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 Cryptology refers to the discipline concerned with securing communication 

and data in transit by transforming it into an unintelligible form, thereby 

preventing interpretation by unauthorized entities. Cryptanalysis is the study 

and practice of analyzing cryptographic systems with the aim of uncovering 

their weaknesses, finding vulnerabilities and obtaining unauthorized access 

to encrypted data. A5/1 is a lightweight stream cipher used to protect GSM 

communications. There are two memoryless cryptanalysis techniques used 

for this cipher which are Golic’s Guess-and-determine attack and Zhang’s 

Near Collision attack. In this paper a new guessing technique called move 

guessing technique used to construct linear equation filter along with Golic’s 

guess and determine technique is studied. Two modifications in move 

guessing technique are proposed for recovery of internal states S0 and S1. 

Further, a novel algorithm is proposed to select the modification to get 

minimum time complexity for recovery of internal states S0 and S1. The 

proposed algorithm gives minimum time complexity of 229.3138  at t = 14 for 

recovery of S0 state and 243.246  for recovery of S1 at t = 22. 
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1. INTRODUCTION 

Now-a-days many applications on internet of things (IoT) and embedded systems are developed. 

Such application uses global system for mobile communications (GSM) technology for communication. 

Also, mobile networks use GSM to transmit personal information on radio links [1]. The A5/1 stream cipher 

are widely used in GSM communication, has been the subject of extensive cryptanalysis since its inception. 

Ever since its proposal, A5/1 has been attacked with various cryptanalytic methods such as Satisfiability 

(SAT)-based cryptanalysis, time/memory/data trade-off attacks, guess‐and‐determine attacks, near collision 

attack (NCA), ciphertext attack, quantum attack on reduced version of Cipher [2]–[11] [12], [13]. Rainbow 

Table generation method used to perform time/memory/data trade-off (TMDTO) attack also has high chances 

of collision [14]. Most of the practical attacks on A5/1 require large, precomputed rainbow table which 

significantly increases the memory complexities [15]–[18]. 

Memoryless cryptanalysis techniques on the A5/1 cipher involve analyzing the cipher without 

relying on previous states or memory. These techniques aim to break the encryption by examining the 

algorithm's structure and properties without considering historical data. By studying the A5/1 algorithm, 

cryptanalysts can uncover vulnerabilities and weaknesses that could potentially compromise its security. 

https://creativecommons.org/licenses/by-sa/4.0/
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Existing Memoryless cryptanalysis techniques namely guess and determine attack and near collision 

attack that determines S1 recovery state and S0 recovery state, respectively. Guess and determine attack 

highly relies on identifying patterns and relationships between key and ciphertext [19]. A new low keystream 

guess-and-determine (GD) attack was proposed in [20] gives the time complexity of 252. This complexity is 

higher than the Golic’s GD attack’s time complexity of 243.15 [21]. Zhang’s near collision attack recover’s S0 

state with the time complexity of 253.19 [8]. Xu et al. further worked on Golic’s GD attack and Zhang’s near 

collision attack and was found that the complexity of Golic's S1 recovery attack is no lower than 246.04 but 

higher than the previously believed 243. On the other hand, Zhang's near collision attack recovers S0 with the 

time complexity 253.19: such a complexity can be further lowered to 250.78 with the help of move guessing 

technique [22]. The 2-bit move guessing based guess and determine attack on A5/1 that can recover internal 

S0 and S1 state with the complexities of 243.92 at t=21 and 243.25 at t= 22, respectively [22]. 

This research focuses on enhancing the cryptanalysis of the A5/1 stream cipher by refining the move 

guessing technique used to recover internal states. While prior work, such as Golic [21] and the move 

guessing technique to keep [8] as fixed clock bit method [22], explored partial dependencies among clock 

bits, the research gap lies in the lack of understanding and systematic treatment of the behavior when other 

clock bits are held constant in the stop-and-go mechanism. This study systematically investigates the 

behavior of the cipher when any one out of three clock bits are held constant, revealing how such 

configurations affect the stop-and-go mechanism. Two novel modifications are proposed in the move 

guessing technique allowing for effective recovery of internal states S0 and S1. A dynamic decision 

algorithm is also implemented in these modified techniques to give minimum time complexity. 

Although these innovations improve upon existing cryptanalytic strategies for A5/1, they can also 

offer a framework that can be generalized to other linear feedback shift register (LFSR)-based stream ciphers. 

The study paves the way for future research into adaptive cryptanalysis and lightweight cipher design, 

especially in applications where computational efficiency is critical, such as embedded and IoT systems. 

This paper is organized as follows. Section 2 provides brief information on key stream generation 

procedures in A5/1 cipher. Section 3 discusses the Golic’s Guess and Determine attack [21] and gives a brief 

review of 2-bit move guess and determine attack [22]. Later, the modifications in the move guessing 

technique are introduced in section 4 and proposed an algorithm in section 5 to select the proper modified 

technique for minimum time complexity. Results and Discussion are done in section 6. Section 7 concludes 

the research work. 

 

 

2. THE KEY-STREAM GENERATION PROCEDURE IN A5/1 

A5/1 was designed to provide over-the-air communication privacy for the GSM cellular telephone 

standard and has been widely used in GSM telephony in Europe and the USA. In its design, three combined 

LFSRs with irregular clocking are used to encrypt bursts of traffic, as is required in GSM [23]. A5/1 has 

3-LFSR registers R1, R2 and R3 with sizes 19, 22, 23 respectively making it 64-bit internal state as shown in 

Figure 1. These states at time t (t = 0, 1, 2….) is represented as [22]: 

 

St = (R1t, R2t, R3t) 

    = (St [0, …18], St [19, …40], St [41, …63]) 

    = (R1t [0, …18], R2t [0, …21], R3t [0, …22])  (1) 

 

Before generating the output bit 𝑧𝑡, A5/1 round function will update the internal state  𝑠𝑡 →  𝑠𝑡+1 in a stop-

and-go manner as follows:  

− Compute 𝑚𝑎𝑗𝑡  as 

 

𝑚𝑎𝑗𝑡 = (𝑅1
𝑡[8] ⋅ 𝑅2

𝑡 [10])⨁(𝑅1
𝑡[8] ⋅ 𝑅3

𝑡 [10])⨁(𝑅2
𝑡 [10] ⋅ 𝑅3

𝑡 [10]) 

          = (𝑠𝑡[8] ⋅ 𝑠𝑡[29])⨁(𝑠𝑡[8] ⋅ 𝑠𝑡[51])⨁(𝑠𝑡[29] ⋅ 𝑠𝑡[51]) (2) 

 

where ‘.’ is the AND of 2-bits 

− If 𝑅1
𝑡[8] =  𝑠𝑡[8]  ≠  𝑚𝑎𝑗𝑡  ,  𝑅1

𝑡+1← 𝑅1
𝑡 , otherwise, call UpdateR1 as follows 

 
𝑅1

𝑡+1[ⅈ] ← 𝑅1
𝑡[ⅈ − 1]           ⅈ ∈ [1,18] 

𝑅1
𝑡[18] ⨁ 𝑅1

𝑡[17] ⨁ 𝑅1
𝑡[16] ⨁ 𝑅1

𝑡[13]   (3) 

 

− If 𝑅2
𝑡 [10] =  𝑠𝑡[29]  ≠  𝑚𝑎𝑗𝑡  ,  𝑅2

𝑡+1← 𝑅2
𝑡 , otherwise, call UpdateR2 as follows: 
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 𝑅2
𝑡+1[ⅈ] ← 𝑅2

𝑡 [ⅈ − 1] ⅈ ∈ [1,21] 
←  𝑅2

𝑡 [21] ⨁ 𝑅2
𝑡 [20]  (4) 

 

− If 𝑅3
𝑡 [10] =  𝑠𝑡[51]  ≠  𝑚𝑎𝑗𝑡  ,  𝑅3

𝑡+1← 𝑅3
𝑡 , otherwise, call UpdateR1 as follows: 

 

𝑅3
𝑡+1[ⅈ] ← 𝑅3

𝑡[ⅈ − 1]  ⅈ ∈ [1,22] 

←  𝑅3
𝑡 [22] ⨁ 𝑅3

𝑡 [21] ⨁ 𝑅3
𝑡 [20] ⨁ 𝑅3

𝑡 [7]   (5) 

 

Then the Output keystream bit 𝑧𝑡 is generated as: 

 

𝑧𝑡 =   𝑅1
𝑡+1[18] ⨁ 𝑅2

𝑡+1[21] ⨁ 𝑅3
𝑡+1[22]  

𝑧𝑡 =   𝑠𝑡+1[18] ⨁ 𝑠𝑡+1[40] ⨁ 𝑠𝑡+1[63]  (6) 

 

 

 
 

Figure 1. A5/1 stream cipher [24] 

 

 

3. EXISTING ATTACK FOR A5/1 

Although there are many techniques for attacks for A5/1, this paper discusses only the memoryless 

techniques of attacks such as 1. Guess and Determine attack and 2. Near Collision attack. Near collision 

attack is challenged in many ways, after the theoretical analysis and practical implementations it is observed 

that non-randomness claimed in [8] can hardly be achieved so concluded that Near collision attack cannot 

have less time complexity compared to Guess and Determine attack [25]. And hence, in this paper discussion 

is done only with Guess-and-Determine attack. 

 

3.1.  Golic’s guess-and-determine attack [21] 

For each step i = 0, 1, 2…, whether the registers R1; R2; R3 are updated or not depends on the three 

clock bits 𝑠ⅈ[8,29,51]. Such 3‐bit clocks can also be regarded as a 3‐bit integer 𝐶ⅈ ∈ {0,1 … … 7} defined as 

in (7). 

 

𝐶ⅈ[0,1,2] = 𝑠ⅈ[8,29,51] = (𝑝, 𝜌, 𝜎)     (7) 

 

In Golic's guess‐and‐determine model, the adversary aims at recovering the initial state 𝑠1, the state right 

before the generation of z0. So, the to‐be‐guessed clocks are 𝐶ⅈ for i = 1, 2, …. With the knowledge of ci, 

each bit of s i+1 can be represented as a linear combination of 𝑠ⅈ bits and, following (7), the adversary can 

deduce three linear equations. 

 

𝑠ⅈ[8] = 𝑝 

𝑠ⅈ[29] = 𝜌 

𝑠ⅈ[51] = 𝜎 

 

From the output 𝑧ⅈ, the adversary can further deduce one linear equation. 

 

𝑧ⅈ = 𝑠ⅈ+1[18] ⊕ 𝑠ⅈ+1[40] ⊕ 𝑠ⅈ+1[63] 
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In other words, by guessing 3‐bit 𝐶ⅈ, the adversary can deduce 4 linear equations of state bits. Golic 

propose a basic attack that guess 3t clock bits 𝐶1 … … 𝐶𝑡. Based on the t + 1 output bits 𝑧0 … … 𝑧𝑡, the 

adversary can deduce a system of averaging 1 + 3𝑡 +
4

3
𝑡 linear equations. For t ≥ 14.38, the system can 

involve 1 + 3𝑡 +
4

3
𝑡 ≥ 63.32 equations which is sufficient for identifying the correct guess uniquely with 

“high probability”. Although the number of equations and the “high probability” have never been verified, 

the complexity of Golic's attack is usually believed as 23𝑡 ≥ 243⋅15 steps where each step involves the 

solution of a linear system. Apparently, such a complexity evaluation assumes that the wrong‐guess oriented 

linear equation system acts randomly, and its rank grows linearly with t to 63.32. It is later proved that such 

an assumption is not true for A5/1. 

Besides, Golic also notices that not all 3t clock bits 𝐶1 … … 𝐶𝑡 are to be guessed independently. 

According to the stop‐and-go mechanism, there are occasions where only 2 out of the 3 LFSRs are updated 

(𝐶ⅈ ∉ {0, 7}) and 1 out of the 3 𝐶ⅈ+1 bits are already known in 𝐶ⅈ. To avoid such redundant bit guesses, 

Golic propose “branching technique” where a tree structure is applied to track the known bits to further lower 

the complexity. However, since the branching technique depends on the clock dynamic values, the 

complexities in did not take the effect of the branching technique into the evaluations. This technique detects 

S1 state which may cause delayed process of key detection. 

 

3.2.  A brief review of move guessing technique [22] 

The 2‐bit move pattern 𝑚𝑡 ∈ {0, ⋯ 3} according to the 3‐bit clock 𝐶𝑡 = 𝑠𝑡[8,29,51]. Such a move 

pattern can be equivalently regarded as 2-dimentional binary vector defined in (8). 

 

𝑚𝑡 = 𝑚𝑡[0,1] = (𝑠𝑡[8] ⊕ 𝑠𝑡[29], 𝑠𝑡[8] ⊕ 𝑠𝑡[51]) = (𝜇, 𝜈) 𝜖 𝐹2
2  (8) 

 

With the knowledge of 𝑚𝑡 in above equation, two equations are deduced in (9). 

 

𝑠𝑡[8] ⊕ 𝑠𝑡[29] = 𝜇 

𝑠𝑡[8] ⊕ 𝑠𝑡[51] = 𝜈  (9) 

 

The four possible values of 𝑚𝑡 , referred as Move 0–3, corresponds to different movements in A5/1 LFSRs 

transforming 𝑠𝑡 to 𝑠𝑡+1. 

− Move 0: From the LFSR action aspect, updateR1, updateR2 and updateR3 are all called. This corresponds 

to clock values 𝐶ⅈ ∈ {0,7} or equivalently st[8,29,51] ∈ {(0,0,0), (1,1,1)} 

− Move 1: Only updateR2 and updateR3 are called corresponding to 𝐶ⅈ ∈ {1,6} or equivalently 

𝑠𝑡[8,29,51] ∈ {(0,1,1), (1,0,0)} 

− Move 2: Only updateR1 and updateR3 are called corresponding to 𝐶ⅈ ∈ {2,5} OR 𝑠𝑡[8,29,51] ∈
{(1,0,1), (0,1,0)}. 

− Move 3: Only updateR1 and updateR2 are called corresponding to Cⅈ ∈ {3,4} OR st[8,29,51] ∈
{(1,1,0), (0,0,1)} 

According to the definition, the LFSR actions before generating the output keystream bits 𝑧0 … … 𝑧𝑡  

can be represented as 𝑚0 … … 𝑚𝑡. In this guess and determine attack, first guess the movement 𝑚𝑡 

corresponding to the transformation 𝑠𝑡 → 𝑠𝑡+1 and maintains a linear equation set BC by adding new 

equations according to 𝑚𝑡 and the output 𝑧𝑡. For each step t, there are three linear equations: two are from 

equation (9) according to the move guess and one is from the output 𝑧𝑡 as 

 

𝑧𝑡  = 𝑠𝑡+1[18] ⨁ 𝑠𝑡+1[40] ⨁ 𝑠𝑡+1[63]     (10) 

 

So, each 2‐bit move guess results in three equations. 

 

3.2.1. Move guessing based recovering S0 state 

The move equations in (9) and the output equation in (10) correspond to the internal states at 

different time instances. But this attack is targeted for recovering the initial state 𝑠0. Therefore, the internal 

states 𝑠𝑡 at different time instance t should be represented by 𝑠0 bits for deducing 𝑠0 related equations. The 

state 𝑠𝑡   is deduced from 𝑠0 by taking the moves 𝑚0 … … 𝑚𝑡 as 

 

𝑠0 →
𝑚0

𝑠1 →
𝑚1

… →
𝑚𝑡−2

𝑠𝑡−1 →
𝑚𝑡−1

𝑠𝑡          (11) 
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The moves 𝑚0 … … 𝑚𝑡−1 corresponds to the linear transformations in LFSRs so each 𝑠𝑡  bit is a linear 

combination of 𝑠0 bits: such a linear combination can be regarded as a inner product of 𝑠0 and a 64‐bit word 

𝑤 ∈ 𝐹2
64. In order to track all state bits in 𝑠0 … . . 𝑠𝑡 bits, it is defined by 64x64 binary matrices 𝑤0 … … 𝑤𝑡 ∈

(𝐹2
64)64 s.t. 𝑠ⅈ = 𝑤ⅈ𝑠0 for all i = 0, …, t. The row vector of 𝑤ⅈ is denoted as 𝑤ⅈ[j] for j = 0, …, 63. In this 

way, the state bit 𝑆ⅈ[j] can be computed as the inner produce of initial s0 and row vector 𝑤ⅈ[j]. Each state bit 

of 𝑠𝑡 can be uniformly expressed as a linear combination of 𝑠0 bits as  

 

𝑠𝑡[ⅈ] = 𝑤𝑡[ⅈ] ⋅ 𝑠0,     ⅈ = 0 … 63,      𝑡 = 0,1,2          (12) 

 

For t consecutive movements 𝑚0 … … 𝑚𝑡−1 and the corresponding output 𝑧0 ⋯ ⋯ 𝑧𝑡−1, the corresponding 

linear equations set BC can be deduced as 

 

𝑔ⅇ𝑡𝐵𝐶((𝑚⋯
0 ⋅ 𝑚𝑡 − 1), (𝑧0 … 𝑧𝑡−1)) → 𝐵𝐶 

 

Such BC can be regarded as a linear equation system in (13). 

 

𝐴𝑥𝑇 = 𝑏𝑇, where ∈ 𝐹2
3𝑡×64 , 𝑥 ∈ 𝐹2

64 , 𝑏 ∈ 𝐹2
3𝑡                    (13) 

 

and the solution of the equation above corresponds to all candidate 𝑠0. The number of solutions depends on 

the rank of the matrix A and its extended matrix as in (14). 

 

𝐸 = [𝐴, 𝑏𝑇]                    (14) 

 

− If rank(A) = rank(E), there will be 264−𝛽𝑡  solutions where 𝛽𝑡 is the positive integer defined in (15) as the 

rank of the matrix A;  

 

 𝛽𝑡 = 𝑟𝑎𝑛𝑘(𝐴)                               (15)  

  
− If rank(A) ≠ rank(E), there will no solution at all.  

With the guessed moves 𝑚0 … … 𝑚𝑡−1 and the observed output bits 𝑧0 ⋯ ⋯ 𝑧𝑡−1, we are now able to acquire 

both A and b along with the extended matrix E in (14).  

The probability of rank(A) = rank(E): 

− For the correct guess of 𝑚0 … … 𝑚𝑡−1, rank(A) = rank(E) is constantly true. 

− If m0, …, mt−1, the probability of rank(A) = rank(E) is defined as 𝛼𝑡(0 ≤ 𝛼𝑡 ≤ 1). According to our 

analysis, such 𝛼𝑡 's grows gradually with t and should be measured practically. 

So, the probability of rank(A) = rank(E) can be formally represented as (16). 

 

𝑃𝑟[𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐸)] = 1          𝑚0 … … 𝑚𝑡−1 is correctly guessed 

  = 𝛼𝑡 ∈ [0,1]                𝑚0 … … 𝑚𝑡−1  is wrongly guessed         (16) 

 

The general process of such an attack can be summarized as follows: 

S1: Guess 𝑚0 … … 𝑚𝑡−1, observe 𝑧0 ⋯ ⋯ 𝑧𝑡−1 and deduce the linear system represented as  𝐴𝑥𝑇 = 𝑏𝑇 

S2: Do the rank test check, whether rank(A) ≠ rank(E) 

S3: Traversing the remaining s0 candidates and identify the correct 𝑠0 with additional output bits 

𝑧𝑡 ⋯ ⋯ 𝑧𝑙−1 generated by the encryption oracle. 

Complexity analysis: in step 3, there are 22𝑡 candidate (𝑚0 … … 𝑚𝑡−1)'s. According to (16), averaging  

(𝛼𝑡 ⋅ 22𝑡) move pattern candidates can pass the test. Adding βt in (15), the averaging time complexity can be 

computed as in (17). 

 

Comp = 22𝑡 + 𝛼𝑡 ⋅ 22𝑡+64−𝛽𝑡 = 22𝑡 + 22𝑡+64−𝛽𝑡+𝑙𝑜𝑔 𝛼𝑡       (17) 

 

By randomly selecting 230 ((𝑚0 … … 𝑚𝑡−1) , (𝑧0 ⋯ ⋯ 𝑧𝑡−1)) pairs and performing the attack. The value 

obtained for 𝛼𝑡 and 𝛽𝑡 for different values of t’s are shown in Table 1. The lowest time complexity is 

236.56 corresponding to t = 16. 

For testing purposes, the algorithm given in [21] is executed and the values of the time complexity 

obtained are shown in Table 1. Although the values obtained are slightly different given in [21] may be 

because of random key generation, but the pattern obtained is same. 
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Table 1. The values of 𝛼𝑡 and 𝛽𝑡 in equation 17 with 230 random tests for S0 recovery using  

move guess-and-determine attack 
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp. 

6 31.954 -0.10 43.93 17 59.4827 -1.96 36.78 

7 34.6816 -0.11 43.20 18 60.4008 -2.95 37.36 
8 37.5845 -0.11 42.29 19 61.1459 -4.14 38.49 

9 40.5501 -0.11 41.33 20 61.7875 -5.49 40.14 

10 43.5157 -0.12 40.35 21 62.3641 -7.01 42.03 
11 46.4601 -0.15 39.38 22 62.8739 -8.69 44.00 

12 49.3675 -0.18 38.44 23 63.2952 -10.52 46.00 

13 52.1619 -0.24 37.59 24 63.6082 -12.49 48.00 
14 54.6766 -0.36 36.96 25 63.811 -14.55 50.00 

15 56.7376 -0.65 36.62 26 63.9225 -16.63 52.00 

16 58.304 -1.19 36.56 27 63.9734 -18.64 54.00 

 

 

3.2.2. Move guessing based recovering S1 state 

For recovering s1 according to 𝑧0 ⋯ ⋯ 𝑧𝑡−1, we do not need to guess 𝑚0. We guess directly the t− 1 

move patterns 𝑚1 … … 𝑚𝑡−1 and acquire the linear equation system 𝐴𝑥𝑇 = 𝑏𝑇 of sizes ∈ 𝐹2
(2𝑡−1)×64

, 

𝑥 ∈ 𝐹2
64, 𝑏 ∈ 𝐹2

2𝑡−1. Therefore, the general process has now become: 

S1: Guess moves 𝑚1 … … 𝑚𝑡−1 and maintain a linear system 𝐴𝑥𝑇 = 𝑏𝑇 

S2: Do the matrix rank test and discard the wrong guesses satisfying rank(A) ≠ rank(E) 

S3: Traverse the remaining 𝑠1 candidates and identify the correct 𝑠1 with additional output bits 𝑧𝑡 ⋯ ⋯ 𝑧𝑙−1. 

In S1, start from 𝑤1 = I and acquire the bit conditions on (𝑚1 … … 𝑚𝑡−1) and (𝑧1 ⋯ ⋯ 𝑧𝑡−1). Besides, letting 

𝑠1 = x = (𝑥0 … … 𝑥63), there is also an equation deduced from 𝑧0 according to (10) as 

 

𝑥18 ⊕ 𝑥40 ⊕ 𝑥63 = 𝑧0  (18) 

 

Complexity analysis: Among the 22(𝑡−1) moves 𝑚1 … … 𝑚𝑡−1, there is a portion of 𝛼𝑡  passing the rank test 

and the averaging rank(A) is βt as given in (15). So, the complexity can be evaluated as: 

 

Comp = 22(𝑡−1) + 𝛼𝑡 ⋅ 22(𝑡−1)+64−𝛽𝑡  = 22(𝑡−1) + 22(𝑡−1)+64−𝛽𝑡+𝑙𝑜𝑔 𝛼𝑡 (19) 

 

The 𝛼𝑡 and 𝛽𝑡 parameters are practically evaluated, and the value of complexity are shown in Table 2. The 

lowest complexity achieved is 243.251 at t = 22. 

 

 

Table 2. The values of 𝛼𝑡 and 𝛽𝑡 in equation 19 with 230 random tests for S1 recovery using  

move guess-and-determine attack 
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp. 

7 19 0 57 18 51.3778 -0.46902 46.153 
8 22 0 56 19 53.9439 -0.81697 45.241 

9 25 0 55 20 56.3782 -1.28675 44.352 

10 28 0 54 21 58.6462 -1.93777 43.545 
11 31 0 53 22 60.6179 -2.91643 43.251 

12 34 0 52 23 62.0883 -4.51626 44.219 

13 36.9993 -0.00025 51.000 24 63.0036 -6.73256 46.026 

14 39.9919 -0.00514 50.002 25 63.5126 -9.31350 48.003 

15 42.9586 -0.03206 49.009 26 63.781 -12.06483 50.000 
16 45.8676 -0.09924 48.033 27 63.9129 -14.84823 52.000 

17 48.6826 -0.22966 47.087 28 63.9701 -17.57609 54.000 

 

 

4. PROPOSED MODIFIED MOVE GUESSING TECHNIQUE 

Golic has notice that not all 3t clock bits 𝐶1 … … 𝐶𝑡 are to be guessed independently. According to 

the stop‐and-go mechanism, there are occasions where only 2 out of the 3 LFSRs are updated (𝐶ⅈ ∉ {0, 7}) 

and 1 out of the 3 𝐶ⅈ+1 bits are already known in 𝐶ⅈ [12]. But which value of 𝐶ⅈ+1 should be considered that 

remained constant. 2-bit move pattern in [22] assumed only 𝑠𝑡[8] and calculated the time complexity. 

In this paper equation (8) of existing technique has been modified by taking either 𝑠𝑡[29] or 𝑠𝑡[51] 
constant. Because of these proposed assumptions, move pattern are changed which causes the change in the 

values of update register and had a wide effect on calculation of time complexity.   
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4.1.  Modification 1- with 𝒔𝒕[𝟐𝟗] constant 

Equivalently binary vector of dimension 2 defined for 𝑠𝑡[29] is as follows: 
 

𝑚𝑡 = 𝑚𝑡[0,1] = (𝑠𝑡[8] ⊕ 𝑠𝑡[29], 𝑠𝑡[29] ⊕ 𝑠𝑡[51]) = (𝜇1, 𝜈1) 𝜖 𝐹2
2 (20) 

 

With the knowledge of 𝑚𝑡 in above equation, 2 equations are deduced as follows: 
 

𝑠𝑡[8] ⊕ 𝑠𝑡[29] = 𝜇1 

𝑠𝑡[29] ⊕ 𝑠𝑡[51] = 𝜈1  (21) 
 

The 4 possible values of 𝑚𝑡 , referred as Move 0–3, corresponds to different movements in A5/1 LFSRs 

transforming 𝑠𝑡 to 𝑠𝑡+1. 

− Move 0: From the LFSR action aspect, updateR1, updateR2 and updateR3 are all called. This corresponds 

to clock values 𝐶ⅈ ∈ {0,7} or equivalently st[8,29,51] ∈ {(0,0,0), (1,1,1)} 

− Move 1: Only updateR1 and updateR3 are called corresponding to 𝐶ⅈ ∈ {1,6} or equivalently 

𝑠𝑡[8,29,51] ∈ {(0,1,0), (1,0,1)} 

− Move 2: Only updateR2 and updateR3 are called corresponding to 𝐶ⅈ ∈ {2,5} OR 𝑠𝑡[8,29,51] ∈
{(1,0,0), (0,1,1)}. 

− Move 3: Only updateR1 and updateR2 are called corresponding to Cⅈ ∈ {3,4} OR st[8,29,51] ∈
{(1,1,0), (0,0,1)} 

As considered in section 3, 3rd equation is considered as 
 

𝑧𝑡  = 𝑠𝑡+1[18] ⨁ 𝑠𝑡+1[40] ⨁ 𝑠𝑡+1[63]  (22) 
 

4.1.1. Recovery of S0 state with 𝒔𝒕[𝟐𝟗] constant 

By modification as discussed in section 4.1 a new code is implemented, and the time complexity is 

calculated by (17). The result obtained is shown in Table 3. The lowest time complexity achieved is 

231.66 corresponding to t = 15. 
 

4.1.2. Recovery of S1 state with 𝒔𝒕[𝟐𝟗] constant 

For recovery of S1 state according to modification made in 4.1 the lowest time complexity is 

calculated based on (19). The result obtained is shown in Table 4. The lowest time complexity achieved is 

243.246 corresponding to t = 22. 
 

 

Table 3. The values of 𝛼𝑡 and 𝛽𝑡 in equation 17 with 230 random tests for S0 recovery using  

move guess-and-determine attack 
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp. 

6 32.286 -3.98 39.72 17 59.5851 -8.89 34.06 

7 34.9589 -4.19 38.84 18 60.4835 -10.97 36.00 
8 37.8285 -4.28 37.88 19 61.2058 -13.25 38.00 

9 40.7774 -4.31 36.90 20 61.8244 -15.62 40.00 

10 43.7333 -4.36 35.90 21 62.3833 -18.02 42.00 
11 46.6703 -4.42 34.90 22 62.8825 -20.65 44.00 

12 49.5674 -4.53 33.90 23 63.2985 -23.32 46.00 

13 52.3462 -4.78 32.88 24 63.6093 -26.67 48.00 
14 54.8391 -5.24 32.00 25 63.8113 -30 50 

15 56.8772 -6.00 31.66 26 63.9225 -29 52 

16 58.4244 -7.20 32.40 27 63.9734 -30 54 

 

 

Table 4. The values of 𝛼𝑡 and 𝛽𝑡 in equation 19 with 230 random tests for S1 recovery using  

move guess-and-determine attack 
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp. 

7 19 0 57 18 51.3778 -0.46813 46.154 

8 22 0 56 19 53.944 -0.81775 45.240 
9 25 0 55 20 56.3782 -1.29023 44.349 

10 28 0 54 21 58.6461 -1.92793 43.554 

11 31 0 53 22 60.618 -2.92557 43.246 

12 34 0 52 23 62.0883 -4.53347 44.217 

13 36.9993 -0.00032 51.000 24 63.0036 -6.74720 46.026 

14 39.9919 -0.00664 50.001 25 63.5126 -9.33791 48.003 
15 42.9586 -0.02965 49.011 26 63.781 -12.14077 50.000 

16 45.8676 -0.09063 48.041 27 63.9129 -15.07695 52.000 

17 48.6827 -0.23270 47.084 28 63.9702 -18.01131 54.000 
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4.2.  Modification 2 - with 𝒔𝒕[𝟓𝟏] constant 

Equivalently binary vector of dimension 2 defined for 𝑠𝑡[51] is as follows: 

 

𝑚𝑡 = 𝑚𝑡[0,1] = (𝑠𝑡[8] ⊕ 𝑠𝑡[51], 𝑠𝑡[29] ⊕ 𝑠𝑡[51]) = (𝜇2, 𝜈2) 𝜖 𝐹2
2 (23) 

 

With the knowledge of 𝑚𝑡 in above equation, 2 equations are deduced as follows: 

 

𝑠𝑡[8] ⊕ 𝑠𝑡[51] = 𝜇2 

𝑠𝑡[29] ⊕ 𝑠𝑡[51] = 𝜈2   (24) 

 

The 4 possible values of 𝑚𝑡 , referred as Move 0–3, corresponds to different movements in A5/1 LFSRs 

transforming 𝑠𝑡 to 𝑠𝑡+1. 

− Move 0: From the LFSR action aspect, updateR1, updateR2 and updateR3 are all called. This corresponds 

to clock values 𝐶ⅈ ∈ {0,7} or equivalently st[8,29,51] ∈ {(0,0,0), (1,1,1)} 

− Move 1: Only updateR1 and updateR2 are called corresponding to 𝐶ⅈ ∈ {1,6} or equivalently 

𝑠𝑡[8,29,51] ∈ {(0,0,1), (1,1,0)} 

− Move 2: Only updateR2 and updateR3 are called corresponding to 𝐶ⅈ ∈ {2,5} OR 𝑠𝑡[8,29,51] ∈
{(1,0,0), (0,1,1)}. 

− Move 3: Only updateR1 and updateR3 are called corresponding to Cⅈ ∈ {3,4} OR st[8,29,51] ∈
{(1,0,1), (0,1,0)} 

As considered in section 3, 3rd equation is considered as  

 

𝑧𝑡  = 𝑠𝑡+1[18] ⨁ 𝑠𝑡+1[40] ⨁ 𝑠𝑡+1[63]  (25) 

 

4.2.1. Recovery of S0 state with 𝒔𝒕[𝟓𝟏] constant 

By modification as discussed in section 4.2 a new code is implemented, and the time complexity is 

calculated by (17). The result obtained is shown in Table 5. The lowest time complexity achieved is 

229.313 corresponding to t = 14. 

 

 

Table 5. The values of 𝛼𝑡 and 𝛽𝑡 in equation 17 with 230 random tests for S0 recovery using  

move guess-and-determine attack 
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp. 

6 32.4519 -6.977 36.570 17 59.6558 -13.427 34.002 

7 35.0975 -7.128 35.774 18 60.5407 -15.803 36.000 
8 37.9506 -7.187 34.862 19 61.2472 -18.352 38.000 

9 40.8911 -7.208 33.900 20 61.8501 -20.820 40.000 

10 43.8423 -7.243 32.913 21 62.3964 -23.573 42.000 
11 46.7768 -7.287 31.937 22 62.888 -25.912 44.000 

12 49.6701 -7.405 30.935 23 63.3004 -29 46 

13 52.4454 -7.775 29.880 24 63.6098 -30 48 
14 54.9343 -8.494 29.313 25 63.8114 -30 50 

15 56.9666 -9.626 30.221 26 63.9225 -30 52 

16 58.5056 -11.298 32.0255 27 63.9734 -30 54 

 

 

4.2.2. Recovery of S1 state with 𝒔𝒕[𝟓𝟏] constant 

For recovery of S1 state according to modification made in 4.2 the lowest time complexity is 

calculated based on equation 19. The result obtained is shown in Table 6. The lowest time complexity 

achieved is 243.251 corresponding to t = 22. 

Remark: Move guess and determine technique discussed in section 3 and section 4 is based on the 

Golic’s observations stating only 2 out of 3 LFSRs are updated and 1 out of 3 LFSRs always retains its 

previous state. So in [12], 𝑆[8] clock bit is considered common, and the Lowest time complexity result that 

we obtain to recover S0 and S1 state is 236.56 corresponding to t = 16 and 243.251 at t = 22.  

We have also obtained the time complexity result by keeping the 𝑆[29] and 𝑆[51] clock bit state as 

previous state and observed that time complexity can again be lowered further. To recover S0 and S1 state the 

obtained lowest time complexity is 231.66 corresponding to t = 15, 243.246 at t = 22 for 𝑆[29] and 229.313 

corresponding to t = 14, 243.251 corresponding to t = 22 for 𝑆[51]. 
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Table 6. The values of 𝛼𝑡 and 𝛽𝑡 in equation 19 with 230 random tests for S1 recovery using  

move guess-and-determine attack 
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp. 

7 19 0 57 18 51.3778 -0.46835 46.15415 
8 22 0 56 19 53.944 -0.81716 45.24122 

9 25 0 55 20 56.3782 -1.28782 44.35174 

10 28 0 54 21 58.6462 -1.92914 43.55312 
11 31 0 53 22 60.618 -2.91628 43.25156 

12 34 0 52 23 62.0883 -4.53073 44.21757 

13 36.9993 -0.00048 51.00021 24 63.0037 -6.74762 46.02653 
14 39.9919 -0.00581 50.00228 25 63.5126 -9.35980 48.00307 

15 42.9586 -0.02951 49.01188 26 63.781 -12.16150 50.00036 

16 45.8676 -0.09465 48.03775 27 63.9129 -15.06589 52.00004 
17 48.6826 -0.23243 47.08500 28 63.9701 -18.00176 54.00000 

 

 

5. ALGORITHM TO SELECT A CONSTANT CLOCK BIT USED FOR GUESS AND DETERMINE 

TECHNIQUE 

According to stop-and-go mechanism in section 2 the occasion when 1 out of 3 clock bits remains as 

previous, depends on 𝑚𝑎𝑗𝑡  (2). Using this (2) it has been derived that which of the clock bit will remain 

same as the previous clock bit and this clock bit is considered constant. Using this constant clock bit move 

equation 𝑚𝑡 of (9), or (21), or (24) will be calculated. Using this 𝑚𝑡, further recovery process of S0 and S1 

will be done as discussed in section 3 and 4. 
 

Attack procedure: The steps involved in attack procedure are as follows. 
The general process of such an attack can be summarised as follows: 

Step 1: Compute 𝑚𝑎𝑗𝑡 from equation (2) 

Step 2: Check which clock bit ≠  𝑚𝑎𝑗𝑡  

Step 3: That clock bit is considered common bit in 2-bit Move equation. 

If (s[8] != 𝑚𝑎𝑗𝑡) then  

(a) Acquire ℓ keystream bits z0, …, zℓ−1  
(b) Initialise S ←ϕ for collecting s0 candidates 
(c) Guess (m0, …, mt−1) and do the following sub steps: 

a. Acquire the equations BC  getBC((m0, …, mt−1), (z0 ,…., zt−1)) by calling 

Algorithm 1. 

b. Deduce the A and b in (13) according to BC and compute the extended 

matrix E in (14). 

c. Compute rank(A) and rank(E), if rank(A) ≠ rank(E), such a movement guess 
is wrong, go back to Step 3 for the next movement guess. 

d. For all 264−rank(A) solutions to AxT=bT, set 𝑠̂0 ←x and generate the keystream 

bits 𝑧̂0, …., 𝑧̂𝑡−1, 𝑧̂𝑡, …; 𝑧̂ℓ−1. 

e. If (𝑧̂𝑡,….., 𝑧̂ℓ−1 ) = (𝑧𝑡,….., 𝑧ℓ−1 ), add such 𝑠̂0 into S. 

(d) Return S. 

               Else If (s[29] != 𝑚𝑎𝑗𝑡) then 

(a) Acquire ℓ keystream bits z0, …, zℓ−1  
(b) Initialise S ←ϕ for collecting s0 candidates 
(c) Guess (m0, …, mt−1) and do the following sub steps: 

a. Acquire the equations BC  getBC((m0, …, mt−1), (z0 ,…., zt−1)) by calling 

Algorithm 2. 

b. Deduce the A and b in (13) according to BC and compute the extended 

matrix E in (14). 

c. Compute rank(A) and rank(E), if rank(A) ≠ rank(E), such a movement guess 
is wrong, go back to Step 3 for the next movement guess. 

d. For all 264−rank(A) solutions to AxT=bT, set 𝑠̂0 ←x and generate the keystream 

bits 𝑧̂0, …., 𝑧̂𝑡−1, 𝑧̂𝑡, …; 𝑧̂ℓ−1. 

e. If (𝑧̂𝑡,….., 𝑧̂ℓ−1 ) = (𝑧𝑡,….., 𝑧ℓ−1 ), add such 𝑠̂0 into S. 

(d) Return S. 

               Else If (s[51] != 𝑚𝑎𝑗𝑡) then 

(a) Acquire ℓ keystream bits z0, …, zℓ−1  
(b) Initialise S ←ϕ for collecting s0 candidates 
(c) Guess (m0, …, mt−1) and do the following sub steps: 

a. Acquire the equations BC  getBC((m0, …, mt−1), (z0 ,…., zt−1)) by calling 

Algorithm 3. 

b. Deduce the A and b in (13) according to BC and compute the extended 

matrix E in (14). 

c. Compute rank(A) and rank(E), if rank(A) ≠ rank(E), such a movement guess 
is wrong, go back to Step 3 for the next movement guess. 

d. For all 264−rank(A) solutions to AxT=bT, set 𝑠̂0 ←x and generate the keystream 

bits 𝑧̂0, …., 𝑧̂𝑡−1, 𝑧̂𝑡, …; 𝑧̂ℓ−1. 

e. If (𝑧̂𝑡,….., 𝑧̂ℓ−1 ) = (𝑧𝑡,….., 𝑧ℓ−1 ), add such 𝑠̂0 into S. 

(d) Return S. 
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Algorithm 1. Deduce the set of equations according to the given moves and output bits 
1. procedure getBC (movements (m0, …, m t−1) ∈ {0,3}t, output bits (𝑧0, … . . , 𝑧𝑡−1 ) ∈ 𝐹2

𝑡 

2. Initialise the words W0 ← I 

3. Initialise the linear equations set BC ←ϕ 

4. Initialise x = (x0 , …., x63) as vector of 63 unknown Boolean variables corresponding 

to the 64 state bits of s0 

5. for i = 0, 1, …, t − 1 do 

a. Represent mi = (μ, ν) ∈ {0, …, 3} as Equation (8) 
b. Update BC by adding the following equations 

i. (𝑤ⅈ[8] ⊕ 𝑤ⅈ[29]) ⋅ 𝑥 = 𝜇 
ii. (𝑤ⅈ[8] ⊕ 𝑤ⅈ[51]) ⋅ 𝑥 = 𝜈   

c. Deduce wi+1 according to wi by calling wi+1 ←UpdW(mi, wi) defined in Algorithm 

3 ref. [12]. 

d. Update BC by adding the following linear equations corresponding to Equation 

(10)  

i. (𝑤ⅈ+1[18] ⊕ 𝑤ⅈ+1[40] ⊕ 𝑤ⅈ+1[63]) . 𝑥 =  𝑧ⅈ 

6. End for 

7. Return BC 

8. End Procedure 

 

Algorithm 2. Deduce the set of equations according to the given moves and output bits 
1. procedure getBC (movements (m0, …, m t−1) ∈ {0,3}t, output bits (𝑧0, … . . , 𝑧𝑡−1 ) ∈ 𝐹2

𝑡 

2. Initialise the words W0 ← I 

3. Initialise the linear equations set BC ←ϕ 

4. Initialise x = (x0 , …., x63) as vector of 63 unknown Boolean variables corresponding 

to the 64 state bits of s0 

5. for i = 0, 1, …, t − 1 do 

a. Represent mi = (𝜇1, 𝜈1) ∈ {0, …, 3} as Equation (20) 
b. Update BC by adding the following equations 

i. (𝑤ⅈ[8] ⊕ 𝑤ⅈ[29]) ⋅ 𝑥 =  𝜇1 
ii. (𝑤ⅈ[29] ⊕ 𝑤ⅈ[51]) ⋅ 𝑥 = 𝜈1   

c. Deduce wi+1 according to wi by calling wi+1 ←UpdW(mi, wi) defined in Algorithm 

3 ref. [12]. 

d. Update BC by adding the following linear equations corresponding to Equation 

(10)  

i. (𝑤ⅈ+1[18] ⊕ 𝑤ⅈ+1[40] ⊕ 𝑤ⅈ+1[63]) . 𝑥 =  𝑧ⅈ 

6. End for 

7. Return BC 

8. End Procedure 

 

Algorithm 3. Deduce the set of equations according to the given moves and output bits 
1. procedure getBC (movements (m0, …, m t−1) ∈ {0,3}t, output bits (𝑧0, … . . , 𝑧𝑡−1 ) ∈ 𝐹2

𝑡 

2. Initialise the words W0 ← I 

3. Initialise the linear equations set BC ←ϕ 

4. Initialise x = (x0 , …., x63) as vector of 63 unknown Boolean variables corresponding 

to the 64 state bits of s0 

5. for i = 0, 1, …, t − 1 do 

a. Represent mi = (𝜇2, 𝜈2) ∈{0, …, 3} as Equation (23) 
b. Update BC by adding the following equations 

i. (𝑤ⅈ[8] ⊕ 𝑤ⅈ[51]) ⋅ 𝑥 = 𝜇2 
ii. (𝑤ⅈ[29] ⊕ 𝑤ⅈ[51]) ⋅ 𝑥 = 𝜈2   

c. Deduce wi+1 according to wi by calling wi+1 ←UpdW(mi, wi) defined in Algorithm 

3 ref. [12]. 

d. Update BC by adding the following linear equations corresponding to Equation 

(10)  

i. (𝑤ⅈ+1[18] ⊕ 𝑤ⅈ+1[40] ⊕ 𝑤ⅈ+1[63]) . 𝑥 =  𝑧ⅈ 

6. End for 

7. Return BC 

8. End Procedure 

 

Follow the same attack procedure as given above to Recover S1 state, but no need to guess m0 move. 

 

 

6. RESULT AND DISCUSSION 

The selective modified Guess and Determine attack algorithm gives the method to select which 

clock bit is to be considered constant and at every time of executing the attack so that minimum time 

complexity is achieved to recover S0 and S1 state. The practical results obtained for recovery of S0 and S1 

state of proposed methodology are discussed here. 
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6.1.  Recovery of S0 state 

Modification as discussed is implemented and the time complexity is calculated by (17). The result 

obtained is shown in Table 7. The lowest time complexity achieved is 229.3138 corresponding to t = 14. 
 

6.2.  Recovery of S1 state 

For recovery of S1 state according to modification made and the lowest time complexity is 

calculated based on (19). The result obtained is shown in Table 8. The lowest time complexity achieved is 

243.246 corresponding to t = 22. Time complexity achieved for recovery of S0 and S1 state using move guess 

and determine attack discussed section 3, proposed modified Guess and determine attack considering 𝑆[29] 
and 𝑆[51] clock bits from section 4 and selective modified Guess and determine attack section (5) are 

summerised in Table 9. Table 9 shown that selective modified Guess and determine attack will choose the 

clock bit which will always give less time complexity. 
 

 

Table 7. The values of 𝛼𝑡 and 𝛽𝑡 in equation 17 with 230 random tests for S0 recovery using move guess-and-

determine attack 
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp. 

6 32.4518 -6.977 36.5708 17 59.6557 -13.433 34.0026 

7 35.0974 -7.127 35.7747 18 60.5406 -15.803 36.0002 
8 37.9506 -7.187 34.8622 19 61.2472 -18.320 38.0000 

9 40.8911 -7.208 33.9006 20 61.8502 -20.991 40.0000 

10 43.8423 -7.243 32.9146 21 62.3964 -23.356 42.0000 
11 46.7769 -7.287 31.9370 22 62.888 -26.678 44.0000 

12 49.6701 -7.407 30.9346 23 63.3003 -28 46.0000 

13 52.4454 -7.775 29.8808 24 63.6098 -30 48 
14 54.9342 -8.494 29.3138 25 63.8114 -30 50 

15 56.9666 -9.626 30.2212 26 63.9225 -30 52 

16 58.5056 -11.300 32.0255 27 63.9734 -30 54 

 

 

Table 8. The values of 𝛼𝑡 and 𝛽𝑡 in equation 19 with 230 random tests for S1 recovery using move guess-and-

determine attack 
t 𝜷𝒕 log 𝜶𝒕 log Comp. t 𝜷𝒕 log 𝜶𝒕 log Comp. 

7 19 0 57 18 51.3778 -0.46813 46.154 

8 22 0 56 19 53.944 -0.81775 45.240 
9 25 0 55 20 56.3782 -1.29023 44.349 

10 28 0 54 21 58.6461 -1.92793 43.554 

11 31 0 53 22 60.618 -2.92557 43.246 

12 34 0 52 23 62.0883 -4.53347 44.217 

13 36.9993 -0.00032 51.000 24 63.0036 -6.74720 46.026 

14 39.9919 -0.00664 50.001 25 63.5126 -9.33791 48.003 
15 42.9586 -0.02965 49.011 26 63.781 -12.14077 50.000 

16 45.8676 -0.09063 48.041 27 63.9129 -15.07695 52.000 
17 48.6827 -0.23270 47.084 28 63.9702 -18.01131 54.000 

 

 

Table 9. Values of time complexity with various methods for recovery of S0 and S1 states 
Method Constant clock bit Log complexity during 

recovery of S0 state 
Log complexity during 

recovery of S1 state 

Move guess and determine attack S[8] 36.56 43.251 

Proposed modified Guess and determine attack S[29] 31.66 43.246 

Proposed modified Guess and determine attack S[51] 29.313 43.251 

Selective modified Guess and determine attack S[8] / S[29] / S[51] 29.3138 43.246 

 

 

7. CONCLUSION 

Here we propose two modifications in 2-bit move guessing techniques and revisited memoryless 

state-recovery method move guessing technique and Golic’s guess and determine attack on A5/1 stream 

cipher. With practical implementation we can prove that the time complexity can be further reduced by 

changing the move equation for recovery of S0 and S1. For recovery of S0 and S1 time complexity achieved 

by keeping 𝑆[29] bit common is calculated as 231.66 corresponding to t = 15, 243.246 corresponding to t = 22 

respectively and by keeping 𝑆[51] bit common it gives 229.313 corresponding to t = 14 and 

243.251 corresponding to t = 22. We have also given an algorithm to decide which bit can be kept constant so 

that for every iteration of finding S0 and S1 state bits the time complexity is always at its lower end. Time 

complexity calculated with this method for recovery of S0 is 229.3138 corresponding to t = 14 and for recovery 

of S1 is 243.246 corresponding to t = 22. 
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