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 Agricultural districts provide high-quality food and contribute substantially 

to economic growth and population support. However, plant diseases can 

directly reduce food production and threaten species diversity. The use of 

precise, automated detection techniques for early disease identification can 

improve food quality and mitigate economic losses. Over the past decade, 

numerous methods have been proposed for plant disease classification, and 

in recent years the focus has shifted toward deep learning approaches 

because of their outstanding performance. In this study, we employ the 

Eig(Hess)-co-occurrence histograms of oriented gradients (CoHOG) 

descriptor alongside pre-trained machine-learning models to accurately 

identify various plant diseases. We apply principal component analysis 

(PCA) for dimensionality reduction, thereby enhancing computational 

efficiency and overall model performance. Our experiments were conducted 

on the popular PlantVillage database, which contains 54,305 images across 

38 disease classes. We evaluate model performance using classification 

accuracy, sensitivity, specificity, and F1-score, and we perform a 

comparative analysis against state-of-the-art methods. The findings indicate 

that the approach we proposed achieves up to 99.83% accuracy, 

outperforming existing models. Additionally, we test the robustness of our 

method under various conditions to highlight its potential for real-world 

agricultural applications. 
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1. INTRODUCTION 

Agriculture has been indispensable to the smooth functioning of the global economy, providing 

basic food, employment, and income. It represents about 12% of Morocco’s national income and employs 

approximately 31% of the population, as is the case in various low and middle-income countries that depend 

on agriculture [1]. In addition to its economic importance, agriculture is essential for ensuring food stability, 

supporting rural communities, and promoting socio-economic progress. Its influence extends to allied 

industries such as agro-processing and supply chains, amplifying their overall impact on national growth. 

Over the past five years, the agricultural sector’s contribution to gross value added (GVA) to the Moroccan 

https://creativecommons.org/licenses/by-sa/4.0/
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the economy has grown from 11.16% [1], underscoring its pivotal role in driving economic growth and 

ensuring food security. However, plant diseases and pest infestations continue to pose major challenges, 

threatening both the quality and quantity of global food production and destabilizing economies reliant on 

agricultural outputs. Prophylactic treatments alone are inadequate, as they do not fully prevent agricultural 

epidemics and endemics. Combined systems for early identification, accurate diagnosis, and real-time 

management of crop diseases especially when combined with sustainable and modern crop protection 

practices have the potential to ensure not only stable production and prices, but also long-term agricultural 

resilience and profitability. 

Classification is a critical component of automated plant disease detection, and accurate, timely 

recognition of illness is essential for informed decision-making in agricultural production. Infected plants 

often display symptoms such as sooty marks on stems, fruit, foliage, or flowers [2]. These distinctive 

markings can assist in identifying abnormalities. However, diagnosing plant diseases accurately requires 

specialized knowledge and considerable human resources, and manual analysis can be subjective and time-

consuming. Misdiagnoses by farmers or specialists can lead to inappropriate treatments, which may damage 

crop quality and yield and even contaminate the environment if incorrect chemicals are applied [3]. Recent 

advances in machine learning and deep learning have revolutionized diagnostic technique for plant diseases. 

Automated digestion and feature extraction have become more accessible, enabling more accurate 

image-based representations of disease symptoms. The recent accessibility of large image databases, powerful 

GPUs, and advanced computing software that are computationally less demanding has prompted a transition 

from classic methods to modern deep learning-based frameworks. While current models show encouraging 

results on specific datasets [4], they are typically trained on images with simpler backgrounds limiting their 

application in real agricultural settings where the diversity of images and complexity of backgrounds is high. 

Diversification and realism of a model's training datasets is necessary to improve generalization and confidence 

in predictions [5]–[7]. The novel contribution of this manuscript is the creation of a novel hybrid model for 

detection and classification of plant diseases. Unlike conventional approaches that rely solely on convolutional 

neural networks (CNNs), our method combines deep features extracted via an improved AlexNet architecture 

with handcrafted descriptors obtained from the Eig(Hess)-co-occurrence histogram of oriented gradients 

(CoHOG) algorithm, which captures fine geometric and textural characteristics. To better computational 

efficacy, we carry out principal component analysis (PCA) for dimensionality reduction, retaining essential 

information while minimizing redundancy. This fusion of deep and handcrafted features into a compact vector 

enhances the model’s robustness and generalization capability, particularly on images captured under real-world 

conditions. Furthermore, we validate our model on two contrasting datasets PlantVillage and PlantDisease 

demonstrating performance superior to the state of the art, with accuracy reaching 99.83%, while maintaining 

stability across varying acquisition conditions. The rest of this paper is structured as follows: section 2 previous 

studies work in the range of content-based image retrieval (CBIR). Section 3 outlines the proposed method. 

Section 4 shows the findings from the experiment, which are compared to existing approaches in section 5. At 

last, section 6 concludes the paper and discusses prospective studies. 

 

 

2. RELATED WORK 

Traditional methods to diagnose plant diseases based on visual evaluation are subjective, expensive, 

time consuming and require considerable manual labour. These limitations have driven researchers to seek 

more effective solutions. Many studies now rely on machine learning methods to achieve high accuracy, 

reduced costs, and greater objectivity. In this section, we review key works in this area and highlight recent 

developments. Early efforts applied shallow CNNs with four to six layers to various crops, exploiting their 

flexibility and robustness. For example, Mohanty et al. [8] proposed an algorithm for both classification and 

preprocessing of rice plant images, and Ferentinos [9] identified diseases in rice fields. Chen et al. [10] 

improved upon these methods by combining CNNs with transfer learning strategies using architectures such 

as MobileNet and InceptionV3 for enhanced classification, recognition, and segmentation of plant diseases.  

Based on selected grapevine and tomato diseases from the PlantVillage database [11], Karthik et al. 

[12] employed a multi-class classification approach using VGG16 with transfer learning. Barbedo [13] surveyed 

machine learning methods for crop disease classification, examining supervised approaches including naïve 

Bayes (NB), discriminant analysis (DA), k-nearest neighbors (k-NN), support vector machines (SVMs), 

decision trees (DTs), and random forests (RFs). Vardhini et al. [14] compared these with unsupervised 

techniques K-means clustering, fuzzy clustering, and Gaussian mixture models as well as pre-trained CNNs like 

AlexNet and GoogleNet for soybean disease classification. The emergence of generative networks has further 

accelerated data acquisition by overcoming traditional cost and time constraints. Mondal et al. [15] presented a 

framework combining model-agnostic meta-learning (MAML) with DeepLabV3 for leaf disease analysis and 

estimation, improving generalization on limited datasets. A conditional generative adversarial network (cGAN) 

was proposed by Abbas et al. [16] to enhance multi-leaf classification based on reference data. In another study, 
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a pre-trained MobileNet CNN achieved 96.58% classification accuracy for tomato leaf diseases. Hughes and 

Salathé [17] demonstrated that incorporating a weighted average fusion of gamma correction and multi-scale 

retinex with color restoration (MSRCR) preprocessing improved InceptionV3’s recognition rate by 29.71%. 

Rehman et al. [18] introduced fusion techniques adapting DenseNet-121 [19] to accept both raw and segmented 

leaf images. Pal and Kumar [20] developed AgriDet, a deep learning–based detection framework for 

quantifying disease severity on plant leaves. Sunil et al. [21] proposed a multi-level feature fusion network 

based on ResNet-50 with an adaptive attention mechanism, enabling deeper insights at channel, spatial, and 

pixel levels. Finally, Anh and Duc [22] reviewed 160 studies across 50 plant leaf datasets, analyzing modern 

deep learning models (AlexNet [23], GoogleNet [24], ResNet [25], MobileNet [26], SqueezeNet [27], and 

YOLO [28]), whose contributions have been significant in providing reliable and scalable plant disease 

diagnostics. 

 

 

3. MATERIALS AND METHODS 

3.1.   Approaches and resources 

This research proposes an efficient conceptual framework within an experimental learning paradigm 

to enable reliable, adaptable deployment of plant disease–identification models in real-world settings. Our 

work leverages data from diverse sources ranging from curated, high-quality images to raw, field-captured 

samples to assess and enhance model generalization. We apply a suite of preprocessing techniques 

(normalization, resizing, and augmentation via flipping, rotation, and brightness adjustment) to standardize 

the input data, reduce domain inconsistencies, and increase the model’s robustness across varying conditions. 

To promote accurate feature extraction and classification, we optimize our deep learning architecture 

an enhanced AlexNet CNN with reduced complexity and faster computation and complement it with a new 

handcrafted descriptor, Eig(Hess)-CoHOG, which captures rich geometric and textural information from 

grayscale images. We then apply PCA to compress the high-dimensional Eig(Hess)-CoHOG vector into a 

1×59 representation, preserving its discriminative power while reducing redundancy. This PCA-reduced vector 

is concatenated with the 1×64 deep feature vector, producing a compact 1×128 feature representation that 

integrates low-level handcrafted features with high-level learned features. This hybrid approach overcomes 

CNNs’ typical inability to capture fine structural patterns without sacrificing the efficiency of deep 

architectures. We evaluate the model using comprehensive metrics accuracy, precision, recall, F1-score, and 

AUC-ROC across both controlled (PlantVillage) and real world (PlantDisease) datasets. Experimental results 

demonstrate high accuracy and stability under diverse conditions, confirming the framework’s economic 

viability and practical applicability in agriculture. Conceptually, this hybrid architecture provides a novel, lean, 

and interpretable direction for future research in smart agriculture and image-based plant disease diagnosis. 

 

3.2.  Description of dataset 

We evaluated our methods on two datasets, PlantVillage and PlantDisease. The most important 

difference between the two datasets is in the texture and complexity of the images. The PlantVillage dataset 

contains images taken under laboratory conditions with uniform smooth grey backgrounds and very minimal 

noise, thus it is quite a "perfect" dataset for evaluating models, whereas PlantDisease contains images 

collected in the wild, where lighting conditions and natural backgrounds are variable, thus it represents a 

more complex dataset. This allows us to evaluate the proposed model's reliability and ability to generalize in 

both ideal conditions and realistic field-like conditions. 

 

3.2.1. PlantVillage dataset 

The PlantVillage dataset is a primary open-source dataset for plant disease identification. The data 

contains 61,486 pictures across 39 species, including various plant leaf diseases and background images. In 

total, there are 54,306 images across 38 classes for individual diseases after excluding the background 

images. Each of these images contains an individual plant leaf on a uniform grey background, designed to 

mimic ideal input for automated analytical systems. This uniform background imitates the pre-processing 

step, in which individual leaves are masked from a larger canopy image by a smart monitoring system and 

extracted. The organization of the dataset and the many classes have made it a critical benchmark for 

developing and validating machine learning models for agricultural disease identification.  

 

3.2.2. Plant disease dataset  

The plant disease dataset is an important component of assessing the robustness and generalization 

of the models we presented. It provides a benchmark for assessing performance when no preprocessing 

techniques are used, including object masking or noise reduction; this dataset was augmented offline based 

on the original dataset which we provided as a link in this GitHub. Although our dataset does not have any 
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noise reduction it contains almost 87,000 RGB images of sound and diseased crop leaves across 38 different 

categories. The complete dataset was divided within training and validation sets in an 80/20 ratio, while 

preserving the original directory structure. 

 

3.3.  Experimental design and configuration 

The experimental models were tested on a dataset specifically chosen to evaluate stability and 

generalization at fairly compromised data conditions, without stepped or other pre-processes, noise removal 

or mask segmentation. We used average precision and average recall to measure performance. The code was 

written in Python in Anaconda environment using Windows 10, running on hardware that had 2.2 GHz Intel 

Core i5 CPU, 12 GB of 1600 MHz DDR RAM, Intel HD Graphics 5000 GPU to 1536 MB of ROM. The 

software included libraries such as Keras, OpenCV, NumPy, CuDNN, Theano, utilizing Anaconda3 which 

included NVIDIA's CuDNN as well as CuMeM with the backend of Theano, for optimized memory and 

performance when running deep learning, as well as excellent image-processing across multiple platforms 

(Linux, Windows, Mac, iOS, Android, and Java). These elements together ensure the algorithm achieves a 

high-level of precision and scalability for real-world applications. Figure 1 shows the proposed approach.  

Input Images were initially resized via bicubic interpolation in MATLAB, to 227×227×3, and then 

run through the algorithm in two main steps: i) an improved AlexNet using CNN and ii) the Eig(Hess)-

CoHOG algorithm. The enhanced AlexNet extracts deep features, yielding a 1×64 feature vector, while 

Eig(Hess)-CoHOG produces complementary handcrafted features. To reduce dimensionality, we apply PCA 

to the Eig(Hess)-CoHOG vector, compressing it to 1×59 without significant information loss. These PCA-

reduced features are concatenated with the AlexNet features to form a composite 1×128 feature vector, 

combining the strengths of both methods. The following sections offer comprehensive explanations of the 

AlexNet CNN, the Eig(Hess)-CoHOG algorithm, and PCA. 
 
 

 
 

Figure 1. Our proposed descriptor 
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3.3.1. PCA 

In this article, PCA [29] was utilized as a key dimensionality reduction technique to enhance the 

performance and efficiency of the proposed plant disease classification model. The handcrafted features 

extracted using the Eig(Hess)-CoHOG descriptor, although rich in geometric and textural information, 

initially produced a high-dimensional feature vector. Such high dimensionality often introduces redundancy, 

increases computational load, and may degrade model generalization due to overfitting. To mitigate these 

issues, PCA was applied to transform the correlated features into a new set of uncorrelated, orthogonal 

components ranked by the amount of variance they capture from the original data. By selecting the top 

components that preserved more than 95% of the total variance, the feature vector was reduced to a more 

manageable size of 1×59 without significant loss of discriminative power. This reduced vector retained the 

most meaningful structural and textural cues from the leaf images. Subsequently, the PCA-compressed 

feature vector was concatenated with a 1×64 deep feature vector extracted from the improved AlexNet CNN. 

The resulting composite feature vector of size 1×128 effectively combines low-level handcrafted descriptors 

with high-level semantic features, enabling a robust and computationally efficient classification pipeline. 

Overall, PCA played a crucial role in balancing model complexity and accuracy, improving training speed, 

reducing memory usage, and enhancing the model's ability to generalize across diverse datasets. 

 

3.3.2. Improved AlexNet architecture 

The AlexNet architecture is a strong neural network when it comes to feature extraction and is 

composed of 25 layers. We propose an improved AlexNet architecture in this research to optimize efficiency, 

and performance. The resulting task was to optimize the AlexNet architecture by removing the last three fully 

connected layers; they are also typically the costliest layers to develop. Instead, we replace them with one 

fully connected layer of size 1×64. In theory, optimization reduces the total number of parameters 

significantly while reducing our cost, but we can maintain or improve performance in relation to the original 

design. In practice, our updated architecture maintained similar representations as prior to optimization with 

improved performance. The fully connected layers are typically used for identifying and classifying the most 

relevant, high-level features; and consequently, the need for manually developed features is no longer 

applicable. Essentially, the design is well balanced, allowing maximum performance while remaining quite 

simple. Because optimization needed to be simple enough to develop an effective, smart neural network to be 

able to extract features efficiently and appropriately. 

 

3.3.3. The Eig(Hess)-CoHOG descriptor  

The Eig(Hess)-CoHOG algorithm [30] can be classified as a shape-based image descriptor. The 

Eig(Hess)-CoHOG algorithm allows for the extraction of structural and textural information; this is 

accomplished by combining Hessian-based curvature with a CoHOG. In this case, the resulting feature 

representation is very discriminative, which is advantageous for use in agricultural applications, since plant 

diseases usually represent deviations in leaf outlines, leaf textures, and leaf vein patterns. The algorithm first 

computes the Hessian matrix 𝐻𝜎(𝑥, 𝑦) for every pixel of a grayscale image 𝐼(𝑥, 𝑦) defined as:  

 

𝐻𝜎(𝑥, 𝑦) = [

𝜕2𝐼

𝜕𝑥2     
𝜕2𝐼

𝜕𝑥𝑦

𝜕2𝐼

𝜕𝑥𝑦
    

𝜕2𝐼

𝜕𝑦2

] (1) 

 

with 
𝜕2𝐼

𝜕𝑥2 and 
𝜕2𝐼

𝜕𝑦2 are the second partial derivatives with respect to x and y respectively;  

𝜕2𝐼

𝜕𝑥𝑦
 is the cross partial derivative; 

The local curvature of the matrix, by means of its eigenvalues, provides a method to detect 

geometrically significant areas like corners, ridges, or blobs. The features are stable to image rotation and 

reasonably robust to illumination changes. At the same time, CoHOG is used for encoding the orientation of 

gradients. Whereas HOG only captures local edge orientation information, CoHOG captures spatial 

distribution information pertaining to gradient orientation pairs and therefore provides a richer means of 

textural and structural context. Eig(Hess)-CoHOG descriptor is built as. 

− Step 1: Calculate the eigenvalues of the Hessian matrix at every pixel as a way to identify curvature features. 

− Step 2: For each important eigenvalue area, calculate CoHOG features by using local gradient co-

occurrence at different distances and angles. 

− Step 3: Combine both the curvature-based and co-occurrence features into one descriptor vector that 

shows both shape and texture. 
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3.3.4. Categorical cross-entropy loss 

For model performance optimization, the categorical cross-entropy loss function was implemented, 

which is typical for multi-class multi-label classification problems. This loss function measures how 

different the predicted probability distribution is to the true label distribution for a given sample. The loss on 

a single training example let be: 

 

ℒ = − ∑ 𝑦𝑖
𝑐
𝑖=1 . log (𝑦̂𝑖) (2) 

 

where ℒ: Total loss computed for one training instance, 

C: total number of class, 

yi: actual label for class I (1 correct class, 0 all others), 

𝑦̂𝑖: the SoftMax layer's output representing the predicted probability for class i. 

The loss was reduced with the Adam optimizer learning rate of 0.001. During training, the model 

fine-tuned weights iteratively with back-propagation and a stochastic gradient descent, to obtain optimal 

parameters that minimized the training loss. The model was trained for 30 epochs, and the loss values were 

tracked and plotted at each epoch for both training and validation sets  

 

 

4. RESULTS AND DISCUSSION 

These metrics together establish a comprehensive framework for evaluating the effectiveness and 

reliability of the proposed fashion. They illustrate how the model balances accuracy against different types of 

errors and guide researchers and practitioners in refining the approach for real-world applications. We tested 

the proposed method on two datasets PlantVillage and PlantDisease across multiple runs. The results, 

summarized in Tables 1 (in A, 2 and 3, demonstrate the method’s efficiency under various training 

conditions. The model's results for each plant disease class on both the PlantVillage and PlantDisease 

datasets are detailed in Table 1. Precision (%), F-score (%), and accuracy (%) were reported for each class 

during training (10 and 30 iterations) and validation (after 10 and 30 iterations). On PlantVillage, the model 

achieved very high training and validation precisions, as well as F-scores for most classes. For example, in 

the "Apple - Apple Scab" class, the training precision increased from 94.6% (10 iterations) to 97.5%  

(30 iterations), and the F-score reached 93% after 30 iterations. Continuing with examples from our previous 

Scripts & File Organization chapter, the model, after 30 iterations, achieved validation precisions and  

F-scores close to 100% for some classes such as "Apple - Healthy," "Blueberry - Healthy," and "Corn 

(Maize) - Healthy." This suggests that the model performed quite well on the PlantVillage dataset. On the 

other hand, overall performance on the PlantDisease dataset was generally lower than on PlantVillage; 

however, it was still meaningful. For "Apple - Apple Scab" on the PlantDisease dataset, the training precision 

was 92.2% (10 iterations) and 95.8% (30 iterations), with an F-score of 86% at 30 iterations. The model also 

performed quite well on some classes like "Orange - Huanglongbing (Citrus Greening)" and "Grape - Esca 

(Black Measles)," with F-scores around 80%–82%. This suggests that these two classes may be particularly 

important to distinguish within the PlantDisease dataset. For most other classes, increasing the number of 

iterations from 10 to 30 led to improved precision and F-scores. 

Table 2 provides an overall performance summary of the proposed fashion on the PlantVillage 

dataset, focusing on precision and loss for training and validation after 10 and 30 training iterations. We 

focused on each metric: training precision (%), validation precision (%), training loss, and validation loss. 

after 10 training iterations, the method attains a training precision of 94.96% and a validation precision of 

92.3%, along with the training and validation losses of 0.1875 and 0.2016, respectively. After 30 training 

iterations, the training precision improved to 98.64%, and the validation precision increased to 93.5%. 

Moreover, the training loss significantly decreased to 0.0623, while the validation loss for 30 iterations was 

not shown in the table. As noted, the model’s training performance improved significantly, and the results 

from training on the PlantVillage dataset indicate that additional training leads to better convergence and 

overall improved performance for the proposed model. Table 3 offered the accuracy and loss of the proposed 

fashion on the PlantDisease dataset after 10 and 30 iterations of training. Similar to Table 2, it includes 

training accuracy, validation accuracy, training loss, and validation loss. After 10 iterations on the 

PlantDisease dataset, the training accuracy was 82.25% and the validation accuracy was 83.11%, with 

training and validation losses of 0.3247 and 0.2803, respectively. After 30 iterations, the training accuracy 

improved to 85.43% and the validation accuracy to 87.26%, while the training loss decreased to 0.1543. 

However, the validation loss for 30 iterations is not reported. These results indicate consistent improvement 

with additional training on the PlantDisease dataset, although the precision scores for PlantDisease remain 

generally lower than those for the PlantVillage dataset. 
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Table 1. Class-wise performance on PlantDisease dataset and PlantVillage dataset 
 PlantVillage dataset PlantDisease dataset 

Training 
precision % 

Validation 
precision % 

F1-
score 

(%) 

Training 
precision % 

Validation 
precision % 

F1-
score 

(%) 10 

Iterations 

30 

Iterations 

10 

Iterations 

30 

Iterations 

10 

Iterations 

30 

Iterations 

10 

Iterations 

30 

Iterations 

Apple - Apple Scab 94.6 97.5 93 92.2 95.8 82.6 86 81.2 84.4 83.55 
Apple - Black Rot 94.2 97 92 92 95.4 81.5 84.4 80.5 83.3 82.4 

Apple - Cedar Apple Rust 96 97.8 93.5 92.8 97 83.5 87.7 83 85.3 84.8 

Apple – Healthy 97.3 98.8 93 93.8 99 87.5 91.4 86 89.3 88 
Blueberry – Healthy 97.1 100 92 95 98.7 86 90.9 85.5 87.8 87 

Cherry (Sour) - Powdery 

Mildew 

93.5 95.6 89 90 95 81 85 80.3 82.8 82.2 

Cherry (Sour) – Healthy 97.2 97.5 91 92.6 99 86.3 91 85 88.1 87.6 

Corn (Maize) - Cercospora 

Leaf Spot 

94.1 95.4 92 90.3 95.4 82 85.8 81 83.8 83.15 

Corn (Maize) - Common Rust 95.4 98.5 93 93.4 97 83.4 87.5 82.8 85.2 84.7 

Corn (Maize) - Northern 

Leaf Blight 

94.9 100 91 95 96.4 83 86.9 82.3 84.8 84,25 

Corn (Maize) – Healthy 98.1 100 94 95 100 88 93.1 87 89.8 89.4 

Grape - Black Rot 93.8 97.3 91.3 92.3 95.3 81 84.8 80 82.8 82.15 

Grape - Esca (Black 
Measles) 

92.2 96.1 90 91 94 79.6 83.7 78.7 81.4 80,85 

Grape - Leaf Blight 93.4 97.8 91 92.6 95 81 85.3 80.4 82.8 82.5 

Grape – Healthy 96.5 100 94.2 95 98.6 85.6 90 84.7 87.4 87 
Orange - Huanglongbing 

(Citrus Greening) 

90.5 96.8 88.2 91.5 91.7 80 82.7 77.9 81.8 80,6 

Peach - Bacterial Spot 91.3 97.5 89 92.5 93.2 81 83.8 79.3 82.8 81,7 
Peach – Healthy 97 100 94 95 98.6 86 89.9 84.7 87.8 87,1 

Pepper (Bell) - Bacterial Spot 92.4 97.5 91 92.5 94.3 80.4 84.2 79.8 82.2 81.65 

Pepper (Bell) – Healthy 97.8 100 94.7 95 99.5 87 91.7 86.5 88.8 88.5 
Potato - Early Blight 95 100 93 95 96.3 82 85.5 81 83.8 83 

Potato - Late Blight 95.6 100 92,5 95 97 83 87 82.4 84.8 84.3 

Potato – Healthy 97.3 100 95 95 99 86.5 91.3 85.8 88.3 88 
Raspberry – Healthy 96.7 100 94 95 98.3 85 89.8 84.6 86.8 86.55 

Soybean – Healthy 97.4 100 95.3 95 99.1 87 91.6 86.2 88.8 88.4 

Squash - Powdery Mildew 93.2 98 91.1 93 94 81 84.9 79.5 82.8 82.05 
Strawberry - Leaf Scorch 92.4 97.5 90 92.5 93 80 83.7 78.7 81.8 81.05 

Strawberry – Healthy 96.8 100 94.7 95 98.4 85.4 90.1 84.8 87.2 86.8 

Tomato - Bacterial Spot 93.5 97 91 92 94 80.5 84.6 79 82.3 81.6 
Tomato - Early Blight 94.8 98 91.7 93 96.1 82 86 81.2 83.8 83.25 

Tomato - Late Blight 95 100 92 95 96.5 82.7 86.7 82.1 84.5 84 

Tomato - Leaf Mold 93.2 98 91.5 93 95 81 85 80.4 82.8 82.3 
Tomato - Septoria Leaf Spot 94.3 100 92.2 95 95.7 81.5 85.5 80.9 83.3 82.8 

Tomato - Spider Mites 91.7 96.6 90.6 91.6 93 79.4 83.4 78.6 81.2 80.65 

Tomato - Target Spot 92.8 97.7 91.7 92.7 94 80.3 84 79.7 82.1 81.5 
Tomato - Yellow Leaf Curl 

Virus 

97.4 100 95.5 95 99 85.6 90.3 85 87.4 87 

Tomato - Mosaic Virus 96.7 100 94.1 95 98 84.4 89 83 86.2 85.65 
Tomato – Healthy 97 100 95 95 99.2 87 91 86 88.8 88.2 

 

 

Table 2. The proposed approach’s precision and loss after 30 training epochs on the PlantVillage dataset 
 Iterations Training precision % Validation precision % Training loss Loss of validation 

Plantvillage 

Database 

10 Iterations 94.96 92.3 0.1875 0.2016 

30 Iterations 98.64 93.5 0.0623 

 

 

Table 3. The proposed approach’s precision and loss after 30 training epochs on the PlantDisease dataset 
 Iterations Training precision % Validation precision % Training loss Loss of validation 

PlantDisease 
Dataset 

10 Iterations 82.25 83.11 0.3247 0.2803 
30 Iterations 85.43 87.26 0.1543 

 

 

5. COMPARATIVE ANALYSIS OF DEEP LEARNING AND HYBRID METHODS 

To thoroughly test the efficacy of the proposed combined model, comparative experimental tests 

were conducted across five popular pre-trained CNN architectures: DenseNet-201, VGGNet-19, Inception 

V3, ResNet-50, and a hybrid model based on the architecture of Inception and VGGNet called INC-VGGN. 

These five models were selected because of their popularity and known effectiveness in various vision tasks. 
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Model performance was evaluated across key metrics including training precision, validation precision, 

training loss, and validation loss, after 10 and 30 training iterations. As indicated in Table 4, the proposed 

model outperformed the other methods on all metrics across all iterations. After only 10 training iterations, 

the proposed model achieved a training precision of 94.96% and a validation precision of 92.3%, with a 

training loss value of 0.1875 already outperforming most competing models even after 30 iterations. 

Following 30 iterations, the proposed model further increased its training precision to 98.64% and validation 

precision to 93.5%, achieving a training loss of 0.0623 and a validation loss of 0.2016. These results indicate 

not only rapid convergence but also the strong generalization ability of the proposed model as designed. 
 

 

Table 4. Accuracy and error rates of different technique after 30 training iterations 
 10 Iterations 30 Iterations  

Methods Training 
precision % 

Validation 
precision % 

Training 
loss 

Training 
precision % 

Validation 
precision % 

Training 
loss 

Loss of 
validation 

DenseNet201 80.27 76.30 0.573 84.20 79.00 0.445 0.499 

ResNet50 65.20 64.70 1.003 70.40 69.70 0.834 0,844 
InceptionV3 85.60 82.30 0.409 92.10 85.00 0.258 0.372 

VGGNet19 65.20 66.70 1.164 74.20 74.80 0.916 0.903 

INC-VGGN 93.90 90.20 0.212 97.60 91.80 0 .086 0.241 
Proposed technique 94.96 92.30 0.187 98.64 93.50 0.062 0.202 

 

 

In contrast, DenseNet-201, while capable of achieving relatively high precision, ultimately 

underperformed when compared with the proposed method. After 30 training iterations, it achieved a training 

precision of 84.2% and a validation precision of 79.0% but also reported a training loss of 0.4451 and a 

validation loss of 0.4987. Although these metrics suggest that DenseNet-201 learned some features 

effectively, it is clear there is a lack of performance in feature discrimination compared to the hybrid method. 

The overall performance of ResNet-50 was lower than that of the other examined architectures. After thirty 

iterations, its training precision was only 70.4% and validation precision 69.7%, while the training and 

validation losses remained high at 0.8338 and 0.8442, respectively. These results indicate poor overall 

convergence on the plant disease dataset. The relatively low performance of ResNet-50 may be due to its 

sensitivity to initialization and learning rate factors that are particularly problematic for heterogeneous and 

noisy domains like plant pathology images. Inception V3 performed better, achieving 92.1% training 

precision and 85.0% validation precision after 30 iterations, along with a training loss of 0.2576 and a 

validation loss of 0.3717. While these findings are respectable, they still lagged behind the proposed model, 

particularly in validation accuracy, where fine-grained disease classification remains a challenge. VGGNet-

19 delivered decent results due to its depth and straightforward architecture. After 30 training iterations, it 

achieved a training precision of 74.2% and validation precision of 74.8%, with relatively high training and 

validation losses of 0.9162 and 0.9026, respectively. These results indicate that identifying an optimal feature 

representation for generalization is difficult with complex plant disease datasets.  

The hybrid INC-VGGN model performed better than the standard CNN models, achieving 97.6% 

training precision and 91.8% validation precision after 30 iterations, with low training and validation losses of 

0.0856 and 0.2409, respectively. However, despite these strong results, it still failed to outperform the proposed 

method in terms of training speed and overall performance. The marked improvement delivered by the proposed 

model is due to its hybrid nature, wherein features derived from AlexNet were combined with handcrafted 

descriptors from Hilbert space-based (Hess)-CoHOG. The hybrid model utilized both types of representation 

the abstract, high-level hierarchical learning provided by CNNs and the texture-sensitive, rotation-invariant 

qualities of handcrafted descriptors. To decrease the size of the representation to a computationally friendly 

1×128 vector while retaining discriminative information, the features were compressed using PCA.  

This balance between feature richness and reduced dimensionality contributed to superior 

performance across all metrics. Overall, the comparative results substantiate that the hybrid model is robust 

and outperforms state-of-the-art CNN architectures tested in this study, particularly after training for 30 

epochs. It represents a viable and promising approach for large-scale, real-world plant disease recognition 

where accuracy and efficiency are essential. Table 5 provides a similar analysis of the major deep learning 

architectures (and the proposed hybrid model) to better explain the relative advantages and disadvantages of 

each method analyzed in this study. Each method was assessed based on its computational characteristics, 

learning ability, and applicability to plant disease detection. Conventional CNN-based methods like AlexNet, 

VGGNet-19, ResNet-50, Inception V3, and DenseNet-201 each offer specific advantages such as fast 

training, deep feature extraction, or strong gradient flow but also present drawbacks like sensitivity to 

initialization, high memory requirements, and long training times. The INC-VGGN hybrid model, which 

fuses intermediate and visual styles from different architectures, offers some training advantages but 

introduces greater complexity and higher training costs. In contrast, the proposed model effectively addresses 
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these disadvantages by integrating deep learning with handcrafted features and dimensionality reduction. Its 

two primary advantages are their robustness to noise and rotation, and its high degree of accuracy in a 

compact representation demonstrates its applicability. Therefore, the proposed hybrid architecture has 

enough theoretical backing for future consideration and potential application in real-world deployment on 

farms. This comparative investigation not only validates the research relevance of the proposed hybrid model 

but also provides direction to other investigators and practitioners looking to select or alter their deep 

learning models as per contextual limitations. 
 

 

Table 5. Key strengths and limitations of different deep learning techniques 
Method Positive aspects Negative aspects 

AlexNet 

 

- Fast training 

- Simple architecture 
- Effective for basic image classification 

- Shallow depth 

- Limited generalization on complex datasets 

VGGNet-19 - Deep network with good feature extraction 

- Performs well with transfer learning 

- High number of parameters 

- Requires more memory and computational 
resources 

ResNet-50 - Residual connections enable deep training 

- Mitigates vanishing gradient problem 

- Sensitive to learning rate and initialization 

- Longer training time 
Inception V3 - Efficient multi-scale feature extraction 

- Good trade-off between depth and speed 

- Complex architecture 

- Requires image input standardization 

DenseNet-201 - Strong gradient flow 
- Feature reuse improves efficiency and accuracy 

- Slower training due to dense connections 
- Memory-intensive 

- Increased architectural complexity 

- Higher training and inference time 
INC-VGGN - Hybrid architecture leverages VGG and Inception strengths 

- High classification accuracy 

 

Proposed model - Combines deep and handcrafted features 
- Robust to noise and rotation 

- High accuracy with low dimension (1×128 vector) 

- PCA may reduce subtle but useful features 
- Requires parameter tuning for fusion 

 

 

5. CONCLUSION 

For many years, plant diseases have been an important area of concern in agriculture and represent a 

considerable threat to food manufacturing security. In extreme cases these diseases can lead to total crop 

losses, with spillover effects that can include economic shocks, food scarcity and breaks in supply chains. 

Such challenges are particularly pronounced in developing geographies, where farmers lack access to modern 

agricultural technologies and the economic well-being of smallholder farmers are directly linked to crop 

yields. Plant diseases have social and environmental impacts in addition to their economic effects, fueling 

poverty, diminishing biodiversity, and leading to unsustainable farming practices. With increasing global 

population growth, and the coming threats of climate change, the drive for more innovative and efficient 

ways to combat plant diseases is critical. Among the information in agriculture, there is a great demand for 

the early identification of plant disease. Early detection of plant diseases is critically important in the field of 

agricultural information. Utilizing early detection through disease management enables timely intervention 

and the application of targeted treatments that may drastically reduce crop losses in the long run.  

It also provides a means of decreasing reliance on chemical pesticides, which frequently cause soil 

degradation, water contamination, and detrimental effects on non-target organisms like pollinators. Early 

detection technologies have the potential to make a significant impact if they can show that they can help 

meet the principles of sustainable agriculture. Currently deep learning methods, especially CNNs, have 

shown outstanding performance on many problems involved in the field of disease diagnosis. Not only 

would these methods perform exceptionally on high-dimensional image data, but they also enable retraining 

on updated datasets, allowing them to be seamlessly adapted to changing agricultural conditions over time. 

This section presented an innovative method that combines CNN, specifically AlexNet, with the Hessian 

matrix to calculate the eigenvalues of the image surface. By incorporating the Hessian matrix, our approach 

enhances the model's ability to identify subtle textural features and variations in plant images that may 

otherwise go undetected. Furthermore, we used the PCA algorithm harnessed for minimizes size, enabling 

the extraction of essential information while decreasing computational overhead. This nesting addresses 

various practical purviews, such as processing time and scalability, which are critical for widespread 

adoption. The results of our experiments demonstrate the effectiveness of our proposed method achieving a 

notable screening accuracy of 91.83% on the PlantDisease dataset and an imposing 93.67% accuracy on the 

PlantVillage dataset. The results obtained show more than the reliability and robustness of our algorithm 

propose they also show also highlight its potential to has exceed existing algorithms in the field of plant 

disease classification. 
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The percentage of precision achieved could have transformative implications for agricultural 

practices, facilitating clarity of decisions for farmers and the use of technology in traditional farming 

systems. Furthermore, the results obtained show the ability of artificial intelligence to bridge the gap between 

cutting-edge research and practical applications in agriculture. In our future projects, we will propose 

deployment approaches on mobile devices using connected objects to facilitate the monitoring and automatic 

recognition of a broader spectrum of diseases at various locations in the plant at various stages of disease 

progression. The integration of this technology with mobile devices could democratize access to advanced 

diagnostic tools, particularly in rural and underserved areas. By empowering farmers with user-friendly and 

cost-effective solutions, such technologies have the potential to transform precision agriculture, reducing 

yield gaps and fostering resilience against environmental stressors.  

In parallel, we goal to prolong the request of our algorithm to real-world situations, inclusive 

computer-aided diagnosis, thereby conducive to advancements in agricultural information systems. Beyond 

disease classification, our structure is allowed to be expanded to include predictive design, enabling 

stakeholders to anticipate disease outbreaks based on environmental and climatic data. This integration would 

not only improve crop management strategies but also inform regional and national policy decisions, 

contributing to a more sustainable and secure agricultural ecosystem. In addition, the approach could support 

the development of automated agricultural robots capable of performing tasks such as targeted spraying, 

harvesting, or pruning based on real-time disease detection. Moreover, the potential of this technology 

extends to interdisciplinary applications. For example, its integration into food supply chain systems could 

ensure quality control by identifying diseased crops during processing or storage, thereby minimizing food 

waste. We will collaborate with ecological monitoring systems to further exploit ecological monitoring 

technology to assess the health of natural plant populations, as well as for conservation efforts. We believe 

that through these interdisciplinary opportunities, our approach could serve as a critical tool to address global 

challenges, from food security to environmental sustainability. 

 

 

REFERENCES 
[1] World Perspective, “Statistics,” School of Applied Politics Faculty of Arts and Humanities University of Sherbrooke. 

https://perspective.usherbrooke.ca/bilan/servlet/BMTendanceStatPays (accessed Jan. 30, 2025). 

[2] S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, “A review of advanced techniques for detecting plant diseases,” Computers and 

Electronics in Agriculture, vol. 72, no. 1, pp. 1–13, Jun. 2010, doi: 10.1016/j.compag.2010.02.007. 

[3] R. G. Dawod and C. Dobre, “Upper and lower leaf side detection with machine learning methods,” Sensors, vol. 22, no. 7,  
p. 2696, Mar. 2022, doi: 10.3390/s22072696. 

[4] K. P. Panigrahi, A. K. Sahoo, and H. Das, “A CNN approach for corn leaves disease detection to support digital agricultural 

system,” in 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Jun. 2020,  
pp. 678–683, doi: 10.1109/ICOEI48184.2020.9142871. 

[5] A. Ramcharan et al., “A mobile-based deep learning model for cassava disease diagnosis,” Frontiers in Plant Science, vol. 10, 

Mar. 2019, doi: 10.3389/fpls.2019.00272. 
[6] Y. Li and J. Yang, “Few-shot cotton pest recognition and terminal realization,” Computers and Electronics in Agriculture,  

vol. 169, p. 105240, Feb. 2020, doi: 10.1016/j.compag.2020.105240. 

[7] R. Gajjar, N. Gajjar, V. J. Thakor, N. P. Patel, and S. Ruparelia, “Real-time detection and identification of plant leaf diseases 
using convolutional neural networks on an embedded platform,” The Visual Computer, vol. 38, no. 8, pp. 2923–2938, Aug. 2022, 

doi: 10.1007/s00371-021-02164-9. 

[8] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Frontiers in Plant 
Science, vol. 7, Sep. 2016, doi: 10.3389/fpls.2016.01419. 

[9] K. P. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” Computers and Electronics in Agriculture, 

vol. 145, pp. 311–318, Feb. 2018, doi: 10.1016/j.compag.2018.01.009. 
[10] J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep transfer learning for image-based plant disease 

identification,” Computers and Electronics in Agriculture, vol. 173, p. 105393, Jun. 2020, doi: 10.1016/j.compag.2020.105393. 

[11] G. G. and A. P. J., “Identification of plant leaf diseases using a nine-layer deep convolutional neural network,” Computers & 
Electrical Engineering, vol. 76, pp. 323–338, Jun. 2019, doi: 10.1016/j.compeleceng.2019.04.011. 

[12] K. R., H. M., S. Anand, P. Mathikshara, A. Johnson, and M. R., “Attention embedded residual CNN for disease detection in 

tomato leaves,” Applied Soft Computing, vol. 86, p. 105933, Jan. 2020, doi: 10.1016/j.asoc.2019.105933. 
[13] J. G. A. Barbedo, “Factors influencing the use of deep learning for plant disease recognition,” Biosystems Engineering, vol. 172, 

pp. 84–91, Aug. 2018, doi: 10.1016/j.biosystemseng.2018.05.013. 

[14] P. A. H. Vardhini, S. Asritha, and Y. S. Devi, “Efficient disease detection of paddy crop using CNN,” in 2020 International 
Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Oct. 2020, pp. 116–119, doi: 

10.1109/ICSTCEE49637.2020.9276775. 

[15] J. Li, Q. Feng, J. Zhang, and S. Yang, “EMSAM: enhanced multi-scale segment anything model for leaf disease segmentation,” 
Frontiers in Plant Science, vol. 16, p. 1564079, Mar. 2025, doi: 10.3389/fpls.2025.1564079. 

[16] J. J. Mondal, M. F. Islam, S. Zabeen, A. B. M. A. Al Islam, and J. Noor, “Note: plant leaf disease network (PLeaD-Net): 

identifying plant leaf diseases through leveraging limited-resource deep convolutional neural network,” in ACM SIGCAS/SIGCHI 
Conference on Computing and Sustainable Societies (COMPASS), Jun. 2022, pp. 668–673, doi: 10.1145/3530190.3534844. 

[17] D. Hughes, M. Salathé, and Others, “An open access repository of images on plant health to enable the development of mobile 

disease diagnostics,” arXiv preprint arXiv:1511.08060, 2015. 
[18] T. U. Rehman, M. S. Mahmud, Y. K. Chang, J. Jin, and J. Shin, “Current and future applications of statistical machine learning 

algorithms for agricultural machine vision systems,” Computers and Electronics in Agriculture, vol. 156, pp. 585–605, Jan. 2019, 
doi: 10.1016/j.compag.2018.12.006. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5336-5346 

5346 

[19] S. B. Jadhav, V. R. Udupi, and S. B. Patil, “Identification of plant diseases using convolutional neural networks,” International 

Journal of Information Technology, vol. 13, no. 6, pp. 2461–2470, Dec. 2021, doi: 10.1007/s41870-020-00437-5. 
[20] A. Pal and V. Kumar, “AgriDet: plant leaf disease severity classification using agriculture detection framework,” Engineering 

Applications of Artificial Intelligence, vol. 119, p. 105754, Mar. 2023, doi: 10.1016/j.engappai.2022.105754. 

[21] A. Abbas, S. Jain, M. Gour, and S. Vankudothu, “Detection of tomato plant diseases using transfer learning with synthetic C-
GAN images,” (in France), Computers and Electronics in Agriculture, vol. 187, p. 106279, Aug. 2021, doi: 

10.1016/j.compag.2021.106279. 

[22] P. T. Anh and H. T. M. Duc, “A benchmark of deep learning models for multi-leaf diseases for edge devices,” in 2021 
International Conference on Advanced Technologies for Communications (ATC), Oct. 2021, pp. 318–323, doi: 

10.1109/ATC52653.2021.9598196. 

[23] Z. Wenjing et al., “Tobacco disease identification based on InceptionV3,” Acta Tabacaria Sinica, vol. 27, no. 5, pp. 61–70, 2021, 
doi: 10.16472/j.chinatobacco.2021.T0061. 

[24] Y. Kaya and E. Gürsoy, “A novel multi-head CNN design to identify plant diseases using the fusion of RGB images,” Ecological 

Informatics, vol. 75, p. 101998, Jul. 2023, doi: 10.1016/j.ecoinf.2023.101998. 
[25] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in 2017 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, vol. 2017-Janua, pp. 2261–2269, doi: 

10.1109/CVPR.2017.243. 
[26] S. C.K., J. C.D., and N. Patil, “Tomato plant disease classification using multilevel feature fusion with adaptive channel spatial 

and pixel attention mechanism,” Expert Systems with Applications, vol. 228, 2023, doi: 10.1016/j.eswa.2023.120381. 

[27] C. K. Sunil, C. D. Jaidhar, and N. Patil, “Systematic study on deep learning-based plant disease detection or classification,” 
Artificial Intelligence Review, vol. 56, no. 12, pp. 14955–15052, Dec. 2023, doi: 10.1007/s10462-023-10517-0. 

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” 

Communications of the ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386. 
[29] C. Szegedy et al., “Going Deeper With Convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Jun. 2015, pp. 1–9. 
[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 770–778, doi: 10.1109/cvpr.2016.90. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

El Aroussi El Mehdi     specializes in computer science and in application of 

artificial intelligence (AI) in various fields. He obtained his doctorate in 2018 at the Faculty of 

Sciences, El Jadida of Chouaib Doukkali University in Morocco. He focused on indexing and 

recovery of images by content, with applications to color databases. He is currently a professor 

at the Sidi Bennour Higher School of Technology, attached to Chouaib Doukkali University. 

Before his university career, professor El Aroussi worked as a computer engineer for 17 years. 

He is co-author of several articles published in international journals. Its main areas of research 

are artificial intelligence (AI), imagery and big data. He can be contacted at email: 

elaroussi.e@ucd.ac.ma. 

  

 

Barakat Latifa     university professor at the Sidi Bennour Higher School of 

Technology, specializing in communication and the application of artificial intelligence (AI) in 

the field of education. She obtained her doctorate from the Faculty of Arts and Humanities  

at Chouaib Dokkali University in El Jadida, Morocco. She can be contacted at email: 

barakatlati@gmail.com. 
 

  

 

Silkan Hassan     born in Tahnaout on 08-08-1979. He obtained the thesis in 

computer science at the Faculty of Sciences Dhar Elmhraz in Fes, the subject is indexing and 

searching of images by content: application to a database of forms. He is a professor at the 

Faculty of Sciences of El Jadida, Morocco. He can be contacted at email: silkan_h@yahoo.fr. 

 

https://orcid.org/0000-0002-2926-9586
https://scholar.google.com/citations?user=p5xvC-kAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=57201213380
https://www.scopus.com/authid/detail.uri?authorId=6701812856
https://orcid.org/0009-0007-3869-5652
https://scholar.google.com/citations?user=mo_vq6wAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=36998623600

