
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 6, December 2025, pp. 5453~5465

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i6.pp5453-5465  5453

Journal homepage: http://ijece.iaescore.com

Memoryless state-recovery cryptanalysis method for lightweight

stream cipher – A5/1

Khedkar Aboli Audumbar1,2, Uday Pandit Khot3, Balaji G. Hogade1
1Department of Electronics Engineering, Terna Engineering College, Navi Mumbai, India

2Department of Electronics and Telecommunication, Pillai College of Engineering, New Panvel, India
3Department of Electronics and Telecommunication Engineering, St. Francis Institute of Technology, Mumbai, India

Article Info ABSTRACT

Article history:

Received Jan 29, 2025

Revised Aug 22, 2025

Accepted Sep 16, 2025

 Cryptology refers to the discipline concerned with securing communication

and data in transit by transforming it into an unintelligible form, thereby

preventing interpretation by unauthorized entities. Cryptanalysis is the study

and practice of analyzing cryptographic systems with the aim of uncovering

their weaknesses, finding vulnerabilities and obtaining unauthorized access

to encrypted data. A5/1 is a lightweight stream cipher used to protect GSM

communications. There are two memoryless cryptanalysis techniques used

for this cipher which are Golic’s Guess-and-determine attack and Zhang’s

Near Collision attack. In this paper a new guessing technique called move

guessing technique used to construct linear equation filter along with Golic’s

guess and determine technique is studied. Two modifications in move

guessing technique are proposed for recovery of internal states S0 and S1.

Further, a novel algorithm is proposed to select the modification to get

minimum time complexity for recovery of internal states S0 and S1. The

proposed algorithm gives minimum time complexity of 229.3138 at t = 14 for

recovery of S0 state and 243.246 for recovery of S1 at t = 22.

Keywords:

Cryptanalysis

Guess-and-determine attack

Time-complexity

GSM

A5/1

This is an open access article under the CC BY-SA license.

Corresponding Author:

Khedkar Aboli Audumbar

Department of Electronics Engineering, Terna Engineering College

Plot No 12, Sec-22 Opp. Nerul Railway Station W, Phase II, Nerul, Navi Mumbai, Maharashtra 400706,

India

Email: abolikhedkar@gmail.com

1. INTRODUCTION

Now-a-days many applications on internet of things (IoT) and embedded systems are developed.

Such application uses global system for mobile communications (GSM) technology for communication.

Also, mobile networks use GSM to transmit personal information on radio links [1]. The A5/1 stream cipher

are widely used in GSM communication, has been the subject of extensive cryptanalysis since its inception.

Ever since its proposal, A5/1 has been attacked with various cryptanalytic methods such as Satisfiability

(SAT)-based cryptanalysis, time/memory/data trade-off attacks, guess‐and‐determine attacks, near collision

attack (NCA), ciphertext attack, quantum attack on reduced version of Cipher [2]–[11] [12], [13]. Rainbow

Table generation method used to perform time/memory/data trade-off (TMDTO) attack also has high chances

of collision [14]. Most of the practical attacks on A5/1 require large, precomputed rainbow table which

significantly increases the memory complexities [15]–[18].

Memoryless cryptanalysis techniques on the A5/1 cipher involve analyzing the cipher without

relying on previous states or memory. These techniques aim to break the encryption by examining the

algorithm's structure and properties without considering historical data. By studying the A5/1 algorithm,

cryptanalysts can uncover vulnerabilities and weaknesses that could potentially compromise its security.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

5454

Existing Memoryless cryptanalysis techniques namely guess and determine attack and near collision

attack that determines S1 recovery state and S0 recovery state, respectively. Guess and determine attack

highly relies on identifying patterns and relationships between key and ciphertext [19]. A new low keystream

guess-and-determine (GD) attack was proposed in [20] gives the time complexity of 252. This complexity is

higher than the Golic’s GD attack’s time complexity of 243.15 [21]. Zhang’s near collision attack recover’s S0

state with the time complexity of 253.19 [8]. Xu et al. further worked on Golic’s GD attack and Zhang’s near

collision attack and was found that the complexity of Golic's S1 recovery attack is no lower than 246.04 but

higher than the previously believed 243. On the other hand, Zhang's near collision attack recovers S0 with the

time complexity 253.19: such a complexity can be further lowered to 250.78 with the help of move guessing

technique [22]. The 2-bit move guessing based guess and determine attack on A5/1 that can recover internal

S0 and S1 state with the complexities of 243.92 at t=21 and 243.25 at t= 22, respectively [22].

This research focuses on enhancing the cryptanalysis of the A5/1 stream cipher by refining the move

guessing technique used to recover internal states. While prior work, such as Golic [21] and the move

guessing technique to keep [8] as fixed clock bit method [22], explored partial dependencies among clock

bits, the research gap lies in the lack of understanding and systematic treatment of the behavior when other

clock bits are held constant in the stop-and-go mechanism. This study systematically investigates the

behavior of the cipher when any one out of three clock bits are held constant, revealing how such

configurations affect the stop-and-go mechanism. Two novel modifications are proposed in the move

guessing technique allowing for effective recovery of internal states S0 and S1. A dynamic decision

algorithm is also implemented in these modified techniques to give minimum time complexity.

Although these innovations improve upon existing cryptanalytic strategies for A5/1, they can also

offer a framework that can be generalized to other linear feedback shift register (LFSR)-based stream ciphers.

The study paves the way for future research into adaptive cryptanalysis and lightweight cipher design,

especially in applications where computational efficiency is critical, such as embedded and IoT systems.

This paper is organized as follows. Section 2 provides brief information on key stream generation

procedures in A5/1 cipher. Section 3 discusses the Golic’s Guess and Determine attack [21] and gives a brief

review of 2-bit move guess and determine attack [22]. Later, the modifications in the move guessing

technique are introduced in section 4 and proposed an algorithm in section 5 to select the proper modified

technique for minimum time complexity. Results and Discussion are done in section 6. Section 7 concludes

the research work.

2. THE KEY-STREAM GENERATION PROCEDURE IN A5/1

A5/1 was designed to provide over-the-air communication privacy for the GSM cellular telephone

standard and has been widely used in GSM telephony in Europe and the USA. In its design, three combined

LFSRs with irregular clocking are used to encrypt bursts of traffic, as is required in GSM [23]. A5/1 has

3-LFSR registers R1, R2 and R3 with sizes 19, 22, 23 respectively making it 64-bit internal state as shown in

Figure 1. These states at time t (t = 0, 1, 2….) is represented as [22]:

St = (R1t, R2t, R3t)

 = (St [0, …18], St [19, …40], St [41, …63])

 = (R1t [0, …18], R2t [0, …21], R3t [0, …22]) (1)

Before generating the output bit 𝑧𝑡, A5/1 round function will update the internal state 𝑠𝑡 → 𝑠𝑡+1 in a stop-

and-go manner as follows:

− Compute 𝑚𝑎𝑗𝑡 as

𝑚𝑎𝑗𝑡 = (𝑅1
𝑡[8] ⋅ 𝑅2

𝑡 [10])⨁(𝑅1
𝑡[8] ⋅ 𝑅3

𝑡 [10])⨁(𝑅2
𝑡 [10] ⋅ 𝑅3

𝑡 [10])

 = (𝑠𝑡[8] ⋅ 𝑠𝑡[29])⨁(𝑠𝑡[8] ⋅ 𝑠𝑡[51])⨁(𝑠𝑡[29] ⋅ 𝑠𝑡[51]) (2)

where ‘.’ is the AND of 2-bits

− If 𝑅1
𝑡[8] = 𝑠𝑡[8] ≠ 𝑚𝑎𝑗𝑡 , 𝑅1

𝑡+1← 𝑅1
𝑡 , otherwise, call UpdateR1 as follows

𝑅1

𝑡+1[ⅈ] ← 𝑅1
𝑡[ⅈ − 1] ⅈ ∈ [1,18]

𝑅1
𝑡[18] ⨁ 𝑅1

𝑡[17] ⨁ 𝑅1
𝑡[16] ⨁ 𝑅1

𝑡[13] (3)

− If 𝑅2
𝑡 [10] = 𝑠𝑡[29] ≠ 𝑚𝑎𝑗𝑡 , 𝑅2

𝑡+1← 𝑅2
𝑡 , otherwise, call UpdateR2 as follows:

Int J Elec & Comp Eng ISSN: 2088-8708 

 Memoryless state-recovery cryptanalysis method for lightweight … (Khedkar Aboli Audumbar)

5455

 𝑅2
𝑡+1[ⅈ] ← 𝑅2

𝑡 [ⅈ − 1] ⅈ ∈ [1,21]
← 𝑅2

𝑡 [21] ⨁ 𝑅2
𝑡 [20] (4)

− If 𝑅3
𝑡 [10] = 𝑠𝑡[51] ≠ 𝑚𝑎𝑗𝑡 , 𝑅3

𝑡+1← 𝑅3
𝑡 , otherwise, call UpdateR1 as follows:

𝑅3
𝑡+1[ⅈ] ← 𝑅3

𝑡[ⅈ − 1] ⅈ ∈ [1,22]

← 𝑅3
𝑡 [22] ⨁ 𝑅3

𝑡 [21] ⨁ 𝑅3
𝑡 [20] ⨁ 𝑅3

𝑡 [7] (5)

Then the Output keystream bit 𝑧𝑡 is generated as:

𝑧𝑡 = 𝑅1
𝑡+1[18] ⨁ 𝑅2

𝑡+1[21] ⨁ 𝑅3
𝑡+1[22]

𝑧𝑡 = 𝑠𝑡+1[18] ⨁ 𝑠𝑡+1[40] ⨁ 𝑠𝑡+1[63] (6)

Figure 1. A5/1 stream cipher [24]

3. EXISTING ATTACK FOR A5/1

Although there are many techniques for attacks for A5/1, this paper discusses only the memoryless

techniques of attacks such as 1. Guess and Determine attack and 2. Near Collision attack. Near collision

attack is challenged in many ways, after the theoretical analysis and practical implementations it is observed

that non-randomness claimed in [8] can hardly be achieved so concluded that Near collision attack cannot

have less time complexity compared to Guess and Determine attack [25]. And hence, in this paper discussion

is done only with Guess-and-Determine attack.

3.1. Golic’s guess-and-determine attack [21]

For each step i = 0, 1, 2…, whether the registers R1; R2; R3 are updated or not depends on the three

clock bits 𝑠ⅈ[8,29,51]. Such 3‐bit clocks can also be regarded as a 3‐bit integer 𝐶ⅈ ∈ {0,1 … … 7} defined as

in (7).

𝐶ⅈ[0,1,2] = 𝑠ⅈ[8,29,51] = (𝑝, 𝜌, 𝜎) (7)

In Golic's guess‐and‐determine model, the adversary aims at recovering the initial state 𝑠1, the state right

before the generation of z0. So, the to‐be‐guessed clocks are 𝐶ⅈ for i = 1, 2, …. With the knowledge of ci,

each bit of s i+1 can be represented as a linear combination of 𝑠ⅈ bits and, following (7), the adversary can

deduce three linear equations.

𝑠ⅈ[8] = 𝑝

𝑠ⅈ[29] = 𝜌

𝑠ⅈ[51] = 𝜎

From the output 𝑧ⅈ, the adversary can further deduce one linear equation.

𝑧ⅈ = 𝑠ⅈ+1[18] ⊕ 𝑠ⅈ+1[40] ⊕ 𝑠ⅈ+1[63]

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

5456

In other words, by guessing 3‐bit 𝐶ⅈ, the adversary can deduce 4 linear equations of state bits. Golic

propose a basic attack that guess 3t clock bits 𝐶1 … … 𝐶𝑡. Based on the t + 1 output bits 𝑧0 … … 𝑧𝑡, the

adversary can deduce a system of averaging 1 + 3𝑡 +
4

3
𝑡 linear equations. For t ≥ 14.38, the system can

involve 1 + 3𝑡 +
4

3
𝑡 ≥ 63.32 equations which is sufficient for identifying the correct guess uniquely with

“high probability”. Although the number of equations and the “high probability” have never been verified,

the complexity of Golic's attack is usually believed as 23𝑡 ≥ 243⋅15 steps where each step involves the

solution of a linear system. Apparently, such a complexity evaluation assumes that the wrong‐guess oriented

linear equation system acts randomly, and its rank grows linearly with t to 63.32. It is later proved that such

an assumption is not true for A5/1.

Besides, Golic also notices that not all 3t clock bits 𝐶1 … … 𝐶𝑡 are to be guessed independently.

According to the stop‐and-go mechanism, there are occasions where only 2 out of the 3 LFSRs are updated

(𝐶ⅈ ∉ {0, 7}) and 1 out of the 3 𝐶ⅈ+1 bits are already known in 𝐶ⅈ. To avoid such redundant bit guesses,

Golic propose “branching technique” where a tree structure is applied to track the known bits to further lower

the complexity. However, since the branching technique depends on the clock dynamic values, the

complexities in did not take the effect of the branching technique into the evaluations. This technique detects

S1 state which may cause delayed process of key detection.

3.2. A brief review of move guessing technique [22]

The 2‐bit move pattern 𝑚𝑡 ∈ {0, ⋯ 3} according to the 3‐bit clock 𝐶𝑡 = 𝑠𝑡[8,29,51]. Such a move

pattern can be equivalently regarded as 2-dimentional binary vector defined in (8).

𝑚𝑡 = 𝑚𝑡[0,1] = (𝑠𝑡[8] ⊕ 𝑠𝑡[29], 𝑠𝑡[8] ⊕ 𝑠𝑡[51]) = (𝜇, 𝜈) 𝜖 𝐹2
2 (8)

With the knowledge of 𝑚𝑡 in above equation, two equations are deduced in (9).

𝑠𝑡[8] ⊕ 𝑠𝑡[29] = 𝜇

𝑠𝑡[8] ⊕ 𝑠𝑡[51] = 𝜈 (9)

The four possible values of 𝑚𝑡 , referred as Move 0–3, corresponds to different movements in A5/1 LFSRs

transforming 𝑠𝑡 to 𝑠𝑡+1.

− Move 0: From the LFSR action aspect, updateR1, updateR2 and updateR3 are all called. This corresponds

to clock values 𝐶ⅈ ∈ {0,7} or equivalently st[8,29,51] ∈ {(0,0,0), (1,1,1)}

− Move 1: Only updateR2 and updateR3 are called corresponding to 𝐶ⅈ ∈ {1,6} or equivalently

𝑠𝑡[8,29,51] ∈ {(0,1,1), (1,0,0)}

− Move 2: Only updateR1 and updateR3 are called corresponding to 𝐶ⅈ ∈ {2,5} OR 𝑠𝑡[8,29,51] ∈
{(1,0,1), (0,1,0)}.

− Move 3: Only updateR1 and updateR2 are called corresponding to Cⅈ ∈ {3,4} OR st[8,29,51] ∈
{(1,1,0), (0,0,1)}

According to the definition, the LFSR actions before generating the output keystream bits 𝑧0 … … 𝑧𝑡

can be represented as 𝑚0 … … 𝑚𝑡. In this guess and determine attack, first guess the movement 𝑚𝑡

corresponding to the transformation 𝑠𝑡 → 𝑠𝑡+1 and maintains a linear equation set BC by adding new

equations according to 𝑚𝑡 and the output 𝑧𝑡. For each step t, there are three linear equations: two are from

equation (9) according to the move guess and one is from the output 𝑧𝑡 as

𝑧𝑡 = 𝑠𝑡+1[18] ⨁ 𝑠𝑡+1[40] ⨁ 𝑠𝑡+1[63] (10)

So, each 2‐bit move guess results in three equations.

3.2.1. Move guessing based recovering S0 state

The move equations in (9) and the output equation in (10) correspond to the internal states at

different time instances. But this attack is targeted for recovering the initial state 𝑠0. Therefore, the internal

states 𝑠𝑡 at different time instance t should be represented by 𝑠0 bits for deducing 𝑠0 related equations. The

state 𝑠𝑡 is deduced from 𝑠0 by taking the moves 𝑚0 … … 𝑚𝑡 as

𝑠0 →
𝑚0

𝑠1 →
𝑚1

… →
𝑚𝑡−2

𝑠𝑡−1 →
𝑚𝑡−1

𝑠𝑡 (11)

Int J Elec & Comp Eng ISSN: 2088-8708 

 Memoryless state-recovery cryptanalysis method for lightweight … (Khedkar Aboli Audumbar)

5457

The moves 𝑚0 … … 𝑚𝑡−1 corresponds to the linear transformations in LFSRs so each 𝑠𝑡 bit is a linear

combination of 𝑠0 bits: such a linear combination can be regarded as a inner product of 𝑠0 and a 64‐bit word

𝑤 ∈ 𝐹2
64. In order to track all state bits in 𝑠0 … . . 𝑠𝑡 bits, it is defined by 64x64 binary matrices 𝑤0 … … 𝑤𝑡 ∈

(𝐹2
64)64 s.t. 𝑠ⅈ = 𝑤ⅈ𝑠0 for all i = 0, …, t. The row vector of 𝑤ⅈ is denoted as 𝑤ⅈ[j] for j = 0, …, 63. In this

way, the state bit 𝑆ⅈ[j] can be computed as the inner produce of initial s0 and row vector 𝑤ⅈ[j]. Each state bit

of 𝑠𝑡 can be uniformly expressed as a linear combination of 𝑠0 bits as

𝑠𝑡[ⅈ] = 𝑤𝑡[ⅈ] ⋅ 𝑠0, ⅈ = 0 … 63, 𝑡 = 0,1,2 (12)

For t consecutive movements 𝑚0 … … 𝑚𝑡−1 and the corresponding output 𝑧0 ⋯ ⋯ 𝑧𝑡−1, the corresponding

linear equations set BC can be deduced as

𝑔ⅇ𝑡𝐵𝐶((𝑚⋯
0 ⋅ 𝑚𝑡 − 1), (𝑧0 … 𝑧𝑡−1)) → 𝐵𝐶

Such BC can be regarded as a linear equation system in (13).

𝐴𝑥𝑇 = 𝑏𝑇, where ∈ 𝐹2
3𝑡×64 , 𝑥 ∈ 𝐹2

64 , 𝑏 ∈ 𝐹2
3𝑡 (13)

and the solution of the equation above corresponds to all candidate 𝑠0. The number of solutions depends on

the rank of the matrix A and its extended matrix as in (14).

𝐸 = [𝐴, 𝑏𝑇] (14)

− If rank(A) = rank(E), there will be 264−𝛽𝑡 solutions where 𝛽𝑡 is the positive integer defined in (15) as the

rank of the matrix A;

 𝛽𝑡 = 𝑟𝑎𝑛𝑘(𝐴) (15)

− If rank(A) ≠ rank(E), there will no solution at all.

With the guessed moves 𝑚0 … … 𝑚𝑡−1 and the observed output bits 𝑧0 ⋯ ⋯ 𝑧𝑡−1, we are now able to acquire

both A and b along with the extended matrix E in (14).

The probability of rank(A) = rank(E):

− For the correct guess of 𝑚0 … … 𝑚𝑡−1, rank(A) = rank(E) is constantly true.

− If m0, …, mt−1, the probability of rank(A) = rank(E) is defined as 𝛼𝑡(0 ≤ 𝛼𝑡 ≤ 1). According to our

analysis, such 𝛼𝑡 's grows gradually with t and should be measured practically.

So, the probability of rank(A) = rank(E) can be formally represented as (16).

𝑃𝑟[𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐸)] = 1 𝑚0 … … 𝑚𝑡−1 is correctly guessed

 = 𝛼𝑡 ∈ [0,1] 𝑚0 … … 𝑚𝑡−1 is wrongly guessed (16)

The general process of such an attack can be summarized as follows:

S1: Guess 𝑚0 … … 𝑚𝑡−1, observe 𝑧0 ⋯ ⋯ 𝑧𝑡−1 and deduce the linear system represented as 𝐴𝑥𝑇 = 𝑏𝑇

S2: Do the rank test check, whether rank(A) ≠ rank(E)

S3: Traversing the remaining s0 candidates and identify the correct 𝑠0 with additional output bits

𝑧𝑡 ⋯ ⋯ 𝑧𝑙−1 generated by the encryption oracle.

Complexity analysis: in step 3, there are 22𝑡 candidate (𝑚0 … … 𝑚𝑡−1)'s. According to (16), averaging

(𝛼𝑡 ⋅ 22𝑡) move pattern candidates can pass the test. Adding βt in (15), the averaging time complexity can be

computed as in (17).

Comp = 22𝑡 + 𝛼𝑡 ⋅ 22𝑡+64−𝛽𝑡 = 22𝑡 + 22𝑡+64−𝛽𝑡+𝑙𝑜𝑔 𝛼𝑡 (17)

By randomly selecting 230 ((𝑚0 … … 𝑚𝑡−1) , (𝑧0 ⋯ ⋯ 𝑧𝑡−1)) pairs and performing the attack. The value

obtained for 𝛼𝑡 and 𝛽𝑡 for different values of t’s are shown in Table 1. The lowest time complexity is

236.56 corresponding to t = 16.

For testing purposes, the algorithm given in [21] is executed and the values of the time complexity

obtained are shown in Table 1. Although the values obtained are slightly different given in [21] may be

because of random key generation, but the pattern obtained is same.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

5458

Table 1. The values of 𝛼𝑡 and 𝛽𝑡 in equation 17 with 230 random tests for S0 recovery using

move guess-and-determine attack
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp.

6 31.954 -0.10 43.93 17 59.4827 -1.96 36.78

7 34.6816 -0.11 43.20 18 60.4008 -2.95 37.36
8 37.5845 -0.11 42.29 19 61.1459 -4.14 38.49

9 40.5501 -0.11 41.33 20 61.7875 -5.49 40.14

10 43.5157 -0.12 40.35 21 62.3641 -7.01 42.03
11 46.4601 -0.15 39.38 22 62.8739 -8.69 44.00

12 49.3675 -0.18 38.44 23 63.2952 -10.52 46.00

13 52.1619 -0.24 37.59 24 63.6082 -12.49 48.00
14 54.6766 -0.36 36.96 25 63.811 -14.55 50.00

15 56.7376 -0.65 36.62 26 63.9225 -16.63 52.00

16 58.304 -1.19 36.56 27 63.9734 -18.64 54.00

3.2.2. Move guessing based recovering S1 state

For recovering s1 according to 𝑧0 ⋯ ⋯ 𝑧𝑡−1, we do not need to guess 𝑚0. We guess directly the t− 1

move patterns 𝑚1 … … 𝑚𝑡−1 and acquire the linear equation system 𝐴𝑥𝑇 = 𝑏𝑇 of sizes ∈ 𝐹2
(2𝑡−1)×64

,

𝑥 ∈ 𝐹2
64, 𝑏 ∈ 𝐹2

2𝑡−1. Therefore, the general process has now become:

S1: Guess moves 𝑚1 … … 𝑚𝑡−1 and maintain a linear system 𝐴𝑥𝑇 = 𝑏𝑇

S2: Do the matrix rank test and discard the wrong guesses satisfying rank(A) ≠ rank(E)

S3: Traverse the remaining 𝑠1 candidates and identify the correct 𝑠1 with additional output bits 𝑧𝑡 ⋯ ⋯ 𝑧𝑙−1.

In S1, start from 𝑤1 = I and acquire the bit conditions on (𝑚1 … … 𝑚𝑡−1) and (𝑧1 ⋯ ⋯ 𝑧𝑡−1). Besides, letting

𝑠1 = x = (𝑥0 … … 𝑥63), there is also an equation deduced from 𝑧0 according to (10) as

𝑥18 ⊕ 𝑥40 ⊕ 𝑥63 = 𝑧0 (18)

Complexity analysis: Among the 22(𝑡−1) moves 𝑚1 … … 𝑚𝑡−1, there is a portion of 𝛼𝑡 passing the rank test

and the averaging rank(A) is βt as given in (15). So, the complexity can be evaluated as:

Comp = 22(𝑡−1) + 𝛼𝑡 ⋅ 22(𝑡−1)+64−𝛽𝑡 = 22(𝑡−1) + 22(𝑡−1)+64−𝛽𝑡+𝑙𝑜𝑔 𝛼𝑡 (19)

The 𝛼𝑡 and 𝛽𝑡 parameters are practically evaluated, and the value of complexity are shown in Table 2. The

lowest complexity achieved is 243.251 at t = 22.

Table 2. The values of 𝛼𝑡 and 𝛽𝑡 in equation 19 with 230 random tests for S1 recovery using

move guess-and-determine attack
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp.

7 19 0 57 18 51.3778 -0.46902 46.153
8 22 0 56 19 53.9439 -0.81697 45.241

9 25 0 55 20 56.3782 -1.28675 44.352

10 28 0 54 21 58.6462 -1.93777 43.545
11 31 0 53 22 60.6179 -2.91643 43.251

12 34 0 52 23 62.0883 -4.51626 44.219

13 36.9993 -0.00025 51.000 24 63.0036 -6.73256 46.026

14 39.9919 -0.00514 50.002 25 63.5126 -9.31350 48.003

15 42.9586 -0.03206 49.009 26 63.781 -12.06483 50.000
16 45.8676 -0.09924 48.033 27 63.9129 -14.84823 52.000

17 48.6826 -0.22966 47.087 28 63.9701 -17.57609 54.000

4. PROPOSED MODIFIED MOVE GUESSING TECHNIQUE

Golic has notice that not all 3t clock bits 𝐶1 … … 𝐶𝑡 are to be guessed independently. According to

the stop‐and-go mechanism, there are occasions where only 2 out of the 3 LFSRs are updated (𝐶ⅈ ∉ {0, 7})

and 1 out of the 3 𝐶ⅈ+1 bits are already known in 𝐶ⅈ [12]. But which value of 𝐶ⅈ+1 should be considered that

remained constant. 2-bit move pattern in [22] assumed only 𝑠𝑡[8] and calculated the time complexity.

In this paper equation (8) of existing technique has been modified by taking either 𝑠𝑡[29] or 𝑠𝑡[51]
constant. Because of these proposed assumptions, move pattern are changed which causes the change in the

values of update register and had a wide effect on calculation of time complexity.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Memoryless state-recovery cryptanalysis method for lightweight … (Khedkar Aboli Audumbar)

5459

4.1. Modification 1- with 𝒔𝒕[𝟐𝟗] constant

Equivalently binary vector of dimension 2 defined for 𝑠𝑡[29] is as follows:

𝑚𝑡 = 𝑚𝑡[0,1] = (𝑠𝑡[8] ⊕ 𝑠𝑡[29], 𝑠𝑡[29] ⊕ 𝑠𝑡[51]) = (𝜇1, 𝜈1) 𝜖 𝐹2
2 (20)

With the knowledge of 𝑚𝑡 in above equation, 2 equations are deduced as follows:

𝑠𝑡[8] ⊕ 𝑠𝑡[29] = 𝜇1

𝑠𝑡[29] ⊕ 𝑠𝑡[51] = 𝜈1 (21)

The 4 possible values of 𝑚𝑡 , referred as Move 0–3, corresponds to different movements in A5/1 LFSRs

transforming 𝑠𝑡 to 𝑠𝑡+1.

− Move 0: From the LFSR action aspect, updateR1, updateR2 and updateR3 are all called. This corresponds

to clock values 𝐶ⅈ ∈ {0,7} or equivalently st[8,29,51] ∈ {(0,0,0), (1,1,1)}

− Move 1: Only updateR1 and updateR3 are called corresponding to 𝐶ⅈ ∈ {1,6} or equivalently

𝑠𝑡[8,29,51] ∈ {(0,1,0), (1,0,1)}

− Move 2: Only updateR2 and updateR3 are called corresponding to 𝐶ⅈ ∈ {2,5} OR 𝑠𝑡[8,29,51] ∈
{(1,0,0), (0,1,1)}.

− Move 3: Only updateR1 and updateR2 are called corresponding to Cⅈ ∈ {3,4} OR st[8,29,51] ∈
{(1,1,0), (0,0,1)}

As considered in section 3, 3rd equation is considered as

𝑧𝑡 = 𝑠𝑡+1[18] ⨁ 𝑠𝑡+1[40] ⨁ 𝑠𝑡+1[63] (22)

4.1.1. Recovery of S0 state with 𝒔𝒕[𝟐𝟗] constant

By modification as discussed in section 4.1 a new code is implemented, and the time complexity is

calculated by (17). The result obtained is shown in Table 3. The lowest time complexity achieved is

231.66 corresponding to t = 15.

4.1.2. Recovery of S1 state with 𝒔𝒕[𝟐𝟗] constant

For recovery of S1 state according to modification made in 4.1 the lowest time complexity is

calculated based on (19). The result obtained is shown in Table 4. The lowest time complexity achieved is

243.246 corresponding to t = 22.

Table 3. The values of 𝛼𝑡 and 𝛽𝑡 in equation 17 with 230 random tests for S0 recovery using

move guess-and-determine attack
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp.

6 32.286 -3.98 39.72 17 59.5851 -8.89 34.06

7 34.9589 -4.19 38.84 18 60.4835 -10.97 36.00
8 37.8285 -4.28 37.88 19 61.2058 -13.25 38.00

9 40.7774 -4.31 36.90 20 61.8244 -15.62 40.00

10 43.7333 -4.36 35.90 21 62.3833 -18.02 42.00
11 46.6703 -4.42 34.90 22 62.8825 -20.65 44.00

12 49.5674 -4.53 33.90 23 63.2985 -23.32 46.00

13 52.3462 -4.78 32.88 24 63.6093 -26.67 48.00
14 54.8391 -5.24 32.00 25 63.8113 -30 50

15 56.8772 -6.00 31.66 26 63.9225 -29 52

16 58.4244 -7.20 32.40 27 63.9734 -30 54

Table 4. The values of 𝛼𝑡 and 𝛽𝑡 in equation 19 with 230 random tests for S1 recovery using

move guess-and-determine attack
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp.

7 19 0 57 18 51.3778 -0.46813 46.154

8 22 0 56 19 53.944 -0.81775 45.240
9 25 0 55 20 56.3782 -1.29023 44.349

10 28 0 54 21 58.6461 -1.92793 43.554

11 31 0 53 22 60.618 -2.92557 43.246

12 34 0 52 23 62.0883 -4.53347 44.217

13 36.9993 -0.00032 51.000 24 63.0036 -6.74720 46.026

14 39.9919 -0.00664 50.001 25 63.5126 -9.33791 48.003
15 42.9586 -0.02965 49.011 26 63.781 -12.14077 50.000

16 45.8676 -0.09063 48.041 27 63.9129 -15.07695 52.000

17 48.6827 -0.23270 47.084 28 63.9702 -18.01131 54.000

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

5460

4.2. Modification 2 - with 𝒔𝒕[𝟓𝟏] constant

Equivalently binary vector of dimension 2 defined for 𝑠𝑡[51] is as follows:

𝑚𝑡 = 𝑚𝑡[0,1] = (𝑠𝑡[8] ⊕ 𝑠𝑡[51], 𝑠𝑡[29] ⊕ 𝑠𝑡[51]) = (𝜇2, 𝜈2) 𝜖 𝐹2
2 (23)

With the knowledge of 𝑚𝑡 in above equation, 2 equations are deduced as follows:

𝑠𝑡[8] ⊕ 𝑠𝑡[51] = 𝜇2

𝑠𝑡[29] ⊕ 𝑠𝑡[51] = 𝜈2 (24)

The 4 possible values of 𝑚𝑡 , referred as Move 0–3, corresponds to different movements in A5/1 LFSRs

transforming 𝑠𝑡 to 𝑠𝑡+1.

− Move 0: From the LFSR action aspect, updateR1, updateR2 and updateR3 are all called. This corresponds

to clock values 𝐶ⅈ ∈ {0,7} or equivalently st[8,29,51] ∈ {(0,0,0), (1,1,1)}

− Move 1: Only updateR1 and updateR2 are called corresponding to 𝐶ⅈ ∈ {1,6} or equivalently

𝑠𝑡[8,29,51] ∈ {(0,0,1), (1,1,0)}

− Move 2: Only updateR2 and updateR3 are called corresponding to 𝐶ⅈ ∈ {2,5} OR 𝑠𝑡[8,29,51] ∈
{(1,0,0), (0,1,1)}.

− Move 3: Only updateR1 and updateR3 are called corresponding to Cⅈ ∈ {3,4} OR st[8,29,51] ∈
{(1,0,1), (0,1,0)}

As considered in section 3, 3rd equation is considered as

𝑧𝑡 = 𝑠𝑡+1[18] ⨁ 𝑠𝑡+1[40] ⨁ 𝑠𝑡+1[63] (25)

4.2.1. Recovery of S0 state with 𝒔𝒕[𝟓𝟏] constant

By modification as discussed in section 4.2 a new code is implemented, and the time complexity is

calculated by (17). The result obtained is shown in Table 5. The lowest time complexity achieved is

229.313 corresponding to t = 14.

Table 5. The values of 𝛼𝑡 and 𝛽𝑡 in equation 17 with 230 random tests for S0 recovery using

move guess-and-determine attack
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp.

6 32.4519 -6.977 36.570 17 59.6558 -13.427 34.002

7 35.0975 -7.128 35.774 18 60.5407 -15.803 36.000
8 37.9506 -7.187 34.862 19 61.2472 -18.352 38.000

9 40.8911 -7.208 33.900 20 61.8501 -20.820 40.000

10 43.8423 -7.243 32.913 21 62.3964 -23.573 42.000
11 46.7768 -7.287 31.937 22 62.888 -25.912 44.000

12 49.6701 -7.405 30.935 23 63.3004 -29 46

13 52.4454 -7.775 29.880 24 63.6098 -30 48
14 54.9343 -8.494 29.313 25 63.8114 -30 50

15 56.9666 -9.626 30.221 26 63.9225 -30 52

16 58.5056 -11.298 32.0255 27 63.9734 -30 54

4.2.2. Recovery of S1 state with 𝒔𝒕[𝟓𝟏] constant

For recovery of S1 state according to modification made in 4.2 the lowest time complexity is

calculated based on equation 19. The result obtained is shown in Table 6. The lowest time complexity

achieved is 243.251 corresponding to t = 22.

Remark: Move guess and determine technique discussed in section 3 and section 4 is based on the

Golic’s observations stating only 2 out of 3 LFSRs are updated and 1 out of 3 LFSRs always retains its

previous state. So in [12], 𝑆[8] clock bit is considered common, and the Lowest time complexity result that

we obtain to recover S0 and S1 state is 236.56 corresponding to t = 16 and 243.251 at t = 22.

We have also obtained the time complexity result by keeping the 𝑆[29] and 𝑆[51] clock bit state as

previous state and observed that time complexity can again be lowered further. To recover S0 and S1 state the

obtained lowest time complexity is 231.66 corresponding to t = 15, 243.246 at t = 22 for 𝑆[29] and 229.313

corresponding to t = 14, 243.251 corresponding to t = 22 for 𝑆[51].

Int J Elec & Comp Eng ISSN: 2088-8708 

 Memoryless state-recovery cryptanalysis method for lightweight … (Khedkar Aboli Audumbar)

5461

Table 6. The values of 𝛼𝑡 and 𝛽𝑡 in equation 19 with 230 random tests for S1 recovery using

move guess-and-determine attack
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp.

7 19 0 57 18 51.3778 -0.46835 46.15415
8 22 0 56 19 53.944 -0.81716 45.24122

9 25 0 55 20 56.3782 -1.28782 44.35174

10 28 0 54 21 58.6462 -1.92914 43.55312
11 31 0 53 22 60.618 -2.91628 43.25156

12 34 0 52 23 62.0883 -4.53073 44.21757

13 36.9993 -0.00048 51.00021 24 63.0037 -6.74762 46.02653
14 39.9919 -0.00581 50.00228 25 63.5126 -9.35980 48.00307

15 42.9586 -0.02951 49.01188 26 63.781 -12.16150 50.00036

16 45.8676 -0.09465 48.03775 27 63.9129 -15.06589 52.00004
17 48.6826 -0.23243 47.08500 28 63.9701 -18.00176 54.00000

5. ALGORITHM TO SELECT A CONSTANT CLOCK BIT USED FOR GUESS AND DETERMINE

TECHNIQUE

According to stop-and-go mechanism in section 2 the occasion when 1 out of 3 clock bits remains as

previous, depends on 𝑚𝑎𝑗𝑡 (2). Using this (2) it has been derived that which of the clock bit will remain

same as the previous clock bit and this clock bit is considered constant. Using this constant clock bit move

equation 𝑚𝑡 of (9), or (21), or (24) will be calculated. Using this 𝑚𝑡, further recovery process of S0 and S1

will be done as discussed in section 3 and 4.

Attack procedure: The steps involved in attack procedure are as follows.
The general process of such an attack can be summarised as follows:

Step 1: Compute 𝑚𝑎𝑗𝑡 from equation (2)

Step 2: Check which clock bit ≠ 𝑚𝑎𝑗𝑡

Step 3: That clock bit is considered common bit in 2-bit Move equation.

If (s[8] != 𝑚𝑎𝑗𝑡) then

(a) Acquire ℓ keystream bits z0, …, zℓ−1
(b) Initialise S ←ϕ for collecting s0 candidates
(c) Guess (m0, …, mt−1) and do the following sub steps:

a. Acquire the equations BC  getBC((m0, …, mt−1), (z0 ,…., zt−1)) by calling

Algorithm 1.

b. Deduce the A and b in (13) according to BC and compute the extended

matrix E in (14).

c. Compute rank(A) and rank(E), if rank(A) ≠ rank(E), such a movement guess
is wrong, go back to Step 3 for the next movement guess.

d. For all 264−rank(A) solutions to AxT=bT, set 𝑠̂0 ←x and generate the keystream

bits 𝑧̂0, …., 𝑧̂𝑡−1, 𝑧̂𝑡, …; 𝑧̂ℓ−1.

e. If (𝑧̂𝑡,….., 𝑧̂ℓ−1) = (𝑧𝑡,….., 𝑧ℓ−1), add such 𝑠̂0 into S.

(d) Return S.

 Else If (s[29] != 𝑚𝑎𝑗𝑡) then

(a) Acquire ℓ keystream bits z0, …, zℓ−1
(b) Initialise S ←ϕ for collecting s0 candidates
(c) Guess (m0, …, mt−1) and do the following sub steps:

a. Acquire the equations BC  getBC((m0, …, mt−1), (z0 ,…., zt−1)) by calling

Algorithm 2.

b. Deduce the A and b in (13) according to BC and compute the extended

matrix E in (14).

c. Compute rank(A) and rank(E), if rank(A) ≠ rank(E), such a movement guess
is wrong, go back to Step 3 for the next movement guess.

d. For all 264−rank(A) solutions to AxT=bT, set 𝑠̂0 ←x and generate the keystream

bits 𝑧̂0, …., 𝑧̂𝑡−1, 𝑧̂𝑡, …; 𝑧̂ℓ−1.

e. If (𝑧̂𝑡,….., 𝑧̂ℓ−1) = (𝑧𝑡,….., 𝑧ℓ−1), add such 𝑠̂0 into S.

(d) Return S.

 Else If (s[51] != 𝑚𝑎𝑗𝑡) then

(a) Acquire ℓ keystream bits z0, …, zℓ−1
(b) Initialise S ←ϕ for collecting s0 candidates
(c) Guess (m0, …, mt−1) and do the following sub steps:

a. Acquire the equations BC  getBC((m0, …, mt−1), (z0 ,…., zt−1)) by calling

Algorithm 3.

b. Deduce the A and b in (13) according to BC and compute the extended

matrix E in (14).

c. Compute rank(A) and rank(E), if rank(A) ≠ rank(E), such a movement guess
is wrong, go back to Step 3 for the next movement guess.

d. For all 264−rank(A) solutions to AxT=bT, set 𝑠̂0 ←x and generate the keystream

bits 𝑧̂0, …., 𝑧̂𝑡−1, 𝑧̂𝑡, …; 𝑧̂ℓ−1.

e. If (𝑧̂𝑡,….., 𝑧̂ℓ−1) = (𝑧𝑡,….., 𝑧ℓ−1), add such 𝑠̂0 into S.

(d) Return S.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

5462

Algorithm 1. Deduce the set of equations according to the given moves and output bits
1. procedure getBC (movements (m0, …, m t−1) ∈ {0,3}t, output bits (𝑧0, … . . , 𝑧𝑡−1) ∈ 𝐹2

𝑡

2. Initialise the words W0 ← I

3. Initialise the linear equations set BC ←ϕ

4. Initialise x = (x0 , …., x63) as vector of 63 unknown Boolean variables corresponding

to the 64 state bits of s0

5. for i = 0, 1, …, t − 1 do

a. Represent mi = (μ, ν) ∈ {0, …, 3} as Equation (8)
b. Update BC by adding the following equations

i. (𝑤ⅈ[8] ⊕ 𝑤ⅈ[29]) ⋅ 𝑥 = 𝜇
ii. (𝑤ⅈ[8] ⊕ 𝑤ⅈ[51]) ⋅ 𝑥 = 𝜈

c. Deduce wi+1 according to wi by calling wi+1 ←UpdW(mi, wi) defined in Algorithm

3 ref. [12].

d. Update BC by adding the following linear equations corresponding to Equation

(10)

i. (𝑤ⅈ+1[18] ⊕ 𝑤ⅈ+1[40] ⊕ 𝑤ⅈ+1[63]) . 𝑥 = 𝑧ⅈ

6. End for

7. Return BC

8. End Procedure

Algorithm 2. Deduce the set of equations according to the given moves and output bits
1. procedure getBC (movements (m0, …, m t−1) ∈ {0,3}t, output bits (𝑧0, … . . , 𝑧𝑡−1) ∈ 𝐹2

𝑡

2. Initialise the words W0 ← I

3. Initialise the linear equations set BC ←ϕ

4. Initialise x = (x0 , …., x63) as vector of 63 unknown Boolean variables corresponding

to the 64 state bits of s0

5. for i = 0, 1, …, t − 1 do

a. Represent mi = (𝜇1, 𝜈1) ∈ {0, …, 3} as Equation (20)
b. Update BC by adding the following equations

i. (𝑤ⅈ[8] ⊕ 𝑤ⅈ[29]) ⋅ 𝑥 = 𝜇1
ii. (𝑤ⅈ[29] ⊕ 𝑤ⅈ[51]) ⋅ 𝑥 = 𝜈1

c. Deduce wi+1 according to wi by calling wi+1 ←UpdW(mi, wi) defined in Algorithm

3 ref. [12].

d. Update BC by adding the following linear equations corresponding to Equation

(10)

i. (𝑤ⅈ+1[18] ⊕ 𝑤ⅈ+1[40] ⊕ 𝑤ⅈ+1[63]) . 𝑥 = 𝑧ⅈ

6. End for

7. Return BC

8. End Procedure

Algorithm 3. Deduce the set of equations according to the given moves and output bits
1. procedure getBC (movements (m0, …, m t−1) ∈ {0,3}t, output bits (𝑧0, … . . , 𝑧𝑡−1) ∈ 𝐹2

𝑡

2. Initialise the words W0 ← I

3. Initialise the linear equations set BC ←ϕ

4. Initialise x = (x0 , …., x63) as vector of 63 unknown Boolean variables corresponding

to the 64 state bits of s0

5. for i = 0, 1, …, t − 1 do

a. Represent mi = (𝜇2, 𝜈2) ∈{0, …, 3} as Equation (23)
b. Update BC by adding the following equations

i. (𝑤ⅈ[8] ⊕ 𝑤ⅈ[51]) ⋅ 𝑥 = 𝜇2
ii. (𝑤ⅈ[29] ⊕ 𝑤ⅈ[51]) ⋅ 𝑥 = 𝜈2

c. Deduce wi+1 according to wi by calling wi+1 ←UpdW(mi, wi) defined in Algorithm

3 ref. [12].

d. Update BC by adding the following linear equations corresponding to Equation

(10)

i. (𝑤ⅈ+1[18] ⊕ 𝑤ⅈ+1[40] ⊕ 𝑤ⅈ+1[63]) . 𝑥 = 𝑧ⅈ

6. End for

7. Return BC

8. End Procedure

Follow the same attack procedure as given above to Recover S1 state, but no need to guess m0 move.

6. RESULT AND DISCUSSION

The selective modified Guess and Determine attack algorithm gives the method to select which

clock bit is to be considered constant and at every time of executing the attack so that minimum time

complexity is achieved to recover S0 and S1 state. The practical results obtained for recovery of S0 and S1

state of proposed methodology are discussed here.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Memoryless state-recovery cryptanalysis method for lightweight … (Khedkar Aboli Audumbar)

5463

6.1. Recovery of S0 state

Modification as discussed is implemented and the time complexity is calculated by (17). The result

obtained is shown in Table 7. The lowest time complexity achieved is 229.3138 corresponding to t = 14.

6.2. Recovery of S1 state

For recovery of S1 state according to modification made and the lowest time complexity is

calculated based on (19). The result obtained is shown in Table 8. The lowest time complexity achieved is

243.246 corresponding to t = 22. Time complexity achieved for recovery of S0 and S1 state using move guess

and determine attack discussed section 3, proposed modified Guess and determine attack considering 𝑆[29]
and 𝑆[51] clock bits from section 4 and selective modified Guess and determine attack section (5) are

summerised in Table 9. Table 9 shown that selective modified Guess and determine attack will choose the

clock bit which will always give less time complexity.

Table 7. The values of 𝛼𝑡 and 𝛽𝑡 in equation 17 with 230 random tests for S0 recovery using move guess-and-

determine attack
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp.

6 32.4518 -6.977 36.5708 17 59.6557 -13.433 34.0026

7 35.0974 -7.127 35.7747 18 60.5406 -15.803 36.0002
8 37.9506 -7.187 34.8622 19 61.2472 -18.320 38.0000

9 40.8911 -7.208 33.9006 20 61.8502 -20.991 40.0000

10 43.8423 -7.243 32.9146 21 62.3964 -23.356 42.0000
11 46.7769 -7.287 31.9370 22 62.888 -26.678 44.0000

12 49.6701 -7.407 30.9346 23 63.3003 -28 46.0000

13 52.4454 -7.775 29.8808 24 63.6098 -30 48
14 54.9342 -8.494 29.3138 25 63.8114 -30 50

15 56.9666 -9.626 30.2212 26 63.9225 -30 52

16 58.5056 -11.300 32.0255 27 63.9734 -30 54

Table 8. The values of 𝛼𝑡 and 𝛽𝑡 in equation 19 with 230 random tests for S1 recovery using move guess-and-

determine attack
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp.

7 19 0 57 18 51.3778 -0.46813 46.154

8 22 0 56 19 53.944 -0.81775 45.240
9 25 0 55 20 56.3782 -1.29023 44.349

10 28 0 54 21 58.6461 -1.92793 43.554

11 31 0 53 22 60.618 -2.92557 43.246

12 34 0 52 23 62.0883 -4.53347 44.217

13 36.9993 -0.00032 51.000 24 63.0036 -6.74720 46.026

14 39.9919 -0.00664 50.001 25 63.5126 -9.33791 48.003
15 42.9586 -0.02965 49.011 26 63.781 -12.14077 50.000

16 45.8676 -0.09063 48.041 27 63.9129 -15.07695 52.000
17 48.6827 -0.23270 47.084 28 63.9702 -18.01131 54.000

Table 9. Values of time complexity with various methods for recovery of S0 and S1 states
Method Constant clock bit Log complexity during

recovery of S0 state
Log complexity during

recovery of S1 state

Move guess and determine attack S[8] 36.56 43.251

Proposed modified Guess and determine attack S[29] 31.66 43.246

Proposed modified Guess and determine attack S[51] 29.313 43.251

Selective modified Guess and determine attack S[8] / S[29] / S[51] 29.3138 43.246

7. CONCLUSION

Here we propose two modifications in 2-bit move guessing techniques and revisited memoryless

state-recovery method move guessing technique and Golic’s guess and determine attack on A5/1 stream

cipher. With practical implementation we can prove that the time complexity can be further reduced by

changing the move equation for recovery of S0 and S1. For recovery of S0 and S1 time complexity achieved

by keeping 𝑆[29] bit common is calculated as 231.66 corresponding to t = 15, 243.246 corresponding to t = 22

respectively and by keeping 𝑆[51] bit common it gives 229.313 corresponding to t = 14 and

243.251 corresponding to t = 22. We have also given an algorithm to decide which bit can be kept constant so

that for every iteration of finding S0 and S1 state bits the time complexity is always at its lower end. Time

complexity calculated with this method for recovery of S0 is 229.3138 corresponding to t = 14 and for recovery

of S1 is 243.246 corresponding to t = 22.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5453-5465

5464

ACKNOWLEDGMENTS

The authors would like to acknowledge the support provided by the high-performance systems at the

Artificial Intelligence and Machine Learning Laboratory, established through the AICTE MODROB Grant

(F. No. 9-93/IDC/MODROB/POLICY-1/2019-20) at Pillai College of Engineering, New Panvel.

FUNDING INFORMATION

 Authors state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

 This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Khedkar Aboli ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Uday Pandit Khot ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Balaji G. Hogade ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

 Authors state no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study are openly available in

[https://github.com/peterhao89/A51Attacks] at doi: https://doi.org/10.1049/ise2.12120, reference number [22].

REFERENCES
[1] M. Madani and C. Tanougast, “FPGA implementation of an optimized A5/3 encryption algorithm,” Microprocessors and

Microsystems, vol. 78, p. 103212, Oct. 2020, doi: 10.1016/j.micpro.2020.103212.

[2] E. Biham and O. Dunkelman, “Cryptanalysis of the A5/1 GSM stream cipher,” in International Conference on Cryptology,
Springer Berlin Heidelberg, 2000, pp. 43–51.

[3] J. Shah and A. Mahalanobis, “A new Guess-and-determine attack on the A5/1 stream cipher,” arXiv:1204.4535, 2012.

[4] A. Maximov, T. Johansson, and S. Babbage, “An improved correlation attack on A5/1,” in International Workshop on Selected
Areas in Cryptography, Springer Berlin Heidelberg, 2004, pp. 1–18.

[5] Z. Li, “Optimization of rainbow tables for practically cracking GSM A5/1 based on validated success rate modelling,”
in Cryptographers’ Track at the RSA Conference, Springer International Publishing, 2016, pp. 359–377.

[6] T. Gendrullis, M. Novotný, and A. Rupp, “A real-world attack breaking A5/1 within hours,” in Cryptographic Hardware and

Embedded Systems – CHES 2008, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 266–282.

[7] E. Barkan and E. Biham, “Conditional estimators: an effective attack on A5/1,” in International Workshop on Selected Areas in

Cryptography, Springer Berlin Heidelberg, 2006, pp. 1–19.

[8] B. Zhang, “Cryptanalysis of GSM encryption in 2G/3G networks without rainbow tables,” in International Conference on the
Theory and Application of Cryptology and Information Security, 2019, pp. 428–456, doi: 10.1007/978-3-030-34618-8_15.

[9] A. Semenov, I. Otpuschennikov, I. Gribanova, O. Zaikin, and S. Kochemazov, “Translation of algorithmic descriptions of discrete

functions to SAT with applications to cryptanalysis problems,” Logical Methods in Computer Science , vol. 16, no. 1, 2020,
doi: 10.23638/LMCS-16(1:29)2020.

[10] D. Lee, D. Hong, J. Sung, S. Kim, and S. Hong, “Improved ciphertext-only attack on GMR-1,” IEEE Access, vol. 10,

pp. 1979–1989, 2022, doi: 10.1109/ACCESS.2021.3139614.
[11] G. Avoine, X. Carpent, T. Claverie, C. Devine, and D. Leblanc-Albarel, “Time-memory trade-offs sound the death knell for

GPRS and GSM,” in Annual International Cryptology Conference, 2024, pp. 206–240, doi: 10.1007/978-3-031-68385-5_7.

[12] P. K. Gundaram, A. N. Tentu, and S. N. Allu, “State transition analysis of GSM encryption algorithm A5/1,” Journal of
Communications Software and Systems, vol. 18, no. 1, pp. 36–41, 2022, doi: 10.24138/jcomss-2021-0104.

[13] S. N. Allu and A. N. Tentu, “Quantum cryptanalysis on A5/1 Stream cipher,” International Journal of Computer Information

Systems and Industrial Management Applications, vol. 14, pp. 128–137, 2022.
[14] P. K. Gundaram, S. N. Allu, N. Yerukala, and A. N. Tentu, “Rainbow tables for cryptanalysis of A5/1 stream cipher,” in Second

International Conference on Networks and Advances in Computational Technologies: NetACT 19, 2021, pp. 251–261,

doi: 10.1007/978-3-030-49500-8_22.

[15] A. Biryukov, A. Shamir, and D. Wagner, “Real time cryptanalysis of A5/1 on a PC,” in International Workshop on Fast Software

Int J Elec & Comp Eng ISSN: 2088-8708 

 Memoryless state-recovery cryptanalysis method for lightweight … (Khedkar Aboli Audumbar)

5465

Encryption, Springer Berlin Heidelberg, 2001, pp. 1–18.
[16] T. Pornin and J. Stern, “Software-hardware trade-offs: application to A5/1 cryptanalysis,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1965 LNCS, pp. 318–327,

2000, doi: 10.1007/3-540-44499-8_25.
[17] J. Lu, Z. Li, and M. Henricksen, “Time‐memory trade‐off attack on the GSM A5/1 stream cipher using commodity GPGPU,” in

Int. Conference on Applied Cryptography and Network Security, 2015, pp. 350–369, doi: 10.1007/978-3-319-28166-7_17.

[18] L. Veronese, F. Palmarini, R. Focardi, and F. Luccio, “A fast and cost-effective design for FPGA-based fuzzy rainbow tradeoffs,”
in Proceedings of the 8th International Conference on Information Systems Security and Privacy, 2022, pp. 165–176,

doi: 10.5220/0010904300003120.

[19] H. Hadipour and M. Eichlseder, “Autoguess: A tool for finding Guess-and-determine attacks and key bridges,” in International
Conference on Applied Cryptography and Network Security, 2022, pp. 230–250, doi: 10.1007/978-3-031-09234-3_12.

[20] A. Jain, I. Kaur, A. K. Sharma, N. K. Gupta, and P. Chakraborty, “A new Guess‐and‐determine method for cryptanalysis of the

GSM encryption,” Complexity, vol. 2023, pp. 1–9, Feb. 2023, doi: 10.1155/2023/7249127.
[21] J. D. Golić, “Cryptanalysis of alleged A5 stream cipher,” in International Conference on the Theory and Applications of

Cryptographic Techniques, 1997, pp. 239–255, doi: 10.1007/3-540-69053-0_17.

[22] Y. Xu, Y. Hao, and M. Wang, “Revisit two memoryless state‐recovery cryptanalysis methods on A5/1,” IET Information Security,
vol. 17, no. 4, pp. 626–638, Jul. 2023, doi: 10.1049/ise2.12120.

[23] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, “A survey of lightweight stream ciphers for embedded

systems,” Security and Communication Networks, vol. 9, no. 10, pp. 1226–1246, 2016, doi: 10.1002/sec.1399.
[24] S. B. Sadkhan and Z. Hamza, “Proposed enhancement of A5/1 stream cipher,” in 2019 2nd International Conference on

Engineering Technology and its Applications, IICETA 2019, 2019, pp. 111–116, doi: 10.1109/IICETA47481.2019.9013008.

[25] P. Derbez, P.-A. Fouque, and V. Mollimard, “Fake near collisions attacks,” in IACR Transactions on Symmetric Cryptology,
Dec. 2020, pp. 88–103, doi: 10.46586/tosc.v2020.i4.88-103.

BIOGRAPHIES OF AUTHORS

Khedkar Aboli Audumbar obtained her M.E. (electronics engineering) from

Mumbai University, India, in 2016, B.Tech. (Electronics and Telecommunication Engineering)

from SGGS, Nanded, India, in 2013. Currently pursuring Ph.D. (electronics engineering) from

Mumbai University, India. Currently, she is assistant professor in Pillai College of

Engineering, New Panvel, India. She has supervised six undergraduate projects and theses. Her

field of interest are embeded systems, SQL, data analytics, and cryptanalysis. She can be

contacted at email:aboli@mes.ac.in.

Uday Pandit Khot obtained his B.E. (Ind. Electronics), M.Tech. (Electronic

Systems) from IIT Bombay and Ph.D. (by research in the topic synthesis of analog circuits

employing current-mode building blocks) from IIT Bombay. He is having 33 years of teaching

experience and is a fellow member of IETE (India), member of ISTE (India), member of IEEE

(USA) and member of IE (India). He has published more than 60 research papers in

National/International journals and conferences. His areas of research interest are: synthesis of

analog current-mode circuits, fault diagnosis in analog and digital circuits, microwave circuits,

and wireless communication systems. He can be contacted at email:
udaypanditkhot@sfit.ac.in.

Balaji G. Hogade received his Ph.D. in electronics and telecommunication

engineering (with specialization in smart antennas for wideband wireless networks) from

NMIMS University, Mumbai in 2014. He completed his M.E. in Power Electronics from

Gulbarga University, Karnataka in 1999, and his B.E. in Electronics from Marathwada

University, Aurangabad in 1991. Currently, he is a professor and head of the Department of

Electronics Engineering at Terna Engineering College, affiliated with the University of

Mumbai. He has supervised numerous undergraduate and postgraduate projects and theses.

Under his guidance, five research scholars have completed their Ph.D. degrees and one has

submitted the thesis from the University of Mumbai. He also serves as a Ph.D. reviewer and

examiner for Savitribai Phule Pune University. He has a strong research portfolio, with several

national and international publications to his credit. He has also published four patents. He was

a reviewer for Various of International conferences. He has given expert talks in international

conferences. Dr. Hogade was a member of the board of studies (BOS) in Electronics

Engineering and Electrical Engineering at the University of Mumbai. His primary research

interests include wireless networks, smart antennas, and power electronics & drives. He can be

contacted at email: balajihogade@ternaengg.ac.in.

mailto:balajihogade@ternaengg.ac.in
https://orcid.org/0000-0003-0283-516X
https://scholar.google.com/citations?user=qoR2GF8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57192559773
https://www.webofscience.com/wos/author/record/LMN-2467-2024
https://orcid.org/0000-0003-1315-3471
https://scholar.google.com/citations?user=O-AHn3IAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=8691901700
https://www.webofscience.com/wos/author/record/OCK-7771-2025
https://orcid.org/0000-0001-7887-227X
https://scholar.google.com/citations?authuser=1&user=o0BhR3sAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=36052925500
https://www.webofscience.com/wos/author/record/OCK-6254-2025

