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The present article introduces the discrete grey wolf optimization algorithm
(DGWOA), a novel variant of the grey wolf optimizer (GWO). DGWOA
integrates discrete optimization techniques with explainable artificial
intelligence (XAI) methodologies. This approach aims to overcome
limitations associated with traditional fault diagnosis methods, such as
limited accuracy in identifying complex patterns and low interpretability.
Furthermore, it mitigates early convergence problems commonly
encountered in optimization algorithms and enhances adaptability to discrete
classification challenges. The DGWOA algorithm is designed to generate
interpretable classification rules for fault detection through a stochastic
search strategy. The explainability provided by the model not only enhances
decision-making transparency but also improves diagnostic efficiency and
predictive accuracy. The proposed algorithm was evaluated using a
photovoltaic system dataset and benchmarked against established rule-based
classifiers. DGWOA consistently achieved a classification accuracy of
99.48% and a precision of 100%, demonstrating its effectiveness in
enhancing fault detection. Moreover, the interpretability of the generated
classification rules contributes to the generation of outcomes that are both
actionable and comprehensible to decision-makers.
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1. INTRODUCTION

The rapid advancement of contemporary technology has positioned solar energy as a leader in
global renewable power generation. [1], [2]. This worldwide growth is mostly ascribed to the essential
function of solar energy in reducing pollution and lessening the detrimental impacts of environmental
degradation. [3], as well as the continuous depletion of fossil fuel reserves, which has amplified the global
demand for sustainable alternatives. Among the most promising technologies, photovoltaic (PV) systems
stand out due to their environmental benefits, sustainability, and safety [4]. However, several studies [5], [6]
have reported that these systems are susceptible to sudden faults that may result in significant energy losses
and reduced component lifespan. This underscores the need for precise and rapid defect identification to
ensure optimal performance and minimize maintenance expenses.
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Numerous conventional techniques have been used to overcome these difficulties, such as statistical
techniques [7] and classical machine learning algorithms [8]. Nevertheless, their performance tends to decline
as system complexity and scale increase. Consequently, metaheuristic algorithms have garnered substantial
attention due to their capability to enhance fault detection and parameter extraction using nature-inspired
optimization strategies [9], [10]. For instance, Juan et al. [11] proposed a hybrid simulation combining
metaheuristic algorithms to tackle complex optimization problems. At the same time, the fitness-distance
balance-based stochastic fractal search (FDB-SFS) approach [12] demonstrated superior performance in
extracting parameters of photovoltaic adaptive guided differential evolution algorithm (AGDE) models.
Furthermore, algorithms such as the artificial hummingbird algorithm (AHA) [13] and modified social
network search algorithm combined with the secant method (MSNS-SEC) [14], along with several variants of
particle swarm optimization (PSO), have demonstrated remarkable optimization capabilities and results [15].

Additional developments include an ANFIS model integrated with the PSO algorithm, which
effectively reduced total harmonic distortion (THD) in a UPS system powered by LiFePOu batteries [16].
Moreover, the tree seed optimization (TSO) technique demonstrates a notable superiority over multiple
methods for result accuracy and convergence speed. [17]. Hybrid models, such as dung beetle optimization
algorithm combined with Fick’s law of diffusion algorithm dung beetle optimization algorithm combined
with Fick’s law of diffusion algorithm (DBFLA) [18], QPSOL [19], and whale optimization
algorithm- artificial neural network (WOA-ANN) [20], have also achieved outstanding performance in fault
classification and improving diagnostic accuracy.

In this context, the grey wolf optimizer (GWO) has emerged as one of the most efficient
metaheuristic methods, both in its original form and through its various modified and hybrid variants, owing
to its high performance in photovoltaic system applications; these advancements have contributed to faster
dynamic response, reduced energy losses, and improved voltage stability under variable operating conditions
[21]-[31]. Despite the proven efficiency of various GWO variants in numerous optimization tasks, their
black-box nature limits interpretability and traceability, key requirements in sensitive fields such as
photovoltaic systems. To overcome this limitation, the diversified grey wolf optimizer algorithm (DGWOA)
has been introduced. By integrating cooperative search strategies with explainable Al (XAI) techniques,
DGWOA enhances transparency while preserving high classification accuracy. Its hybrid framework enables
the generation of explicit decision rules and incorporates a dynamic control mechanism to balance
exploration and exploitation, ensuring adaptability and improved convergence.

The next parts of this document are organized as outlined. Methodology outlines the proposed
technique, including the classification task, the error categories considered, and the datasets utilized. The
experimental results section presents a comprehensive evaluation and comparative analysis with existing
models. Finally, the research ends with a synthesis of the main results, highlighting the model’s improved
robustness, reliability, and suitability for real world PV system applications.

2. METHOD
2.1. Discrete grey wolf optimization (DGWOA)

This research study presents the DGWOA, a novel adaptation of the original technique molded
GWO by the social hierarchy and hunting behaviors of wolves. Integrated with explainable artificial
intelligence techniques, DGWOA facilitates the generation of interpretable classification rules, thereby
enhancing the transparency and reliability of decision-making. Figure 1 shows the structure of the DGWOA-
based system for diagnosing photovoltaic (PV) faults. This system enhances overall efficiency and
accelerates solution convergence when dealing with complex optimization problems. Figure 2. The overall
structure of the proposed method is based on DGWOA.
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Figure 1. Structure of the DGWOA-based system for diagnosing PV faults
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Figure 2. The proposed method DGWOA

Algorithm 1 represents the practical implementation of a hybrid framework that combines the GWO
algorithm with explainable Al (XAI) techniques. It demonstrates how this integration enables accurate fault
diagnosis in photovoltaic systems while ensuring the level of interpretability required for real world operating
environments.

Algorithm 1. DGWOA - a discrete grey wolf optimizer for rule-based classification
Input parameters:

D _train: Training dataset used for rule induction

D _test: Testing dataset used for model evaluation

W: Total number of search agents (wolves)

Max_iter: Maximum number of optimization iterations per rule

Min_instance: Minimum number of uncovered training instances to extract a rule
Output:

A set of classification rules for each target class

Performance metrics: Accuracy, Precision, TP, FP, TN, FN
Methodological framework:
A. Initialization phase

Initialize the algorithm parameters: W, Max _iter, Min_instance

Start execution timer

Define empty rulesets: Ruleset C1, Ruleset C2, ..., Ruleset Cn
B. Rule extraction phase
For each class Ci € {C1, C2, ..., Cn}:

Partition D_train into:

D _pos: Instances of class Ci
D neg: Instances not belonging to Ci

While [D_pos| > Min_instance:

Randomly initialize W wolves (candidate rules)
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For each iteration t = 1 to Max_iter:
Evaluate the fitness of each wolf using the defined fitness functions (Equations 1 and 2)
Select the top three wolves as Alpha (best), Beta (second-best), and Gamma (third-best)
Update positions of the remaining wolves using the DGWOA strategy
After Max _iter, set the Alpha wolf's vector as a new rule
Apply the new rule on the training set D_train
Remove covered instances from D_train
Add the new rule to Ruleset Ci
C. Testing phase
Apply the extracted ruleset on the test dataset D _test
For each class Ci:
Compute confusion matrix: TP, FP, TN, FN
Calculate performance metrics: Accuracy, Precision
D. Aggregation and reporting
Combine results for all classes
Report final classification performance metrics and runtime

2.2. The dataset

This study utilized a dataset available on the Kaggle platform, which represents operational
measurements of a photovoltaic system collected from a simulated 250 kW solar farm, focusing on detecting
multiple types of faults (F1, F2, and F3) alongside the normal operating state (FO0). It includes sampled
measurements of environmental factors, including temperature, sun irradiance, and fault resistance, with
essential electrical variables, including current, voltage, and power [32].

2.3. Rule generation and fitness evaluation

The proposed prediction and diagnosis approach is based on extracting classification rules that
define system operational states through structured logical conditions, enabling their categorization into
predefined classes. The rule generation process is driven by a relevance function grounded in the support
metric [33], [34] as in (1); which evaluates each rule based on the total number of instances (TI), correctly
covered cases (ICC), and incorrectly covered cases (INCC) as in (2). Figure 3 illustrates the methodological
framework an iterative refinement cycle to improve classification accuracy and ensure diagnostic reliability.
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Figure 3. Flowchart of the proposed rule-based fault diagnosis approach
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3. EXPERIMENTAL
3.1. DGWOA evaluation

The DGWOA algorithm was executed multiple times on photovoltaic (PV) system data by varying
the number of wolves and iterations, with automatically generated seed values in each run. As presented in
Table 1, the best performance was achieved with 110 wolves and 10 iterations, yielding a classification
accuracy of 0.99 and a precision of 1.00 within an execution time of less than 6 minutes. Increasing the
number of wolves beyond this configuration yielded no further improvements and resulted in a slight decline
in efficiency. These findings highlight the importance of identifying an optimal configuration that strikes a
balance among classification accuracy, computational expense, and search efficacy.

Table 1. DGWOA performance under varying numbers of wolves and iterations
Number of wolves  Number of iterations  Accuracy  Precision

20 5 0.81 0.75
50 8 0.81 0.75
110 10 0.99 1.00
120 15 0.76 0.62
135 25 0.81 0.75
180 30 0.78 0.65
200 50 0.82 0.70

3.2. Rule set generation

Table 2 presents the classification rules generated by the DGWOA algorithm, yielding four distinct
rules: one for the normal condition (FO—Class 1) and three for fault scenarios (F1, F2, and F3—Classes 2, 3,
and 4). While some rules achieved high classification accuracy and substantial data coverage, reaching
benchmark level performance, others showed reduced accuracy and lower coverage, indicating variability in
generalization. Rule coverage ranged from 16% to 34% (94 to 198 instances), highlighting areas for potential
refinement to improve completeness and reliability. Table 3 presents the true-positives (TP), false-positives
(FP), true-negatives (TN), and false-negatives (FN) values per class, and Table 4 provides a confusion
matrix-based performance analysis, enabling a detailed evaluation across all fault categories.

Table 2. The resulting rules

Rule # Generated rules Class Number Number of instances  Number of instances Rule's
of terms correctly covered not correctly covered  accuracy

01 If rangel in range (0.00193) - (0.1069) Classl 2 94/100 0 16 %
and range3 in range > (0) then Normal
mode (FO0)

02 If rangel in range (0.1069) - (5.3141) and Class2 2 144/146 1 24%
range3 in range > (0) then Defaultl (F1)

03 If range3 in range (-4.25) - (-0.0662) and Class3 2 143/144 0 24%
range4 in range < (0) then Default2 (F2)

04 If range4 in range > (0.0621) then Class4 1 198/198 0 34%

Default3 (F3)

Evaluate Correctly classified instances = 96 out of 97.96
Model accuracy=0.99
Model precision= 1.0
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Table 3. Model performance
Class TP FP TN FN Accuracy Precision

ClassCl 25 0 73 0 1.0 1.00
ClassC2 23 0 75 0 1.0 1.00
ClassC3 23 0 73 2 0.98 1.00
ClassC4 25 0 73 0 1.0 1.00

3.3. Evaluation of model performance using receiver operating characteristic curves and area under
the curve

Figure 4 presents the results of the receiver operating characteristic (ROC) curve and area under the
curve (AUC) metrics, indicating that the model effectively distinguishes between positive and negative
instances across all four classes (C1, C2, C3, and C4). The precision and AUC scores for C1, C2, and C4 are
nearly perfect, approaching 1.00, while those for C3 are 0.98 and 0.96, respectively. These values
substantially exceed the random classification threshold (AUC = 0.5), as in Figure 5. Analysis of classifier
performance using confusion matrix illustrated in the figure. Overall, the results confirm the model’s strong
classification performance, its robust discriminative power across multiple categories, and its high predictive
accuracy, supporting its applicability in complex classification tasks.
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Figure 5. Analysis of classifier performance using confusion matrix
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3.4. Assessment of DGWOA in comparison with conventional techniques

The proposed DGWOA algorithm was evaluated through two comparative experiments on a
benchmark dataset one using traditional classifiers [33], the other using WEKA-based models. The results
confirmed its superior performance, with 99.48% accuracy, 0.99 AUC, 0.9896 F1-score, perfect precision,
and 0.9796 recall. DGWOA also generated interpretable “if—then” rules, aligning with explainable Al (XAI).
In contrast, ensemble models such as AdaBoost and random forest demonstrated high accuracy but lacked
interpretability. Conventional and low-performing models (e.g., CN2, naive Bayes, and ZenoR)
underperformed or failed to generate rules as summarized in Table 4 and illustrated in Figure 6. Overall,
DGWOA demonstrates a strong balance between predictive accuracy and transparency, making it suitable for
high-stakes decision-making.

Table 4. Comparative analysis with other classifiers

Model CA (%) F1-Score (%)  Precission (%)  Recall (%)  Specificity (%)  Generation the

Rules (If-Then)
DGWOA 99.48 98.96 100 97.96 100 YES
Adaboost [33] 95 94.9 95.8 95 98.3 NO
Random forest [33] 81 80.6 83.4 81 93.7 NO
Lasso-regression [33] 76 75.3 79.9 76 92 NO
Ridge-regression [33] 71 69.4 73.3 71 90.3 NO
Naives Bayes [33] 60 58.9 58.4 60 86.7 NO
CN2 rule induction [33] 50 48.5 51.8 50 83.3 YES
Zenor (WEKA Platform) 255 10.4 6.5 25.5 74.5 NO
Oner (WEKA Platform) 67.6 429 38.7 51.0 84.1 NO
Decision table 0.735 66.1 85.6 73.5 90.9 YES

(WEKA platform)

Performance Metrics

100 ES%9 Precision 3 Recall
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E= Fl-Score

BE= Specificity

80
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40
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Figure 6. Comparing algorithms using different criteria

3.5. Statistical stability of DGWOA based on max fitness performance

To evaluate the reliability of the DGWOA algorithm's performance, 30 independent iterations were
conducted, with 110 wolves and 10 internal iterations. The results revealed that the algorithm achieved a
maximum objective function value of 0.0025641 in 28 out of 30 runs, indicating strong numerical stability and
the ability to reproduce outcomes under identical experimental conditions consistently. The arithmetic mean of
the fitness values was 0.00256109, and the median (0.0025641) matched the maximum value itself, reflecting a
distribution tightly centered on the optimal value with no significant deviations. A very low standard deviation
of 1.128e-05 further supports the observation of minimal dispersion, emphasizing the robustness of the
algorithm and its reduced sensitivity to the stochastic nature typical of population-based metaheuristics, as
shown in Figure 7. The minimum fitness value of 0.00251889 was observed in only two out of the 30 runs,
representing the lowest performance recorded. Although slightly lower than the maximum, this difference is
minor and may lead to local optima or reduced population diversity during early iterations, limiting the
algorithm's exploratory effectiveness [35], [36]. Nevertheless, the rarity of such deviations reinforces the
algorithm's overall consistency and its ability to maintain high performance across multiple runs.
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Figure 7. Statistical stability analysis of DGWOA based on max fitness performance

4. CONCLUSON

This research has shown the efficacy of an upgraded DGWOA, augmented with machine learning
principles, in addressing fault detection and diagnostic issues in industrial systems. The proposed method was
validated using real-world data from a photovoltaic (PV) system, wherein continuous variables were
discretized to generate interpretable classification rules. The DGWOA successfully produced four
classification rules, one representing normal operating conditions and three corresponding to fault states (F1,
F2, and F3), achieving an overall classification accuracy of 99.48% and a precision of 100%. For a
comprehensive assessment of the robustness and reliability of the proposed approach, two independent
comparative evaluations were conducted. The first involved a set of well-established classification algorithms
referenced in prior studies, while the second focused on rule-based classifiers available within the Weka
platform. In both cases, the DGWOA demonstrated superior performance, highlighting its capacity to
generate accurate and generalizable classification rules in complex diagnostic scenarios. Moreover, a
statistical stability analysis based on the maximum fitness values was performed, further confirming the
algorithm’s numerical consistency and resilience to stochastic variation, which is often inherent in
population-based metaheuristics. These findings underscore the effectiveness of DGWOA not only in
achieving high classification accuracy but also in maintaining stable behavior across multiple runs. Future
work will extend the application of DGWOA to various industrial domains, including wind energy systems
and electric motors. Subsequent studies will focus on evaluating its scalability with large-scale datasets and
investigating its integration with advanced intelligent optimization and learning techniques to enhance
diagnostic performance in complex and dynamic industrial environments.
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