International Journal of Electrical and Computer Engineering (IJECE)
Vol. 15, No. 6, December 2025, pp. 5453~5465
ISSN: 2088-8708, DOI: 10.11591/ijece.v15i6.pp5453-5465 O 5453

Memoryless state-recovery cryptanalysis method for lightweight

stream cipher — A5/1

Khedkar Aboli Audumbar!?, Uday Pandit Khot?, Balaji G. Hogade!
'Department of Electronics Engineering, Terna Engineering College, Navi Mumbai, India
*Department of Electronics and Telecommunication, Pillai College of Engineering, New Panvel, India
3Department of Electronics and Telecommunication Engineering, St. Francis Institute of Technology, Mumbai, India

Article Info

ABSTRACT

Article history:

Received Jan 29, 2025
Revised Aug 22, 2025
Accepted Sep 16, 2025

Keywords:

Cryptanalysis
Guess-and-determine attack
Time-complexity

Cryptology refers to the discipline concerned with securing communication
and data in transit by transforming it into an unintelligible form, thereby
preventing interpretation by unauthorized entities. Cryptanalysis is the study
and practice of analyzing cryptographic systems with the aim of uncovering
their weaknesses, finding vulnerabilities and obtaining unauthorized access
to encrypted data. A5/1 is a lightweight stream cipher used to protect GSM
communications. There are two memoryless cryptanalysis techniques used
for this cipher which are Golic’s Guess-and-determine attack and Zhang’s
Near Collision attack. In this paper a new guessing technique called move
guessing technique used to construct linear equation filter along with Golic’s
guess and determine technique is studied. Two modifications in move
guessing technique are proposed for recovery of internal states SO and S1.

GSM Further, a novel algorithm is proposed to select the modification to get
AS5/1 minimum time complexity for recovery of internal states SO and S1. The
proposed algorithm gives minimum time complexity of 2293138 at t= 14 for
recovery of SO state and 243246 for recovery of S1 at ¢ = 22.
This is an open access article under the CC BY-SA license.
Corresponding Author:
Khedkar Aboli Audumbar

Department of Electronics Engineering, Terna Engineering College
Plot No 12, Sec-22 Opp. Nerul Railway Station W, Phase II, Nerul, Navi Mumbai, Maharashtra 400706,

India

Email: abolikhedkar@gmail.com

1. INTRODUCTION

Now-a-days many applications on internet of things (IoT) and embedded systems are developed.
Such application uses global system for mobile communications (GSM) technology for communication.
Also, mobile networks use GSM to transmit personal information on radio links [1]. The A5/1 stream cipher
are widely used in GSM communication, has been the subject of extensive cryptanalysis since its inception.
Ever since its proposal, A5/1 has been attacked with various cryptanalytic methods such as Satisfiability
(SAT)-based cryptanalysis, time/memory/data trade-off attacks, guess-and-determine attacks, near collision
attack (NCA), ciphertext attack, quantum attack on reduced version of Cipher [2]-[11] [12], [13]. Rainbow
Table generation method used to perform time/memory/data trade-off (TMDTO) attack also has high chances
of collision [14]. Most of the practical attacks on AS5/1 require large, precomputed rainbow table which

significantly increases the memory complexities [15]—-[18].

Memoryless cryptanalysis techniques on the AS5/1 cipher involve analyzing the cipher without
relying on previous states or memory. These techniques aim to break the encryption by examining the
algorithm's structure and properties without considering historical data. By studying the AS5/1 algorithm,

cryptanalysts can uncover vulnerabilities and weaknesses that could potentially compromise its security.

Journal homepage: http://ijece.iaescore.com

https://creativecommons.org/licenses/by-sa/4.0/

5454 O ISSN: 2088-8708

Existing Memoryless cryptanalysis techniques namely guess and determine attack and near collision
attack that determines S1 recovery state and SO recovery state, respectively. Guess and determine attack
highly relies on identifying patterns and relationships between key and ciphertext [19]. A new low keystream
guess-and-determine (GD) attack was proposed in [20] gives the time complexity of 2°2. This complexity is
higher than the Golic’s GD attack’s time complexity of 24*!5 [21]. Zhang’s near collision attack recover’s SO
state with the time complexity of 2331? [8]. Xu et al. further worked on Golic’s GD attack and Zhang’s near
collision attack and was found that the complexity of Golic's S1 recovery attack is no lower than 24¢% but
higher than the previously believed 2%. On the other hand, Zhang's near collision attack recovers SO with the
time complexity 23%!°: such a complexity can be further lowered to 2%78 with the help of move guessing
technique [22]. The 2-bit move guessing based guess and determine attack on A5/1 that can recover internal
S0 and S1 state with the complexities of 24392 at t=21 and 2+%° at t= 22, respectively [22].

This research focuses on enhancing the cryptanalysis of the A5/1 stream cipher by refining the move
guessing technique used to recover internal states. While prior work, such as Golic [21] and the move
guessing technique to keep [8] as fixed clock bit method [22], explored partial dependencies among clock
bits, the research gap lies in the lack of understanding and systematic treatment of the behavior when other
clock bits are held constant in the stop-and-go mechanism. This study systematically investigates the
behavior of the cipher when any one out of three clock bits are held constant, revealing how such
configurations affect the stop-and-go mechanism. Two novel modifications are proposed in the move
guessing technique allowing for effective recovery of internal states SO and S1. A dynamic decision
algorithm is also implemented in these modified techniques to give minimum time complexity.

Although these innovations improve upon existing cryptanalytic strategies for A5/1, they can also
offer a framework that can be generalized to other linear feedback shift register (LFSR)-based stream ciphers.
The study paves the way for future research into adaptive cryptanalysis and lightweight cipher design,
especially in applications where computational efficiency is critical, such as embedded and IoT systems.

This paper is organized as follows. Section 2 provides brief information on key stream generation
procedures in A5/1 cipher. Section 3 discusses the Golic’s Guess and Determine attack [21] and gives a brief
review of 2-bit move guess and determine attack [22]. Later, the modifications in the move guessing
technique are introduced in section 4 and proposed an algorithm in section 5 to select the proper modified
technique for minimum time complexity. Results and Discussion are done in section 6. Section 7 concludes
the research work.

2. THE KEY-STREAM GENERATION PROCEDURE IN A5/1

AS5/1 was designed to provide over-the-air communication privacy for the GSM cellular telephone
standard and has been widely used in GSM telephony in Europe and the USA. In its design, three combined
LFSRs with irregular clocking are used to encrypt bursts of traffic, as is required in GSM [23]. A5/1 has
3-LFSR registers R1, R2 and R3 with sizes 19, 22, 23 respectively making it 64-bit internal state as shown in
Figure 1. These states at time t (t=0, 1, 2....) is represented as [22]:

S'=(R1', R2', R3Y)
=(S'[0, ...18], S'[19, ...40], S' [41, ...63])
= (R1'[0, ...18], R2'[0, ...21], R3[0, ...22]) (1)

Before generating the output bit z¢, A5/1 round function will update the internal state s* - s*** in a stop-
and-go manner as follows:
— Compute maj* as

maj* = (Ri[8] - R[10D@®(R1[8] - R§[10DS(R3[10] - R§[10])
= (s*[8] - s [29D@®(s°[8] - s [S1DD(s[29] - s°[51]) 2

where °.” is the AND of 2-bits
— IfRI[8] = s'[8] # majt, Ri*'« R!, otherwise, call UpdateR1 as follows

REYI[{] « Ri[i — 1] i €[1,18]
Ri[18] @ Ri[17] @ Ri[16] @ R:[13] 3)

— IfRi[10] = s*[29] # majt, RS« RE, otherwise, call UpdateR2 as follows:

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

Int J Elec & Comp Eng ISSN: 2088-8708 O 5455

RE*[i] « Ry[i — 1]i € [1,21]
— Ri[21] @ R[20] “)

— IfRi[10] = st[51] # majt, Ri*1« RE, otherwise, call UpdateR1 as follows:

RYM[i] « Ri[i — 1] i € [1,22]
«— RL[22] @ R[21] @ R5[20] & RL[7] ®)]

Then the Output keystream bit z* is generated as:

z' = R{*'[18] @ RS [21] @ R ([22]
t St+1[18] @ St+1[40] @ St+1[63] (6)

Z

1817|116 13] 0 =

134

2t~ [[TTTTTT B TTTTTTTT ok

Figure 1. A5/1 stream cipher [24]

3. EXISTING ATTACK FOR A5/1

Although there are many techniques for attacks for A5/1, this paper discusses only the memoryless
techniques of attacks such as 1. Guess and Determine attack and 2. Near Collision attack. Near collision
attack is challenged in many ways, after the theoretical analysis and practical implementations it is observed
that non-randomness claimed in [8] can hardly be achieved so concluded that Near collision attack cannot
have less time complexity compared to Guess and Determine attack [25]. And hence, in this paper discussion
is done only with Guess-and-Determine attack.

3.1. Golic’s guess-and-determine attack [21]

For each step i = 0, 1, 2..., whether the registers R1; R2; R3 are updated or not depends on the three
clock bits s'[8,29,51]. Such 3-bit clocks can also be regarded as a 3-bit integer C* € {0,1 7} defined as
in (7).

C'[0,1,2] = 5'[8,29,51] = (p, p,0) (7)
In Golic's guess-and-determine model, the adversary aims at recovering the initial state s, the state right
before the generation of z°. So, the to-be-guessed clocks are C for i = 1, 2, With the knowledge of ¢/,

each bit of s “*! can be represented as a linear combination of s’ bits and, following (7), the adversary can
deduce three linear equations.

From the output z‘, the adversary can further deduce one linear equation.

Zi — Si+1[18] @ Si+1[40] @ Si+1[63]

Memoryless state-recovery cryptanalysis method for lightweight ... (Khedkar Aboli Audumbar)

5456 O ISSN: 2088-8708

In other words, by guessing 3-bit C?, the adversary can deduce 4 linear equations of state bits. Golic
propose a basic attack that guess 3t clock bits C* C*. Based on the ¢ + 1 output bits z° z%, the

adversary can deduce a system of averaging 1+ 3t + %t linear equations. For ¢ > 14.38, the system can

involve 1+ 3t + gt > 63.32 equations which is sufficient for identifying the correct guess uniquely with

“high probability”. Although the number of equations and the “high probability” have never been verified,
the complexity of Golic's attack is usually believed as 23t > 24315 steps where each step involves the
solution of a linear system. Apparently, such a complexity evaluation assumes that the wrong-guess oriented
linear equation system acts randomly, and its rank grows linearly with ¢ to 63.32. It is later proved that such
an assumption is not true for A5/1.

Besides, Golic also notices that not all 3t clock bits C* Ct are to be guessed independently.
According to the stop-and-go mechanism, there are occasions where only 2 out of the 3 LFSRs are updated
(C* ¢ {0, 7}) and 1 out of the 3 C*** bits are already known in C'. To avoid such redundant bit guesses,
Golic propose “branching technique” where a tree structure is applied to track the known bits to further lower
the complexity. However, since the branching technique depends on the clock dynamic values, the
complexities in did not take the effect of the branching technique into the evaluations. This technique detects
S! state which may cause delayed process of key detection.

3.2. A brief review of move guessing technique [22]
The 2-bit move pattern m* € {0, --- 3} according to the 3-bit clock C¢ = s¢[8,29,51]. Such a move
pattern can be equivalently regarded as 2-dimentional binary vector defined in (8).

m* =mt[0,1] = (s*[8] @ s*[29],5°[8] @ s*[51]) = (1, V) € F ®)
With the knowledge of m¢ in above equation, two equations are deduced in (9).

s'[8] @ s*[29] = p
st[8] @ st[51] = v)

The four possible values of m!, referred as Move 0-3, corresponds to different movements in A5/1 LFSRs
transforming s* to st*1,
— Move 0: From the LFSR action aspect, updateR 1, updateR2 and updateR3 are all called. This corresponds
to clock values C* € {0,7} or equivalently st[8,29,51] € {(0,0,0), (1,1,1)}
— Move 1: Only updateR2 and updateR3 are called corresponding to C' € {1,6} or equivalently
st[8,29,51] € {(0,1,1), (1,0,0)}
— Move 2: Only updateR1 and updateR3 are called corresponding to C! € {2,5} OR s‘[8,29,51] €
{(1,0,1), (0,1,0)}.
— Move 3: Only updateR1 and updateR2 are called corresponding to C! € {3,4} OR s'[8,29,51] €
{(1,1,0),(0,0,1)}
According to the definition, the LFSR actions before generating the output keystream bits z° z
can be represented as mP...... mt. In this guess and determine attack, first guess the movement m‘
corresponding to the transformation s® — s‘*! and maintains a linear equation set BC by adding new
equations according to m¢ and the output z¢. For each step ¢, there are three linear equations: two are from
equation (9) according to the move guess and one is from the output z* as

zt=st*1[18] @ st*1[40] @ stt1[63] (10)
So, each 2-bit move guess results in three equations.
3.2.1. Move guessing based recovering S’ state

The move equations in (9) and the output equation in (10) correspond to the internal states at

different time instances. But this attack is targeted for recovering the initial state s°. Therefore, the internal
states s¢ at different time instance ¢ should be represented by s° bits for deducing s° related equations. The

state s* is deduced from s° by taking the moves m° m* as
0 1 t-2 t—1
m m m m
95 sl5 5 st st (11)

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

Int J Elec & Comp Eng ISSN: 2088-8708 O 5457

The moves mP m'~1 corresponds to the linear transformations in LFSRs so each s’ bit is a linear

combination of s° bits: such a linear combination can be regarded as a inner product of s® and a 64-bit word
w € F£*. In order to track all state bits in s° s bits, it is defined by 64x64 binary matrices w° wte
(F$%)%* s.t. st = wis® forall i =0, ..., t. The row vector of w' is denoted as wi[j] for j =0, ..., 63. In this
way, the state bit S'[j] can be computed as the inner produce of initial s0 and row vector w[/]. Each state bit

of st can be uniformly expressed as a linear combination of s° bits as

st[i] = wili] -s°, i=0..63 t=012 (12)
For ¢ consecutive movements m? m'~1 and the corresponding output z° - - z'~1, the corresponding
linear equations set BC can be deduced as

getBC((m° -mt —1),(z°..z271)) > BC
Such BC can be regarded as a linear equation system in (13).
AxT = bT, where € F3'*%* | x € F{* b € F}* (13)

and the solution of the equation above corresponds to all candidate s°. The number of solutions depends on
the rank of the matrix 4 and its extended matrix as in (14).

E =[A,b7] (14)

— If rank(4) = rank(E), there will be 264~8¢ solutions where B, is the positive integer defined in (15) as the
rank of the matrix 4;

B: = rank(A) (15)

— If rank(A4) # rank(E), there will no solution at all.
With the guessed moves m° m*~! and the observed output bits z0 -+ - z'71, we are now able to acquire
both 4 and b along with the extended matrix E in (14).
The probability of rank(A) = rank(E):
— For the correct guess of m° m*~Y, rank(A4) = rank(E) is constantly true.
— If mO0, ..., mt—1, the probability of rank(4) = rank(E) is defined as a;(0 < a; < 1). According to our
analysis, such a;'s grows gradually with ¢ and should be measured practically.
So, the probability of rank(A) = rank(E) can be formally represented as (16).

P.[rank(A) = rank(E)] =1 mO ... m'~1 is correctly guessed
=a, €[0,1] mo ... m'~1 is wrongly guessed (16)

The general process of such an attack can be summarized as follows:

S1: Guess mP mt~1, observe z0 - - z'~1 and deduce the linear system represented as AxT = bT

S2: Do the rank test check, whether rank(A4) # rank(E)

S3: Traversing the remaining s0 candidates and identify the correct s® with additional output bits

VAT z'™1 generated by the encryption oracle.

Complexity analysis: in step 3, there are 22! candidate (m°...... m!~1)s. According to (16), averaging
(a; - 22Y) move pattern candidates can pass the test. Adding 8¢ in (15), the averaging time complexity can be
computed as in (17).

COl’Ilp — 22t + a - 22t+64—Bt — 22t + 22t+64—ﬁt+log at (17)

By randomly selecting 23° ((m° mt~Y | (Z0-- z'71)) pairs and performing the attack. The value
obtained for a; and f; for different values of t’s are shown in Table 1. The lowest time complexity is
23656 corresponding to £ = 16.

For testing purposes, the algorithm given in [21] is executed and the values of the time complexity
obtained are shown in Table 1. Although the values obtained are slightly different given in [21] may be
because of random key generation, but the pattern obtained is same.

Memoryless state-recovery cryptanalysis method for lightweight ... (Khedkar Aboli Audumbar)

5458 O ISSN: 2088-8708

Table 1. The values of a, and B, in equation 17 with 23° random tests for S° recovery using
move guess-and-determine attack

t B log o, log Comp. t B log a; log Comp.
6 31.954 -0.10 43.93 17 59.4827 -1.96 36.78
7 34.6816 -0.11 43.20 18 60.4008 -2.95 37.36
8 37.5845 -0.11 42.29 19 61.1459 -4.14 38.49
9 40.5501 -0.11 41.33 20 61.7875 -5.49 40.14
10 43.5157 -0.12 40.35 21 62.3641 -7.01 42.03
11 46.4601 -0.15 39.38 22 62.8739 -8.69 44.00
12 49.3675 -0.18 38.44 23 63.2952 -10.52 46.00
13 52.1619 -0.24 37.59 24 63.6082 -12.49 48.00
14 54.6766 -0.36 36.96 25 63.811 -14.55 50.00
15 56.7376 -0.65 36.62 26 63.9225 -16.63 52.00
16 58.304 -1.19 36.56 27 63.9734 -18.64 54.00

3.2.2. Move guessing based recovering S! state
For recovering s1 according to z% -+ - z

move patterns m?! m'™1 and acquire the linear equation system AxT = bT of sizes €

x € F8*, b € F2'~1. Therefore, the general process has now become:

S1: Guess moves m! m*~! and maintain a linear system Ax” = b7

S2: Do the matrix rank test and discard the wrong guesses satisfying rank(4) # rank(E)

t=1 we do not need to guess m®. We guess directly the — 1

F2(2t—1)><64

>

S3: Traverse the remaining s* candidates and identify the correct s* with additional output bits z* -+« -+ z\=t
In S1, start from w! = I and acquire the bit conditions on (m? mt~1)and (2% - zt1). Besides, letting
st =x=(xg Xg3), there is also an equation deduced from z° according to (10) as

X1 D x40 D Xg3 = 2° (18)
Complexity analysis: Among the 22¢~Y moves m! mt~1, there is a portion of a, passing the rank test
and the averaging rank(A) is St as given in (15). So, the complexity can be evaluated as:

Comp — 22(t—1) + a - 22(t—1)+64—,8t — 22(t—1) + 22(t—1)+64—ﬁt+log a (19)

The a, and 5, parameters are practically evaluated, and the value of complexity are shown in Table 2. The
lowest complexity achieved is 243251 at r =22,

Table 2. The values of a, and B, in equation 19 with 2°° random tests for S! recovery using
move guess-and-determine attack

t B log o, log Comp. t B log o, log Comp.
7 19 0 57 18 51.3778 -0.46902 46.153
8 22 0 56 19 53.9439 -0.81697 45.241
9 25 0 55 20 56.3782 -1.28675 44.352
10 28 0 54 21 58.6462 -1.93777 43.545
11 31 0 53 22 60.6179 -2.91643 43.251
12 34 0 52 23 62.0883 -4.51626 44.219
13 36.9993 -0.00025 51.000 24 63.0036 -6.73256 46.026
14 39.9919 -0.00514 50.002 25 63.5126 -9.31350 48.003
15 42.9586 -0.03206 49.009 26 63.781 -12.06483 50.000
16 45.8676 -0.09924 48.033 27 63.9129 -14.84823 52.000
17 48.6826 -0.22966 47.087 28 63.9701 -17.57609 54.000

4. PROPOSED MODIFIED MOVE GUESSING TECHNIQUE

Golic has notice that not all 3t clock bits C? C! are to be guessed independently. According to
the stop-and-go mechanism, there are occasions where only 2 out of the 3 LFSRs are updated (C! ¢ {0, 7})
and 1 out of the 3 C** bits are already known in C? [12]. But which value of C*** should be considered that
remained constant. 2-bit move pattern in [22] assumed only s*[8] and calculated the time complexity.

In this paper equation (8) of existing technique has been modified by taking either s*[29] or s¢[51]
constant. Because of these proposed assumptions, move pattern are changed which causes the change in the
values of update register and had a wide effect on calculation of time complexity.

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

Int J Elec & Comp Eng ISSN: 2088-8708 O 5459

4.1. Modification 1- with s‘[29] constant
Equivalently binary vector of dimension 2 defined for s¢[29] is as follows:

mt = m'[0,1] = (s*[8] D st[29],s%[29] D s¢[51]) = (ul,v1) € F? (20)
With the knowledge of m¢ in above equation, 2 equations are deduced as follows:

s'[8] @ s°[29] = ul
st[29] @ st[51] = vl (21)

The 4 possible values of mt, referred as Move 0-3, corresponds to different movements in A5/1 LFSRs

transforming s to st*1.

— Move 0: From the LFSR action aspect, updateR 1, updateR2 and updateR3 are all called. This corresponds
to clock values C! € {0,7} or equivalently s%[8,29,51] € {(0,0,0), (1,1,1)}

— Move 1: Only updateR1 and updateR3 are called corresponding to C' € {1,6} or equivalently
st[8,29,51] € {(0,1,0), (1,0,1)}

— Move 2: Only updateR2 and updateR3 are called corresponding to C! € {2,5} OR s‘[8,29,51] €
{(1,0,0), (0,1,1)}.

— Move 3: Only updateR1 and updateR2 are called corresponding to C! € {3,4} OR s%[8,29,51] €
{(1,1,0), (0,0,1)}

As considered in section 3, 3™ equation is considered as

7t = st*1[18] @ st*1[40] @ st*1[63] 22)

4.1.1. Recovery of S’ state with s:[29] constant

By modification as discussed in section 4.1 a new code is implemented, and the time complexity is
calculated by (17). The result obtained is shown in Table 3. The lowest time complexity achieved is
23166 corresponding to ¢ = 15.

4.1.2. Recovery of S! state with s:[29] constant

For recovery of S1 state according to modification made in 4.1 the lowest time complexity is
calculated based on (19). The result obtained is shown in Table 4. The lowest time complexity achieved is
243246 corresponding to ¢ = 22.

Table 3. The values of a, and 8, in equation 17 with 23° random tests for S° recovery using
move guess-and-determine attack

t B log a, log Comp. t B log a, log Comp.
6 32.286 -3.98 39.72 17 59.5851 -8.89 34.06
7 34.9589 -4.19 38.84 18 60.4835 -10.97 36.00
8 37.8285 -4.28 37.88 19 61.2058 -13.25 38.00
9 40.7774 -4.31 36.90 20 61.8244 -15.62 40.00
10 43.7333 -4.36 35.90 21 62.3833 -18.02 42.00
11 46.6703 -4.42 34.90 22 62.8825 -20.65 44.00
12 49.5674 -4.53 33.90 23 63.2985 -23.32 46.00
13 52.3462 -4.78 32.88 24 63.6093 -26.67 48.00
14 54.8391 -5.24 32.00 25 63.8113 -30 50
15 56.8772 -6.00 31.66 26 63.9225 -29 52
16 58.4244 -7.20 32.40 27 63.9734 -30 54

Table 4. The values of a; and 8, in equation 19 with 23° random tests for S' recovery using
move guess-and-determine attack

t B log a, log Comp. t B log a, log Comp.
7 19 0 57 18 51.3778 -0.46813 46.154
8 22 0 56 19 53.944 -0.81775 45.240
9 25 0 55 20 56.3782 -1.29023 44.349
10 28 0 54 21 58.6461 -1.92793 43.554
11 31 0 53 22 60.618 -2.92557 43.246
12 34 0 52 23 62.0883 -4.53347 44217
13 36.9993 -0.00032 51.000 24 63.0036 -6.74720 46.026
14 39.9919 -0.00664 50.001 25 63.5126 -9.33791 48.003
15 42,9586 -0.02965 49.011 26 63.781 -12.14077 50.000
16 45.8676 -0.09063 48.041 27 63.9129 -15.07695 52.000
17 48.6827 -0.23270 47.084 28 63.9702 -18.01131 54.000

Memoryless state-recovery cryptanalysis method for lightweight ... (Khedkar Aboli Audumbar)

5460 O ISSN: 2088-8708

4.2. Modification 2 - with st[51] constant
Equivalently binary vector of dimension 2 defined for st[51] is as follows:

mt = m'[0,1] = (s[8] @ s*[51],s[29] @ st[51]) = (u2,v2) € F? (23)
With the knowledge of m! in above equation, 2 equations are deduced as follows:

s[8] @ s°[51] = p2
st[29] @ st[51] = v2 (24)

The 4 possible values of mt, referred as Move 0-3, corresponds to different movements in A5/1 LFSRs

transforming s¢ to st+1.

— Move 0: From the LFSR action aspect, updateR 1, updateR2 and updateR3 are all called. This corresponds
to clock values C! € {0,7} or equivalently s%[8,29,51] € {(0,0,0), (1,1,1)}

— Move 1: Only updateR1 and updateR2 are called corresponding to C' € {1,6} or equivalently
st[8,29,51] € {(0,0,1), (1,1,0)}

— Move 2: Only updateR2 and updateR3 are called corresponding to C! € {2,5} OR s%[8,29,51] €
{(1,0,0), (0,1,1)}.

— Move 3: Only updateR1 and updateR3 are called corresponding to C!€ {3,4} OR s'[8,29,51] €
{(1,0,1), (0,1,0)}

As considered in section 3, 3" equation is considered as

zt=stt1[18] @ st*1[40] @ stt1[63] (25)

4.2.1. Recovery of S° state with s‘[51] constant

By modification as discussed in section 4.2 a new code is implemented, and the time complexity is
calculated by (17). The result obtained is shown in Table 5. The lowest time complexity achieved is
229313 corresponding to ¢ = 14.

Table 5. The values of a, and B, in equation 17 with 2°° random tests for S° recovery using
move guess-and-determine attack

t B log a, log Comp. t B log a; log Comp.
6 32.4519 -6.977 36.570 17 59.6558 -13.427 34.002
7 35.0975 -7.128 35.774 18 60.5407 -15.803 36.000
8 37.9506 -7.187 34.862 19 61.2472 -18.352 38.000
9 40.8911 -7.208 33.900 20 61.8501 -20.820 40.000
10 43.8423 -7.243 32913 21 62.3964 -23.573 42.000
11 46.7768 -7.287 31.937 22 62.888 -25912 44.000
12 49.6701 -7.405 30.935 23 63.3004 -29 46
13 52.4454 -7.775 29.880 24 63.6098 -30 48
14 54.9343 -8.494 29.313 25 63.8114 -30 50
15 56.9666 -9.626 30.221 26 63.9225 -30 52
16 58.5056 -11.298 32.0255 27 63.9734 -30 54

4.2.2. Recovery of S! state with st[51] constant

For recovery of S! state according to modification made in 4.2 the lowest time complexity is
calculated based on equation 19. The result obtained is shown in Table 6. The lowest time complexity
achieved is 243251 corresponding to ¢ = 22.

Remark: Move guess and determine technique discussed in section 3 and section 4 is based on the
Golic’s observations stating only 2 out of 3 LFSRs are updated and 1 out of 3 LFSRs always retains its
previous state. So in [12], S[8] clock bit is considered common, and the Lowest time complexity result that
we obtain to recover SO and S1 state is 2356 corresponding to ¢ = 16 and 243251 at ¢ = 22,

We have also obtained the time complexity result by keeping the S[29] and S[51] clock bit state as
previous state and observed that time complexity can again be lowered further. To recover S° and S! state the
obtained lowest time complexity is 2316 corresponding to =15, 243246 at =22 for S[29] and 22°313
corresponding to ¢ = 14, 23251 corresponding to ¢ = 22 for S[51].

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

Int J Elec & Comp Eng ISSN: 2088-8708 O 5461

Table 6. The values of a, and B, in equation 19 with 23° random tests for S! recovery using

move guess-and-determine attack

t B log o, log Comp. t B log a; log Comp.
7 19 0 57 18 51.3778 -0.46835 46.15415
8 22 0 56 19 53.944 -0.81716 4524122
9 25 0 55 20 56.3782 -1.28782 44.35174
10 28 0 54 21 58.6462 -1.92914 43.55312
11 31 0 53 22 60.618 -2.91628 43.25156
12 34 0 52 23 62.0883 -4.53073 44.21757
13 36.9993 -0.00048 51.00021 24 63.0037 -6.74762 46.02653
14 39.9919 -0.00581 50.00228 25 63.5126 -9.35980 48.00307
15 42.9586 -0.02951 49.01188 26 63.781 -12.16150 50.00036
16 45.8676 -0.09465 48.03775 27 63.9129 -15.06589 52.00004
17 48.6826 -0.23243 47.08500 28 63.9701 -18.00176 54.00000

5. ALGORITHM TO SELECT A CONSTANT CLOCK BIT USED FOR GUESS AND DETERMINE
TECHNIQUE
According to stop-and-go mechanism in section 2 the occasion when 1 out of 3 clock bits remains as
previous, depends on maj¢ (2). Using this (2) it has been derived that which of the clock bit will remain
same as the previous clock bit and this clock bit is considered constant. Using this constant clock bit move
equation m* of (9), or (21), or (24) will be calculated. Using this m*, further recovery process of S° and S'
will be done as discussed in section 3 and 4.

Attack procedure: The steps involved in attack procedure are as follows.

The general process of such an attack can be summarised as follows:
Step 1: Compute maj' from equation (2)

Step 2: Check which clock bit # maj*

Step 3: That clock bit is considered common bit in 2-bit Move equation.

If (s[8]
(a)
(b)
(c)

(d)

!= maj') then

Acquire ¢ keystream bits z° .., z’?

Initialise S «¢ for collecting s° candidates

Guess (m°, .., m*!) and do the following sub steps:

a. Acquire the equations BC € getBC((m°, .., mt'), (z° ,..., zt')) by calling
Algorithm 1.

b. Deduce the A and b in (13) according to BC and compute the extended
matrix E in (14).

c. Compute rank(A) and rank(E), if rank(A) # rank(E), such a movement guess
is wrong, go back to Step 3 for the next movement guess.

d. For all 264rnk® golutions to Ax’=b7, set §° —x and generate the keystream

bits 2°, ..., 271, st ., 2071,
e. If (2%,...., 207) = (2%, ..., z©'), add such 8° into S.
Return S.
Else If (s[29] != maj') then

Acquire ¢ keystream bits z° .., z’?

Initialise S «¢ for collecting s’ candidates

Guess (m°, .., m*!) and do the following sub steps:

a. Acquire the equations BC € getBC((m°, .., m‘?%), (z° ,..., zt')) by calling
Algorithm 2.

b. Deduce the A and b in (13) according to BC and compute the extended
matrix E in (14).

c. Compute rank(A) and rank(E), if rank(A) # rank(E), such a movement guess
is wrong, go back to Step 3 for the next movement guess.

d. For all 264rak@® golutions to Ax'=b7, set §° «x and generate the keystream

bits 2°, , ettt gt, L o2t
e. If (24,...., 207)y = (z%,...., z©'), add such §° into S.
Return S.
Else If (s[51] != maj’) then

Acquire ¢ keystream bits z°, .., z?

Initialise S «¢ for collecting s’ candidates

Guess (m°, .., m*!) and do the following sub steps:

a. Acquire the equations BC € getBC((m°, .., m‘?%), (z° ,..., zt!)) by calling
Algorithm 3.

b. Deduce the A and b in (13) according to BC and compute the extended
matrix E in (14).

c. Compute rank(A) and rank(E), if rank(A) # rank(E), such a movement guess
is wrong, go back to Step 3 for the next movement guess.

d. For all 264renk(golutions to Ax"=b”, set §° —x and generate the keystream

bits 2°, , gt gt s o3t
e. If (2%,...., 20°v) = (zt,...., z"'), add such §° into S.
Return S.

Memoryless state-recovery cryptanalysis method for lightweight ... (Khedkar Aboli Audumbar)

5462 O ISSN: 2088-8708

Algorithm 1. Deduce the set of equations according to the given moves and output bits
1. procedure getBC (movements (m’, .., m ') €{0,3}%, output bits (z°....,2""1) € Ff
2 Initialise the words W’ — T
3. Initialise the linear equations set BC ¢
4 Initialise x = (x°, ..., x*) as vector of 63 unknown Boolean variables corresponding
to the 64 state bits of s°
5. for i =0, 1, .., £t - 1 do
a. Represent m*= (u, v) € {0, .., 3} as Equation (8)
b. Update BC by adding the following equations
i, W8] @ w[29]) - x =p
ii. (W8] ® wi[51])-x=v
c. Deduce w!'' according to w! by calling w*'! ~UpdW(m?!, w?) defined in Algorithm

3 ref. [12].
d. Update BC by adding the following linear equations corresponding to Equation
(10)

i, (wit18] @ witl[40] ® wit'[63]) . x = Z
6. End for
7. Return BC
8. End Procedure

Algorithm 2. Deduce the set of equations according to the given moves and output bits
1. procedure getBC (movements (m°, .., m 1) €{0,3}%, output bits (2°....,281) € F}
2 Initialise the words W’ — I
3. Initialise the linear equations set BC ¢
4

Initialise x = (x°, ..., x%) as vector of 63 unknown Boolean variables corresponding
to the 64 state bits of s°
5. for i =0, 1, .., t - 1 do
a. Represent mi = (ul, vl) € {0, .., 3} as Equation (20)

b. Update BC by adding the following equations
i. (W8] @ wi[29]) -x = ul
ii. (W' [29] @ wi51]) -x =v1
c. Deduce w!'' according to w! by calling w!*' <UpdW(m', w') defined in Algorithm

3 ref. [12].
d. Update BC by adding the following linear equations corresponding to Equation
(10)

i, (WH18] @ witl[40]1 D witl[63]) . x = Z
6. End for
7. Return BC
8. End Procedure

Algorithm 3. Deduce the set of equations according to the given moves and output bits
1. procedure getBC (movements (m°, .., m 1) €{0,3}% output bits (z°....,z28"1) € F}
2 Initialise the words W’ ~ T
3. Initialise the linear equations set BC «¢
4 Initialise x = (x°, ..., x°)
to the 64 state bits of s°
5. for i =0, 1, .., t - 1 do
a. Represent mi = (u2, v2) €{0, .., 3} as Equation (23)
b. Update BC by adding the following equations
i. (W8] @ wi[51]) - x = u2
ii. (Wi29] @ wi[51])-x =v2
c. Deduce w!''! according to w! by calling w*'! ~UpdW (m?!, w!) defined in Algorithm

as vector of 63 unknown Boolean variables corresponding

3 ref. [12].
d. Update BC by adding the following linear equations corresponding to Equation
(10)

i, (wit18] @ witl[40] ® wit'[63]) . x = Z
6. End for
7. Return BC
8. End Procedure

Follow the same attack procedure as given above to Recover S! state, but no need to guess m® move.

6. RESULT AND DISCUSSION

The selective modified Guess and Determine attack algorithm gives the method to select which
clock bit is to be considered constant and at every time of executing the attack so that minimum time
complexity is achieved to recover S° and S' state. The practical results obtained for recovery of S° and S!
state of proposed methodology are discussed here.

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

Int J Elec & Comp Eng ISSN: 2088-8708 O 5463

6.1. Recovery of S’state
Modification as discussed is implemented and the time complexity is calculated by (17). The result
obtained is shown in Table 7. The lowest time complexity achieved is 22°-3138 corresponding to ¢ = 14.

6.2. Recovery of S! state

For recovery of S! state according to modification made and the lowest time complexity is
calculated based on (19). The result obtained is shown in Table 8. The lowest time complexity achieved is
243246 corresponding to ¢ = 22. Time complexity achieved for recovery of S° and S' state using move guess
and determine attack discussed section 3, proposed modified Guess and determine attack considering S[29]
and S[51] clock bits from section 4 and selective modified Guess and determine attack section (5) are
summerised in Table 9. Table 9 shown that selective modified Guess and determine attack will choose the
clock bit which will always give less time complexity.

Table 7. The values of a;, and S, in equation 17 with 23 random tests for S° recovery using move guess-and-
determine attack

t B log o, log Comp. t B log a, log Comp.
6 32.4518 -6.977 36.5708 17 59.6557 -13.433 34.0026
7 35.0974 -7.127 35.7747 18 60.5406 -15.803 36.0002
8 37.9506 -7.187 34.8622 19 61.2472 -18.320 38.0000
9 40.8911 -7.208 33.9006 20 61.8502 -20.991 40.0000
10 43.8423 -7.243 32.9146 21 62.3964 -23.356 42.0000
11 46.7769 -7.287 31.9370 22 62.888 -26.678 44.0000
12 49.6701 -7.407 30.9346 23 63.3003 -28 46.0000
13 52.4454 -7.775 29.8808 24 63.6098 -30 48
14 54.9342 -8.494 29.3138 25 63.8114 -30 50

15 56.9666 -9.626 30.2212 26 63.9225 -30 52
16 58.5056 -11.300 32.0255 27 63.9734 -30 54

Table 8. The values of a;, and B, in equation 19 with 2°° random tests for S! recovery using move guess-and-
determine attack

t B log a, log Comp. t B log a, log Comp.
7 19 0 57 18 51.3778 -0.46813 46.154
8 22 0 56 19 53.944 -0.81775 45.240
9 25 0 55 20 56.3782 -1.29023 44.349
10 28 0 54 21 58.6461 -1.92793 43.554
11 31 0 53 22 60.618 -2.92557 43.246
12 34 0 52 23 62.0883 -4.53347 44217
13 36.9993 -0.00032 51.000 24 63.0036 -6.74720 46.026
14 399919 -0.00664 50.001 25 63.5126 -9.33791 48.003
15 429586 -0.02965 49.011 26 63.781 -12.14077 50.000
16 45.8676 -0.09063 48.041 27 63.9129 -15.07695 52.000
17 48.6827 -0.23270 47.084 28 63.9702 -18.01131 54.000

Table 9. Values of time complexity with various methods for recovery of S° and S' states

Method Constant clock bit Log complexity during Log complexity during
recovery of S° state recovery of S! state
Move guess and determine attack S[8] 36.56 43.251
Proposed modified Guess and determine attack S[29] 31.66 43.246
Proposed modified Guess and determine attack S[51] 29.313 43.251
Selective modified Guess and determine attack S[8]/S[29] / S[51] 29.3138 43.246

7. CONCLUSION

Here we propose two modifications in 2-bit move guessing techniques and revisited memoryless
state-recovery method move guessing technique and Golic’s guess and determine attack on A5/1 stream
cipher. With practical implementation we can prove that the time complexity can be further reduced by
changing the move equation for recovery of S® and S'. For recovery of S° and S! time complexity achieved
by keeping S[29] bit common is calculated as 231-6° corresponding to ¢ = 15, 243246 corresponding to # = 22
respectively and by keeping S[51] bit common it gives 22%313corresponding to ¢+ = 14 and
243251 corresponding to ¢ = 22. We have also given an algorithm to decide which bit can be kept constant so
that for every iteration of finding S° and S' state bits the time complexity is always at its lower end. Time
complexity calculated with this method for recovery of S° is 2293138 corresponding to ¢ = 14 and for recovery
of S'is 243246 corresponding to ¢ = 22.

Memoryless state-recovery cryptanalysis method for lightweight ... (Khedkar Aboli Audumbar)

5464 O ISSN: 2088-8708

ACKNOWLEDGMENTS

The authors would like to acknowledge the support provided by the high-performance systems at the
Artificial Intelligence and Machine Learning Laboratory, established through the AICTE MODROB Grant
(F. No. 9-93/IDC/MODROB/POLICY-1/2019-20) at Pillai College of Engineering, New Panvel.

FUNDING INFORMATION
Authors state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo 1 R D O E Vi Su P Fu
Khedkar Aboli v v v v v v v v v v v v v
Uday Pandit Khot N
Balaji G. Hogade v

C : Conceptualization I : Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration

Va : Validation O : Writing - Original Draft Fu : Funding acquisition

Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
The data that support the findings of this study are openly available in
[https://github.com/peterhao89/A51 Attacks] at doi: https://doi.org/10.1049/ise2.12120, reference number [22].

REFERENCES

[1] M. Madani and C. Tanougast, “FPGA implementation of an optimized A5/3 encryption algorithm,” Microprocessors and
Microsystems, vol. 78, p. 103212, Oct. 2020, doi: 10.1016/j.micpro.2020.103212.

[2] E. Biham and O. Dunkelman, “Cryptanalysis of the A5/1 GSM stream cipher,” in International Conference on Cryptology,
Springer Berlin Heidelberg, 2000, pp. 43-51.

[3] J. Shah and A. Mahalanobis, “A new Guess-and-determine attack on the AS5/1 stream cipher,” arXiv:1204.4535, 2012.

[4] A. Maximov, T. Johansson, and S. Babbage, “An improved correlation attack on A5/1,” in International Workshop on Selected
Areas in Cryptography, Springer Berlin Heidelberg, 2004, pp. 1-18.

[5] Z. Li, “Optimization of rainbow tables for practically cracking GSM AS5/1 based on validated success rate modelling,”
in Cryptographers’ Track at the RSA Conference, Springer International Publishing, 2016, pp. 359-377.

[6] T. Gendrullis, M. Novotny, and A. Rupp, “A real-world attack breaking AS5/1 within hours,” in Cryptographic Hardware and
Embedded Systems — CHES 2008, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 266—282.

[7] E. Barkan and E. Biham, “Conditional estimators: an effective attack on A5/1,” in International Workshop on Selected Areas in
Cryptography, Springer Berlin Heidelberg, 2006, pp. 1-19.

[8] B. Zhang, “Cryptanalysis of GSM encryption in 2G/3G networks without rainbow tables,” in International Conference on the
Theory and Application of Cryptology and Information Security, 2019, pp. 428-456, doi: 10.1007/978-3-030-34618-8 15.

[91 A. Semenov, I. Otpuschennikov, I. Gribanova, O. Zaikin, and S. Kochemazov, “Translation of algorithmic descriptions of discrete
functions to SAT with applications to cryptanalysis problems,” Logical Methods in Computer Science , vol. 16, no. 1, 2020,
doi: 10.23638/LMCS-16(1:29)2020.

[10] D. Lee, D. Hong, J. Sung, S. Kim, and S. Hong, “Improved ciphertext-only attack on GMR-1,” IEEE Access, vol. 10,
pp. 1979-1989, 2022, doi: 10.1109/ACCESS.2021.3139614.

[11] G. Avoine, X. Carpent, T. Claverie, C. Devine, and D. Leblanc-Albarel, “Time-memory trade-offs sound the death knell for
GPRS and GSM,” in Annual International Cryptology Conference, 2024, pp. 206240, doi: 10.1007/978-3-031-68385-5_7.

[12] P. K. Gundaram, A. N. Tentu, and S. N. Allu, “State transition analysis of GSM encryption algorithm AS5/1,” Journal of
Communications Software and Systems, vol. 18, no. 1, pp. 36—41, 2022, doi: 10.24138/jcomss-2021-0104.

[13] S. N. Allu and A. N. Tentu, “Quantum cryptanalysis on A5/1 Stream cipher,” International Journal of Computer Information
Systems and Industrial Management Applications, vol. 14, pp. 128-137, 2022.

[14] P. K. Gundaram, S. N. Allu, N. Yerukala, and A. N. Tentu, “Rainbow tables for cryptanalysis of A5/1 stream cipher,” in Second
International Conference on Networks and Advances in Computational Technologies: NetACT 19, 2021, pp. 251-261,
doi: 10.1007/978-3-030-49500-8 22.

[15] A. Biryukov, A. Shamir, and D. Wagner, “Real time cryptanalysis of A5/l on a PC,” in International Workshop on Fast Software

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

Int J Elec & Comp Eng ISSN: 2088-8708 O 5465

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]

Encryption, Springer Berlin Heidelberg, 2001, pp. 1-18.

T. Pornin and J. Stern, “Software-hardware trade-offs: application to A5/1 cryptanalysis,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1965 LNCS, pp. 318-327,
2000, doi: 10.1007/3-540-44499-8 25.

J. Lu, Z. Li, and M. Henricksen, “Time-memory trade-off attack on the GSM A5/1 stream cipher using commodity GPGPU,” in
Int. Conference on Applied Cryptography and Network Security, 2015, pp. 350-369, doi: 10.1007/978-3-319-28166-7 17.

L. Veronese, F. Palmarini, R. Focardi, and F. Luccio, “A fast and cost-effective design for FPGA-based fuzzy rainbow tradeoffs,”
in Proceedings of the 8" International Conference on Information Systems Security and Privacy, 2022, pp. 165-176,
doi: 10.5220/0010904300003120.

H. Hadipour and M. Eichlseder, “Autoguess: A tool for finding Guess-and-determine attacks and key bridges,” in International
Conference on Applied Cryptography and Network Security, 2022, pp. 230-250, doi: 10.1007/978-3-031-09234-3 _12.

A. Jain, I. Kaur, A. K. Sharma, N. K. Gupta, and P. Chakraborty, “A new Guess-and-determine method for cryptanalysis of the
GSM encryption,” Complexity, vol. 2023, pp. 1-9, Feb. 2023, doi: 10.1155/2023/7249127.

J. D. Goli¢, “Cryptanalysis of alleged AS stream cipher,” in International Conference on the Theory and Applications of
Cryptographic Techniques, 1997, pp. 239-255, doi: 10.1007/3-540-69053-0 17.

Y. Xu, Y. Hao, and M. Wang, “Revisit two memoryless state-recovery cryptanalysis methods on A5/1,” IET Information Security,
vol. 17, no. 4, pp. 626—638, Jul. 2023, doi: 10.1049/ise2.12120.

C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, “A survey of lightweight stream ciphers for embedded
systems,” Security and Communication Networks, vol. 9, no. 10, pp. 1226-1246, 2016, doi: 10.1002/sec.1399.

S. B. Sadkhan and Z. Hamza, “Proposed enhancement of AS5/1 stream cipher,” in 2019 2" International Conference on
Engineering Technology and its Applications, IICETA 2019, 2019, pp. 111-116, doi: 10.1109/IICETA47481.2019.9013008.

P. Derbez, P.-A. Fouque, and V. Mollimard, “Fake near collisions attacks,” in IJACR Transactions on Symmetric Cryptology,
Dec. 2020, pp. 88—-103, doi: 10.46586/tosc.v2020.i4.88-103.

BIOGRAPHIES OF AUTHORS

Khedkar Aboli Audumbar ' 2 obtained her M.E. (electronics engineering) from
Mumbai University, India, in 2016, B.Tech. (Electronics and Telecommunication Engineering)
from SGGS, Nanded, India, in 2013. Currently pursuring Ph.D. (electronics engineering) from
Mumbai University, India. Currently, she is assistant professor in Pillai College of
Engineering, New Panvel, India. She has supervised six undergraduate projects and theses. Her
field of interest are embeded systems, SQL, data analytics, and cryptanalysis. She can be
contacted at email:aboli@mes.ac.in.

Uday Pandit Khot B4 2 obtained his B.E. (Ind. Electronics), M.Tech. (Electronic
Systems) from IIT Bombay and Ph.D. (by research in the topic synthesis of analog circuits
employing current-mode building blocks) from IIT Bombay. He is having 33 years of teaching
experience and is a fellow member of IETE (India), member of ISTE (India), member of IEEE
(USA) and member of IE (India). He has published more than 60 research papers in
National/International journals and conferences. His areas of research interest are: synthesis of
analog current-mode circuits, fault diagnosis in analog and digital circuits, microwave circuits,
and wireless communication systems. He can be contacted at email:
udaypanditkhot@sfit.ac.in.

Balaji G. Hogade By 2 received his Ph.D. in electronics and telecommunication
engineering (with specialization in smart antennas for wideband wireless networks) from
NMIMS University, Mumbai in 2014. He completed his M.E. in Power Electronics from
Gulbarga University, Karnataka in 1999, and his B.E. in Electronics from Marathwada
University, Aurangabad in 1991. Currently, he is a professor and head of the Department of
Electronics Engineering at Terna Engineering College, affiliated with the University of
Mumbai. He has supervised numerous undergraduate and postgraduate projects and theses.
Under his guidance, five research scholars have completed their Ph.D. degrees and one has
submitted the thesis from the University of Mumbai. He also serves as a Ph.D. reviewer and
) examiner for Savitribai Phule Pune University. He has a strong research portfolio, with several
I national and international publications to his credit. He has also published four patents. He was
a reviewer for Various of International conferences. He has given expert talks in international
conferences. Dr. Hogade was a member of the board of studies (BOS) in Electronics
Engineering and Electrical Engineering at the University of Mumbai. His primary research
interests include wireless networks, smart antennas, and power electronics & drives. He can be
contacted at email: balajihogade@ternaengg.ac.in.

Memoryless state-recovery cryptanalysis method for lightweight ... (Khedkar Aboli Audumbar)

mailto:balajihogade@ternaengg.ac.in
https://orcid.org/0000-0003-0283-516X
https://scholar.google.com/citations?user=qoR2GF8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57192559773
https://www.webofscience.com/wos/author/record/LMN-2467-2024
https://orcid.org/0000-0003-1315-3471
https://scholar.google.com/citations?user=O-AHn3IAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=8691901700
https://www.webofscience.com/wos/author/record/OCK-7771-2025
https://orcid.org/0000-0001-7887-227X
https://scholar.google.com/citations?authuser=1&user=o0BhR3sAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=36052925500
https://www.webofscience.com/wos/author/record/OCK-6254-2025

