Explainable fault diagnosis using discrete grey wolf optimization algorithm for photovoltaic system

Slimani Hassina¹, Chouhal Ouahiba², Beddiaf Yassine³, Mahdaoui Rafik², Haouassi Hichem², Hamdi Roumaissa¹

¹Laboratory of SATIT, Department of Electrical Engineering, Faculty of Science and Technology, University of Khenchela, Algeria ²ICOSI Laboratory, Department of Computer Science, Abbes Laghrour University, Khenchela, Algeria ³Laboratory of LTIMER, Department of Electrical Engineering, Faculty of Science and Technology, University of Khenchela, Algeria

Article Info

Article history:

Received Jan 26, 2025 Revised Sep 2, 2025 Accepted Sep 15, 2025

Keywords:

Discrete grey wolf optimization algorithm Fault diagnosis Grey wolf optimization algorithm Metaheuristic algorithm Photovoltaic system

ABSTRACT

The present article introduces the discrete grey wolf optimization algorithm (DGWOA), a novel variant of the grey wolf optimizer (GWO). DGWOA integrates discrete optimization techniques with explainable artificial intelligence (XAI) methodologies. This approach aims to overcome limitations associated with traditional fault diagnosis methods, such as limited accuracy in identifying complex patterns and low interpretability. Furthermore, it mitigates early convergence problems commonly encountered in optimization algorithms and enhances adaptability to discrete classification challenges. The DGWOA algorithm is designed to generate interpretable classification rules for fault detection through a stochastic search strategy. The explainability provided by the model not only enhances decision-making transparency but also improves diagnostic efficiency and predictive accuracy. The proposed algorithm was evaluated using a photovoltaic system dataset and benchmarked against established rule-based classifiers. DGWOA consistently achieved a classification accuracy of 99.48% and a precision of 100%, demonstrating its effectiveness in enhancing fault detection. Moreover, the interpretability of the generated classification rules contributes to the generation of outcomes that are both actionable and comprehensible to decision-makers.

This is an open access article under the <u>CC BY-SA</u> license.

5286

Corresponding Author:

Slimani Hassina

Laboratory of SATIT, Department of Electrical Engineering, Faculty of Science and Technology, Abbes Laghrour, University of Khenchela

40004, Algeria

Email: slimani.hassina@univ-khenchela.dz

1. INTRODUCTION

The rapid advancement of contemporary technology has positioned solar energy as a leader in global renewable power generation. [1], [2]. This worldwide growth is mostly ascribed to the essential function of solar energy in reducing pollution and lessening the detrimental impacts of environmental degradation. [3], as well as the continuous depletion of fossil fuel reserves, which has amplified the global demand for sustainable alternatives. Among the most promising technologies, photovoltaic (PV) systems stand out due to their environmental benefits, sustainability, and safety [4]. However, several studies [5], [6] have reported that these systems are susceptible to sudden faults that may result in significant energy losses and reduced component lifespan. This underscores the need for precise and rapid defect identification to ensure optimal performance and minimize maintenance expenses.

Numerous conventional techniques have been used to overcome these difficulties, such as statistical techniques [7] and classical machine learning algorithms [8]. Nevertheless, their performance tends to decline as system complexity and scale increase. Consequently, metaheuristic algorithms have garnered substantial attention due to their capability to enhance fault detection and parameter extraction using nature-inspired optimization strategies [9], [10]. For instance, Juan *et al.* [11] proposed a hybrid simulation combining metaheuristic algorithms to tackle complex optimization problems. At the same time, the fitness-distance balance-based stochastic fractal search (FDB-SFS) approach [12] demonstrated superior performance in extracting parameters of photovoltaic adaptive guided differential evolution algorithm (AGDE) models. Furthermore, algorithms such as the artificial hummingbird algorithm (AHA) [13] and modified social network search algorithm combined with the secant method (MSNS-SEC) [14], along with several variants of particle swarm optimization (PSO), have demonstrated remarkable optimization capabilities and results [15].

Additional developments include an ANFIS model integrated with the PSO algorithm, which effectively reduced total harmonic distortion (THD) in a UPS system powered by LiFePO4 batteries [16]. Moreover, the tree seed optimization (TSO) technique demonstrates a notable superiority over multiple methods for result accuracy and convergence speed. [17]. Hybrid models, such as dung beetle optimization algorithm combined with Fick's law of diffusion algorithm dung beetle optimization algorithm combined with Fick's law of diffusion algorithm (DBFLA) [18], QPSOL [19], and whale optimization algorithm- artificial neural network (WOA-ANN) [20], have also achieved outstanding performance in fault classification and improving diagnostic accuracy.

In this context, the grey wolf optimizer (GWO) has emerged as one of the most efficient metaheuristic methods, both in its original form and through its various modified and hybrid variants, owing to its high performance in photovoltaic system applications; these advancements have contributed to faster dynamic response, reduced energy losses, and improved voltage stability under variable operating conditions [21]–[31]. Despite the proven efficiency of various GWO variants in numerous optimization tasks, their black-box nature limits interpretability and traceability, key requirements in sensitive fields such as photovoltaic systems. To overcome this limitation, the diversified grey wolf optimizer algorithm (DGWOA) has been introduced. By integrating cooperative search strategies with explainable AI (XAI) techniques, DGWOA enhances transparency while preserving high classification accuracy. Its hybrid framework enables the generation of explicit decision rules and incorporates a dynamic control mechanism to balance exploration and exploitation, ensuring adaptability and improved convergence.

The next parts of this document are organized as outlined. Methodology outlines the proposed technique, including the classification task, the error categories considered, and the datasets utilized. The experimental results section presents a comprehensive evaluation and comparative analysis with existing models. Finally, the research ends with a synthesis of the main results, highlighting the model's improved robustness, reliability, and suitability for real world PV system applications.

2. METHOD

2.1. Discrete grey wolf optimization (DGWOA)

This research study presents the DGWOA, a novel adaptation of the original technique molded GWO by the social hierarchy and hunting behaviors of wolves. Integrated with explainable artificial intelligence techniques, DGWOA facilitates the generation of interpretable classification rules, thereby enhancing the transparency and reliability of decision-making. Figure 1 shows the structure of the DGWOA-based system for diagnosing photovoltaic (PV) faults. This system enhances overall efficiency and accelerates solution convergence when dealing with complex optimization problems. Figure 2. The overall structure of the proposed method is based on DGWOA.

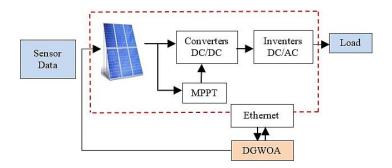


Figure 1. Structure of the DGWOA-based system for diagnosing PV faults

5288 □ ISSN: 2088-8708

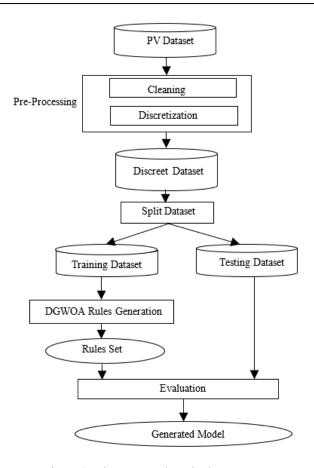


Figure 2. The proposed method DGWOA

Algorithm 1 represents the practical implementation of a hybrid framework that combines the GWO algorithm with explainable AI (XAI) techniques. It demonstrates how this integration enables accurate fault diagnosis in photovoltaic systems while ensuring the level of interpretability required for real world operating environments.

Algorithm 1. DGWOA – a discrete grey wolf optimizer for rule-based classification

Input parameters:

D_train: Training dataset used for rule induction

D_test: Testing dataset used for model evaluation

W: Total number of search agents (wolves)

Max iter: Maximum number of optimization iterations per rule

Min instance: Minimum number of uncovered training instances to extract a rule

Output:

A set of classification rules for each target class

Performance metrics: Accuracy, Precision, TP, FP, TN, FN

Methodological framework:

A. Initialization phase

Initialize the algorithm parameters: W, Max_iter, Min_instance

Start execution timer

Define empty rulesets: Ruleset_C1, Ruleset_C2, ..., Ruleset_Cn

B. Rule extraction phase

For each class $Ci \in \{C1, C2, ..., Cn\}$:

Partition D train into:

D_pos: Instances of class Ci

D_neg: Instances not belonging to Ci

While |D_pos| > Min_instance:

Randomly initialize W wolves (candidate rules)

For each iteration t = 1 to Max iter:

Evaluate the fitness of each wolf using the defined fitness functions (Equations 1 and 2)

Select the top three wolves as Alpha (best), Beta (second-best), and Gamma (third-best)

Update positions of the remaining wolves using the DGWOA strategy

After Max iter, set the Alpha wolf's vector as a new rule

Apply the new rule on the training set D train

Remove covered instances from D train

Add the new rule to Ruleset_Ci

C. Testing phase

Apply the extracted ruleset on the test dataset D_test

For each class Ci:

Compute confusion matrix: TP, FP, TN, FN

Calculate performance metrics: Accuracy, Precision

D. Aggregation and reporting

Combine results for all classes

Report final classification performance metrics and runtime

2.2. The dataset

This study utilized a dataset available on the Kaggle platform, which represents operational measurements of a photovoltaic system collected from a simulated 250 kW solar farm, focusing on detecting multiple types of faults (F1, F2, and F3) alongside the normal operating state (F0). It includes sampled measurements of environmental factors, including temperature, sun irradiance, and fault resistance, with essential electrical variables, including current, voltage, and power [32].

2.3. Rule generation and fitness evaluation

The proposed prediction and diagnosis approach is based on extracting classification rules that define system operational states through structured logical conditions, enabling their categorization into predefined classes. The rule generation process is driven by a relevance function grounded in the support metric [33], [34] as in (1); which evaluates each rule based on the total number of instances (TI), correctly covered cases (ICC), and incorrectly covered cases (INCC) as in (2). Figure 3 illustrates the methodological framework an iterative refinement cycle to improve classification accuracy and ensure diagnostic reliability.

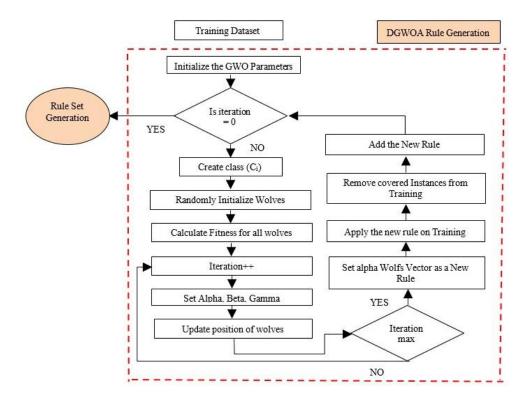
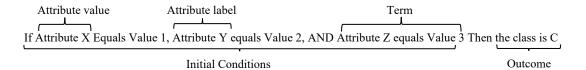


Figure 3. Flowchart of the proposed rule-based fault diagnosis approach

Support metric =
$$\frac{ICC}{TI}$$
 (1)

$$Fitness\ Function = \frac{TI}{(TI-ICC)*(TI+INCC)}$$
 (2)

Formula for classification rules:



3. EXPERIMENTAL

3.1. DGWOA evaluation

The DGWOA algorithm was executed multiple times on photovoltaic (PV) system data by varying the number of wolves and iterations, with automatically generated seed values in each run. As presented in Table 1, the best performance was achieved with 110 wolves and 10 iterations, yielding a classification accuracy of 0.99 and a precision of 1.00 within an execution time of less than 6 minutes. Increasing the number of wolves beyond this configuration yielded no further improvements and resulted in a slight decline in efficiency. These findings highlight the importance of identifying an optimal configuration that strikes a balance among classification accuracy, computational expense, and search efficacy.

Table 1. DGWOA performance under varying numbers of wolves and iterations

Number of wolves	Number of iterations	Accuracy	Precision
20	5	0.81	0.75
50	8	0.81	0.75
110	10	0.99	1.00
120	15	0.76	0.62
135	25	0.81	0.75
180	30	0.78	0.65
200	50	0.82	0.70

3.2. Rule set generation

Table 2 presents the classification rules generated by the DGWOA algorithm, yielding four distinct rules: one for the normal condition (F0–Class 1) and three for fault scenarios (F1, F2, and F3–Classes 2, 3, and 4). While some rules achieved high classification accuracy and substantial data coverage, reaching benchmark level performance, others showed reduced accuracy and lower coverage, indicating variability in generalization. Rule coverage ranged from 16% to 34% (94 to 198 instances), highlighting areas for potential refinement to improve completeness and reliability. Table 3 presents the true-positives (TP), false-positives (FP), true-negatives (TN), and false-negatives (FN) values per class, and Table 4 provides a confusion matrix-based performance analysis, enabling a detailed evaluation across all fault categories.

Table 2. The resulting rules

Table 2. The resulting rules										
Rule #	Generated rules	Class	Number of terms	Number of instances correctly covered	Number of instances not correctly covered	Rule's				
			or terms	- J	not correctly covered	accuracy				
01	If range 1 in range (0.00193) - (0.1069)	Class1	2	94/100	0	16 %				
	and range3 in range > (0) then Normal mode (F0)									
02	If range 1 in range (0.1069) - (5.3141) and	Class2	2	144/146	1	24%				
	range3 in range $>$ (0) then Default1 (F1)									
03	If range3 in range (-4.25) - (-0.0662) and	Class3	2	143/144	0	24%				
	range4 in range < (0) then Default2 (F2)									
04	If range4 in range $> (0.0621)$ then	Class4	1	198/198	0	34%				
	Default3 (F3)			-,,		•				
Evaluate	Correctly classified instances = 96 out of	f 97.96								
	Model accuracy= 0.99									
	Model precision= 1.0									

Table 3. Model performance											
Class	TP	FP	TN	FN	Accuracy	Precision					
Class C1	25	0	73	0	1.0	1.00					
Class C2	23	0	75	0	1.0	1.00					
Class C3	23	0	73	2	0.98	1.00					
Class C4	25	0	73	0	1.0	1.00					

3.3. Evaluation of model performance using receiver operating characteristic curves and area under the curve

Figure 4 presents the results of the receiver operating characteristic (ROC) curve and area under the curve (AUC) metrics, indicating that the model effectively distinguishes between positive and negative instances across all four classes (C1, C2, C3, and C4). The precision and AUC scores for C1, C2, and C4 are nearly perfect, approaching 1.00, while those for C3 are 0.98 and 0.96, respectively. These values substantially exceed the random classification threshold (AUC = 0.5), as in Figure 5. Analysis of classifier performance using confusion matrix illustrated in the figure. Overall, the results confirm the model's strong classification performance, its robust discriminative power across multiple categories, and its high predictive accuracy, supporting its applicability in complex classification tasks.

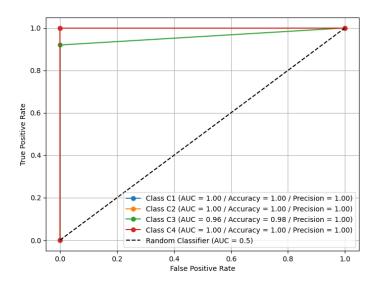


Figure 4. Multi-class ROC curves with AUC, accuracy, and precision

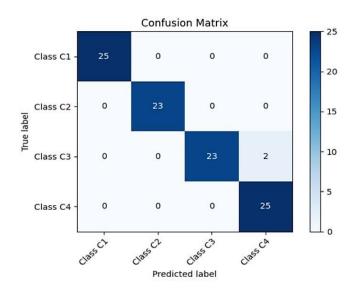


Figure 5. Analysis of classifier performance using confusion matrix

3.4. Assessment of DGWOA in comparison with conventional techniques

The proposed DGWOA algorithm was evaluated through two comparative experiments on a benchmark dataset one using traditional classifiers [33], the other using WEKA-based models. The results confirmed its superior performance, with 99.48% accuracy, 0.99 AUC, 0.9896 F1-score, perfect precision, and 0.9796 recall. DGWOA also generated interpretable "if—then" rules, aligning with explainable AI (XAI). In contrast, ensemble models such as AdaBoost and random forest demonstrated high accuracy but lacked interpretability. Conventional and low-performing models (e.g., CN2, naive Bayes, and ZenoR) underperformed or failed to generate rules as summarized in Table 4 and illustrated in Figure 6. Overall, DGWOA demonstrates a strong balance between predictive accuracy and transparency, making it suitable for high-stakes decision-making.

OC 11 4	~ · ·		* . 1	- 1	1
Table 4.	Comparative	analysis	with	other	classifiers

Model	CA (%)	F1-Score (%)	Precission (%)	Recall (%)	Specificity (%)	Generation the Rules (If-Then)
DGWOA	99.48	98.96	100	97.96	100	YES
Adaboost [33]	95	94.9	95.8	95	98.3	NO
Random forest [33]	81	80.6	83.4	81	93.7	NO
Lasso-regression [33]	76	75.3	79.9	76	92	NO
Ridge-regression [33]	71	69.4	73.3	71	90.3	NO
Naives Bayes [33]	60	58.9	58.4	60	86.7	NO
CN2 rule induction [33]	50	48.5	51.8	50	83.3	YES
Zenor (WEKA Platform)	25.5	10.4	6.5	25.5	74.5	NO
Oner (WEKA Platform)	67.6	42.9	38.7	51.0	84.1	NO
Decision table (WEKA platform)	0.735	66.1	85.6	73.5	90.9	YES

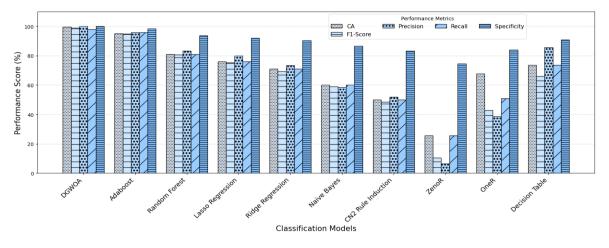


Figure 6. Comparing algorithms using different criteria

3.5. Statistical stability of DGWOA based on max fitness performance

To evaluate the reliability of the DGWOA algorithm's performance, 30 independent iterations were conducted, with 110 wolves and 10 internal iterations. The results revealed that the algorithm achieved a maximum objective function value of 0.0025641 in 28 out of 30 runs, indicating strong numerical stability and the ability to reproduce outcomes under identical experimental conditions consistently. The arithmetic mean of the fitness values was 0.00256109, and the median (0.0025641) matched the maximum value itself, reflecting a distribution tightly centered on the optimal value with no significant deviations. A very low standard deviation of 1.128e-05 further supports the observation of minimal dispersion, emphasizing the robustness of the algorithm and its reduced sensitivity to the stochastic nature typical of population-based metaheuristics, as shown in Figure 7. The minimum fitness value of 0.00251889 was observed in only two out of the 30 runs, representing the lowest performance recorded. Although slightly lower than the maximum, this difference is minor and may lead to local optima or reduced population diversity during early iterations, limiting the algorithm's exploratory effectiveness [35], [36]. Nevertheless, the rarity of such deviations reinforces the algorithm's overall consistency and its ability to maintain high performance across multiple runs.

П

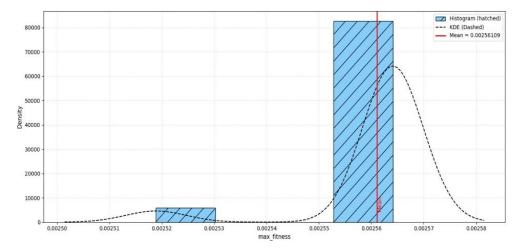


Figure 7. Statistical stability analysis of DGWOA based on max fitness performance

4. CONCLUSON

This research has shown the efficacy of an upgraded DGWOA, augmented with machine learning principles, in addressing fault detection and diagnostic issues in industrial systems. The proposed method was validated using real-world data from a photovoltaic (PV) system, wherein continuous variables were discretized to generate interpretable classification rules. The DGWOA successfully produced four classification rules, one representing normal operating conditions and three corresponding to fault states (F1, F2, and F3), achieving an overall classification accuracy of 99.48% and a precision of 100%. For a comprehensive assessment of the robustness and reliability of the proposed approach, two independent comparative evaluations were conducted. The first involved a set of well-established classification algorithms referenced in prior studies, while the second focused on rule-based classifiers available within the Weka platform. In both cases, the DGWOA demonstrated superior performance, highlighting its capacity to generate accurate and generalizable classification rules in complex diagnostic scenarios. Moreover, a statistical stability analysis based on the maximum fitness values was performed, further confirming the algorithm's numerical consistency and resilience to stochastic variation, which is often inherent in population-based metaheuristics. These findings underscore the effectiveness of DGWOA not only in achieving high classification accuracy but also in maintaining stable behavior across multiple runs. Future work will extend the application of DGWOA to various industrial domains, including wind energy systems and electric motors. Subsequent studies will focus on evaluating its scalability with large-scale datasets and investigating its integration with advanced intelligent optimization and learning techniques to enhance diagnostic performance in complex and dynamic industrial environments.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the University of Abbas Laghrour, Khenchela, Algeria, and the SATIT Laboratory, University of Khenchela for their valuable support and resources.

FUNDING INFORMATION

Authors state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author	C	M	So	Va	Fo	I	R	D	0	E	Vi	Su	P	Fu
Slimani hassina	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	√
Chouhale Ouahiba	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	
Beddiaf Yassine					\checkmark						✓	\checkmark	✓	
Mahdaoui Rafik	\checkmark	✓	✓	\checkmark	\checkmark	✓		\checkmark		\checkmark		\checkmark	✓	
Hichem Haouassi			✓		✓	✓				\checkmark			\checkmark	
Hamdi Romaissa						✓				\checkmark	✓			

Fo: Formal analysis E: Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT

The authors affirm that they have no conflicts of interest.

DATA AVAILABILITY

The dataset used in this research, entitled "Fault Detection Dataset in Photovoltaic Farms," is freely accessible on Kaggle and can be found at:

https://www.kaggle.com/datasets/amrezzeldinrashed/fault-detection-dataset-in-photovoltaic-farms.

REFERENCES

- [1] X. Liu, S. Yuan, H. Yu, and Z. Liu, "How ecological policy stringency moderates the influence of industrial innovation on environmental sustainability: the role of renewable energy transition in BRICST countries," *Renewable Energy*, vol. 207, pp. 194–204, May 2023, doi: 10.1016/j.renene.2023.01.045.
- [2] X. Li, H. Tian, and L. Wang, "Solar energy and environmental sustainability: cost benefit analysis and ecological impact assessment," *Highlights in Science, Engineering and Technology*, vol. 96, pp. 72–77, May 2024, doi: 10.54097/rqt9rw05.
- Q. Hassan et al., "The renewable energy role in the global energy transformations," Renewable Energy Focus, vol. 48, p. 100545, Mar. 2024, doi: 10.1016/j.ref.2024.100545.
- [4] S. Yi, K. Raza Abbasi, K. Hussain, A. Albaker, and R. Alvarado, "Environmental concerns in the United States: can renewable energy, fossil fuel energy, and natural resources depletion help?," *Gondwana Research*, vol. 117, pp. 41–55, May 2023, doi: 10.1016/j.gr.2022.12.021.
- [5] S. Vergura, "A complete and simplified datasheet-based model of PV cells in variable environmental conditions for circuit simulation," *Energies*, vol. 9, no. 5, p. 326, Apr. 2016, doi: 10.3390/en9050326.
- [6] M. K. H. Rabaia et al., "Environmental impacts of solar energy systems: a review," Science of The Total Environment, vol. 754, p. 141989, Feb. 2021, doi: 10.1016/j.scitotenv.2020.141989.
- [7] E. Garoudja, F. Harrou, Y. Sun, K. Kara, A. Chouder, and S. Silvestre, "Statistical fault detection in photovoltaic systems," Solar Energy, vol. 150, pp. 485–499, Jul. 2017, doi: 10.1016/j.solener.2017.04.043.
- [8] M. Abdelsattar, A. AbdelMoety, and A. Emad-Eldeen, "Advanced machine learning techniques for predicting power generation and fault detection in solar photovoltaic systems," *Neural Computing and Applications*, vol. 37, no. 15, pp. 8825–8844, May 2025, doi: 10.1007/s00521-025-11035-6.
- [9] Z. Gu, G. Xiong, and X. Fu, "Parameter extraction of solar photovoltaic cell and module models with metaheuristic algorithms: a review," *Sustainability*, vol. 15, no. 4, p. 3312, Feb. 2023, doi: 10.3390/su15043312.
- [10] A. M. Nassef, M. A. Abdelkareem, H. M. Maghrabie, and A. Baroutaji, "Review of metaheuristic optimization algorithms for power systems problems," Sustainability, vol. 15, no. 12, p. 9434, Jun. 2023, doi: 10.3390/su15129434.
- [11] A. A. Juan *et al.*, "A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics," *Annals of Operations Research*, vol. 320, no. 2, pp. 831–861, Jan. 2023, doi: 10.1007/s10479-021-04142-9.
- [12] H. Bakır, "Comparative performance analysis of metaheuristic search algorithms in parameter extraction for various solar cell models," *Environmental Challenges*, vol. 11, p. 100720, Apr. 2023, doi: 10.1016/j.envc.2023.100720.
- [13] R. Ghanbarzadeh, A. Hosseinalipour, and A. Ghaffari, "A novel network intrusion detection method based on metaheuristic optimisation algorithms," *Journal of Ambient Intelligence and Humanized Computing*, vol. 14, no. 6, pp. 7575–7592, Jun. 2023, doi: 10.1007/s12652-023-04571-3.
- [14] P. J. Gnetchejo, S. Ndjakomo Essiane, A. Dadjé, D. Mbadjoun Wapet, and P. Ele, "Optimal design of the modelling parameters of photovoltaic modules and array through metaheuristic with Secant method," *Energy Conversion and Management: X*, vol. 15, p. 100273, Aug. 2022, doi: 10.1016/j.ecmx.2022.100273.
- [15] E.-J. Liu, Y.-H. Hung, and C.-W. Hong, "Improved metaheuristic optimization algorithm applied to hydrogen fuel cell and photovoltaic cell parameter extraction," *Energies*, vol. 14, no. 3, p. 619, Jan. 2021, doi: 10.3390/en14030619.
- [16] O. Sánchez Vargas, L. G. Vela Valdés, M. Borunda, R. E. Lozoya-Ponce, J. Aguayo Alquicira, and S. E. De León Aldaco, "ANFIS-PSO-based optimization for THD reduction in cascaded multilevel inverter UPS systems," *Electronics*, vol. 13, no. 22, p. 4456, Nov. 2024, doi: 10.3390/electronics13224456.
- [17] N. B. Repalle, P. Sarala, L. Mihet-Popa, S. R. Kotha, and N. Rajeswaran, "Implementation of a novel tabu search optimization algorithm to extract parasitic parameters of solar panel," *Energies*, vol. 15, no. 13, p. 4515, Jun. 2022, doi: 10.3390/en15134515.
- [18] O. Alqaraghuli and A. Ibrahim, "Optimizing photovoltaic system diagnostics: integrating machine learning and DBFLA for advanced fault detection and classification," *Electronics*, vol. 14, no. 8, p. 1495, Apr. 2025, doi: 10.3390/electronics14081495.
- [19] M. Qaraad, S. Amjad, N. K. Hussein, M. A. Farag, S. Mirjalili, and M. A. Elhosseini, "Quadratic interpolation and a new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation," *Expert Systems with Applications*, vol. 236, p. 121417, Feb. 2024, doi: 10.1016/j.eswa.2023.121417.
- [20] S. Sebbane and N. El Akchioui, "Improving the diagnosis of partial shading faults by utilising artificial neural networks optimised with the whale optimisation algorithm," *International Journal of Automation and Control*, vol. 19, no. 3, pp. 306–330, 2025, doi: 10.1504/IJAAC.2025.145916.
- [21] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Advances in Engineering Software, vol. 69, pp. 46-61, Mar.

П

- 2014, doi: 10.1016/j.advengsoft.2013.12.007.
- [22] M. Nasir, A. Sadollah, S. Mirjalili, S. A. Mansouri, M. Safaraliev, and A. Rezaee Jordehi, "A comprehensive review on applications of grey wolf optimizer in energy systems," Archives of Computational Methods in Engineering, vol. 32, no. 4, pp. 2279–2319, May 2025, doi: 10.1007/s11831-024-10214-3.
- [23] R. Zriouile, L. Bouhouch, I. Isknan, and A. Elfanaoui, "Performance evaluation of grey wolf optimizer and P&O MPPT for PV systems under shading," in 2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, May 2025, pp. 1–7. doi: 10.1109/IRASET64571.2025.11007987.
- [24] R. Motamarri, N. Bhookya, and B. Chitti Babu, "Modified grey wolf optimization for global maximum power point tracking under partial shading conditions in photovoltaic system," *International Journal of Circuit Theory and Applications*, vol. 49, no. 7, pp. 1884–1901, Jul. 2021, doi: 10.1002/cta.3018.
- [25] I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and J.-F. Lin, "An enhanced grey wolf optimization algorithm for photovoltaic maximum power point tracking control under partial shading conditions," *IEEE Open Journal of the Industrial Electronics Society*, vol. 3, pp. 392–408, 2022, doi: 10.1109/OJIES.2022.3179284.
- [26] S. A. Celtek, S. Kul, M. K. Singla, J. Gupta, M. Safaraliev, and H. Zeinoddini-Meymand, "Grey wolf-based heuristic methods for accurate parameter extraction to optimize the performance of PV modules," *IET Renewable Power Generation*, vol. 18, no. 14, pp. 2248–2260, Oct. 2024, doi: 10.1049/rpg2.13061.
- [27] I. Dagal, A.-W. Ibrahim, and A. Harrison, "Leveraging a novel grey wolf algorithm for optimization of photovoltaic-battery energy storage system under partial shading conditions," *Computers and Electrical Engineering*, vol. 122, p. 109991, Mar. 2025, doi: 10.1016/j.compeleceng.2024.109991.
- [28] L. Liu, "Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization," *Measurement and Control*, vol. 58, no. 2, pp. 227–244, Feb. 2025, doi: 10.1177/00202940241258821.
- [29] M. G. Yenealem, "Mitigation of high photovoltaic penetration effects in electrical grid systems using a hybrid particle swarm and grey wolf optimization approach," *International Journal of Energy Research*, vol. 2024, no. 1, Jan. 2024, doi: 10.1155/2024/1481027.
- [30] N. Deghfel, A. E. Badoud, A. A. Al-Ahmadi, M. Bajaj, I. Zaitsev, and S. S. M. Ghoneim, "Improving maximum power point tracking efficiency in solar photovoltaic systems using super-twisting algorithm and grey wolf optimizer," *IET Renewable Power Generation*, vol. 18, no. 15, pp. 3329–3354, Nov. 2024, doi: 10.1049/rpg2.13138.
- [31] A. G. Abera, T. T. Yetayew, and A. B. Alyu, "Optimized solar PV integration for voltage enhancement and loss reduction in the Kombolcha distribution system using hybrid grey wolf-particle swarm optimization," *Results in Engineering*, vol. 26, p. 105484, Jun. 2025, doi: 10.1016/j.rineng.2025.105484.
- [32] S. S. M. Ghoneim, A. E. Rashed, and N. I. Elkalashy, "Fault detection algorithms for achieving service continuity in photovoltaic farms," *Intelligent Automation & Soft Computing*, vol. 29, no. 3, pp. 467–479, 2021, doi: 10.32604/iasc.2021.016681.
- [33] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. T. Yang, "Data mining for Internet of Things: a survey," *IEEE Communications Surveys & Tutorials*, vol. 16, no. 1, pp. 77–97, 2014, doi: 10.1109/SURV.2013.103013.00206.
- [34] M. Supriyamenon and P. Rajarajeswari, "A review on association rule mining techniques with respect to their privacy preserving capabilities," *International Journal of Applied Engineering Research*, vol. 12, no. 24, pp. 15484–15488, 2017.
- [35] D. Antipov, A. Neumann, and F. Neumann, "Local optima in diversity optimization: non-trivial offspring population is essential," in *International Conference on Parallel Problem Solving from Nature*, 2024, pp. 181–196. doi: 10.1007/978-3-031-70071-2_12.
- [36] Y. Li, Q. Yu, and Z. Du, "Sand cat swarm optimization algorithm and its application integrating elite decentralization and crossbar strategy," *Scientific Reports*, vol. 14, no. 1, p. 8927, Apr. 2024, doi: 10.1038/s41598-024-59597-0.

BIOGRAPHIES OF AUTHORS

Slimani Hassina be seen contacted at email: simani.hassina@univ-khenchela.dz.

Chouhal Ouahiba obtained her Ph.D. in industrial engineering from the University of Batna, Algeria, in 2018, and later earned her habilitation à diriger des recherches (HDR) from the University of Batna 2 in 2020. She is currently serving as an assistant professor in the Department of Computer Science at the University of Khenchela, Algeria. Previously, she received her magister degree in computer science from the University of Tebessa in 2004. Her research interests focus on evolutionary computation, artificial intelligence, industrial fault diagnosis and prognosis, multi-agent systems, and service-oriented architectures (SOA). She can be contacted at email: chouhal_wahiba@yahoo.fr.

5296 □ ISSN: 2088-8708

Beddiaf Yassine earned his bachelor's degree in electrical engineering in 1989, followed by an M.Sc. in 1994 and a Ph.D. in 2016, from the University of Batna-At Khenchela University in Algeria. He was the head of the Industrial Engineering Department from 2012 to 2016, and since 2014, he has also been serving as a faculty member in the same department. He has held the rank of maître de conférences (class A) since 2021, in recognition of his academic contributions. His research domain primarily focuses on the robust control of electrical systems, with particular emphasis on the applications of artificial intelligence. He can be contacted at email: beddiaf.yassine@univ-khenchela.dz.

Mahdaoui Rafik earned his doctorate in the field of sciences related to industrial engineering from the University of Batna in 2013, with a dissertation entitled "Contribution to the Dynamic Monitoring of Temporal Production in Evolving Systems Utilizing Neuro-Fuzzy Systems." He currently serves as a professor in the Department of Mathematics and Computer Science at the University of Abbes Laghrour Khenchela, Algeria, where he leads the IT security team within the ICOSI Laboratory. His main research interests include computer science, software security, and industrial systems. He can contacted at email: Mahdaoui.Rafik@univ-khenchela.dz.

Hamdi Romaissa D S S obtained her bachelor's degree in electrical engineering from Ababsa Abd Alhamid High School, Ain Beida, Algeria, in 2014. She subsequently obtained a master's in electrical engineering, with a focus on electrical networks, from Larbi Ben M'hidi University, Oum El Bouaghi, Algeria, in 2019. She is currently pursuing a Ph.D. in electrical control at Abbes Laghrour University, Khenchela, Algeria. She can be contacted at email: hamdi.roumaissa@univ-khenchela.