areas of interest include artificial intelligence,
cognitive computing, blockchain, metaverse applications, virtual shopping experiences,
chatbot solutions, and plant health monitoring using Al. She can be contacted at
fatimazahra.fandil 0@gmail.com.

Kartit Ali ©© B:J B € received his doctorate in computer network security from the Faculty
of Sciences of Rabat. He is currently a research professor at a leading engineering school and a
member of The Information Technology Laboratory at Chouaib Doukkali University, El
Jadida, Morocco, specializing in information systems security. With over a decade of
experience in higher education, he has been actively engaged in research and teaching best
practices in cybersecurity, active directory, and IT security management. Previously, he
worked as a trainer at the office of vocational training and employment promotion (OFPPT) in
Rabat, Morocco, for nearly eight years. His areas of expertise include network security,
cybersecurity best practices, information systems protection, identity management, and
advanced security frameworks. He can be contacted at alikartit@gmail.com.

Securing healthcare data and optimizing digital marketing ... (Fathi Abderrahmane)


mailto:mouyassir.kawtarr@gmail.com
mailto:waqas.ali2@uet.edu.pk
mailto:fatimazahra.fandi10@gmail.com
mailto:alikartit@gmail.com
https://orcid.org/0000-0003-1503-1603
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Mouyassir+Kawtar&btnG=
https://www.scopus.com/authid/detail.uri?authorId=58937741800
https://orcid.org/0000-0001-5691-3093
https://scholar.google.com/citations?user=3XZ-hxEAAAAJ&hl=fr&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=57216854699
https://orcid.org/0009-0005-2851-6003
https://scholar.google.com/citations?user=FoWnKJ8AAAAJ&hl=fr&oi=sra
https://orcid.org/0000-0002-3472-1151
https://scholar.google.com/citations?user=AaGLNMsAAAAJ&hl=fr&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=36680397300

