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 The present article introduces the discrete grey wolf optimization algorithm 

(DGWOA), a novel variant of the grey wolf optimizer (GWO). DGWOA 

integrates discrete optimization techniques with explainable artificial 

intelligence (XAI) methodologies. This approach aims to overcome 

limitations associated with traditional fault diagnosis methods, such as 

limited accuracy in identifying complex patterns and low interpretability. 

Furthermore, it mitigates early convergence problems commonly 

encountered in optimization algorithms and enhances adaptability to discrete 

classification challenges. The DGWOA algorithm is designed to generate 

interpretable classification rules for fault detection through a stochastic 

search strategy. The explainability provided by the model not only enhances 

decision-making transparency but also improves diagnostic efficiency and 

predictive accuracy. The proposed algorithm was evaluated using a 

photovoltaic system dataset and benchmarked against established rule-based 

classifiers. DGWOA consistently achieved a classification accuracy of 

99.48% and a precision of 100%, demonstrating its effectiveness in 

enhancing fault detection. Moreover, the interpretability of the generated 

classification rules contributes to the generation of outcomes that are both 

actionable and comprehensible to decision-makers. 
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1. INTRODUCTION 

The rapid advancement of contemporary technology has positioned solar energy as a leader in 

global renewable power generation. [1], [2]. This worldwide growth is mostly ascribed to the essential 

function of solar energy in reducing pollution and lessening the detrimental impacts of environmental 

degradation. [3], as well as the continuous depletion of fossil fuel reserves, which has amplified the global 

demand for sustainable alternatives. Among the most promising technologies, photovoltaic (PV) systems 

stand out due to their environmental benefits, sustainability, and safety [4]. However, several studies [5], [6] 

have reported that these systems are susceptible to sudden faults that may result in significant energy losses 

and reduced component lifespan. This underscores the need for precise and rapid defect identification to 

ensure optimal performance and minimize maintenance expenses. 

https://creativecommons.org/licenses/by-sa/4.0/
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Numerous conventional techniques have been used to overcome these difficulties, such as statistical 

techniques [7] and classical machine learning algorithms [8]. Nevertheless, their performance tends to decline 

as system complexity and scale increase. Consequently, metaheuristic algorithms have garnered substantial 

attention due to their capability to enhance fault detection and parameter extraction using nature-inspired 

optimization strategies [9], [10]. For instance, Juan et al. [11] proposed a hybrid simulation combining 

metaheuristic algorithms to tackle complex optimization problems. At the same time, the fitness-distance 

balance-based stochastic fractal search (FDB-SFS) approach [12] demonstrated superior performance in 

extracting parameters of photovoltaic adaptive guided differential evolution algorithm (AGDE) models. 

Furthermore, algorithms such as the artificial hummingbird algorithm (AHA) [13] and modified social 

network search algorithm combined with the secant method (MSNS-SEC) [14], along with several variants of 

particle swarm optimization (PSO), have demonstrated remarkable optimization capabilities and results [15]. 

Additional developments include an ANFIS model integrated with the PSO algorithm, which 

effectively reduced total harmonic distortion (THD) in a UPS system powered by LiFePO₄ batteries [16]. 

Moreover, the tree seed optimization (TSO) technique demonstrates a notable superiority over multiple 

methods for result accuracy and convergence speed. [17]. Hybrid models, such as dung beetle optimization 

algorithm combined with Fick’s law of diffusion algorithm dung beetle optimization algorithm combined 

with Fick’s law of diffusion algorithm (DBFLA) [18], QPSOL [19], and whale optimization  

algorithm- artificial neural network (WOA-ANN) [20], have also achieved outstanding performance in fault 

classification and improving diagnostic accuracy. 

In this context, the grey wolf optimizer (GWO) has emerged as one of the most efficient 

metaheuristic methods, both in its original form and through its various modified and hybrid variants, owing 

to its high performance in photovoltaic system applications; these advancements have contributed to faster 

dynamic response, reduced energy losses, and improved voltage stability under variable operating conditions  

[21]–[31]. Despite the proven efficiency of various GWO variants in numerous optimization tasks, their 

black-box nature limits interpretability and traceability, key requirements in sensitive fields such as 

photovoltaic systems. To overcome this limitation, the diversified grey wolf optimizer algorithm (DGWOA) 

has been introduced. By integrating cooperative search strategies with explainable AI (XAI) techniques, 

DGWOA enhances transparency while preserving high classification accuracy. Its hybrid framework enables 

the generation of explicit decision rules and incorporates a dynamic control mechanism to balance 

exploration and exploitation, ensuring adaptability and improved convergence.  

The next parts of this document are organized as outlined. Methodology outlines the proposed 

technique, including the classification task, the error categories considered, and the datasets utilized. The 

experimental results section presents a comprehensive evaluation and comparative analysis with existing 

models. Finally, the research ends with a synthesis of the main results, highlighting the model’s improved 

robustness, reliability, and suitability for real world PV system applications. 

 

 

2. METHOD 

2.1.  Discrete grey wolf optimization (DGWOA) 

This research study presents the DGWOA, a novel adaptation of the original technique molded 

GWO by the social hierarchy and hunting behaviors of wolves. Integrated with explainable artificial 

intelligence techniques, DGWOA facilitates the generation of interpretable classification rules, thereby 

enhancing the transparency and reliability of decision-making. Figure 1 shows the structure of the DGWOA-

based system for diagnosing photovoltaic (PV) faults. This system enhances overall efficiency and 

accelerates solution convergence when dealing with complex optimization problems. Figure 2. The overall 

structure of the proposed method is based on DGWOA. 

 

 

 
 

Figure 1. Structure of the DGWOA-based system for diagnosing PV faults 
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Figure 2. The proposed method DGWOA 

 

 

Algorithm 1 represents the practical implementation of a hybrid framework that combines the GWO 

algorithm with explainable AI (XAI) techniques. It demonstrates how this integration enables accurate fault 

diagnosis in photovoltaic systems while ensuring the level of interpretability required for real world operating 

environments. 

 

Algorithm 1. DGWOA – a discrete grey wolf optimizer for rule-based classification 

Input parameters: 

D_train: Training dataset used for rule induction 

D_test: Testing dataset used for model evaluation 

W: Total number of search agents (wolves) 

Max_iter: Maximum number of optimization iterations per rule 

Min_instance: Minimum number of uncovered training instances to extract a rule 

Output: 

A set of classification rules for each target class 

Performance metrics: Accuracy, Precision, TP, FP, TN, FN 

Methodological framework: 

A. Initialization phase 

Initialize the algorithm parameters: W, Max_iter, Min_instance 

Start execution timer 

Define empty rulesets: Ruleset_C1, Ruleset_C2, ..., Ruleset_Cn 

B. Rule extraction phase 

For each class Ci ∈ {C1, C2, ..., Cn}: 

Partition D_train into: 

D_pos: Instances of class Ci 

D_neg: Instances not belonging to Ci 

While |D_pos| > Min_instance: 

Randomly initialize W wolves (candidate rules) 
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For each iteration t = 1 to Max_iter: 

Evaluate the fitness of each wolf using the defined fitness functions (Equations 1 and 2) 

Select the top three wolves as Alpha (best), Beta (second-best), and Gamma (third-best) 

Update positions of the remaining wolves using the DGWOA strategy 

After Max_iter, set the Alpha wolf's vector as a new rule 

Apply the new rule on the training set D_train 

Remove covered instances from D_train 

Add the new rule to Ruleset_Ci 

C. Testing phase 

Apply the extracted ruleset on the test dataset D_test 

For each class Ci: 

Compute confusion matrix: TP, FP, TN, FN 

Calculate performance metrics: Accuracy, Precision 

D. Aggregation and reporting 

Combine results for all classes 

Report final classification performance metrics and runtime 

 

2.2.  The dataset 

This study utilized a dataset available on the Kaggle platform, which represents operational 

measurements of a photovoltaic system collected from a simulated 250 kW solar farm, focusing on detecting 

multiple types of faults (F1, F2, and F3) alongside the normal operating state (F0). It includes sampled 

measurements of environmental factors, including temperature, sun irradiance, and fault resistance, with 

essential electrical variables, including current, voltage, and power [32]. 

 

2.3.  Rule generation and fitness evaluation 

The proposed prediction and diagnosis approach is based on extracting classification rules that 

define system  operational states through structured logical conditions, enabling their categorization into 

predefined classes. The rule generation process is driven by a relevance function grounded in the support 

metric [33], [34] as in (1); which evaluates each rule based on the total number of instances (TI), correctly 

covered cases (ICC), and incorrectly covered cases (INCC) as in (2). Figure 3 illustrates the methodological 

framework an iterative refinement cycle to improve classification accuracy and ensure diagnostic reliability. 

 

 

 
 

Figure 3. Flowchart of the proposed rule-based fault diagnosis approach 
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𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑚𝑒𝑡𝑟𝑖𝑐 =
𝐼𝐶𝐶

𝑇𝐼
 (1) 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝑇𝐼

(𝑇𝐼−𝐼𝐶𝐶)∗(𝑇𝐼+𝐼𝑁𝐶𝐶  )
 (2) 

 

Formula for classification rules: 

 

 

 

 

 

 

 

 

3. EXPERIMENTAL 

3.1.  DGWOA evaluation 

The DGWOA algorithm was executed multiple times on photovoltaic (PV) system data by varying 

the number of wolves and iterations, with automatically generated seed values in each run. As presented in 

Table 1, the best performance was achieved with 110 wolves and 10 iterations, yielding a classification 

accuracy of 0.99 and a precision of 1.00 within an execution time of less than 6 minutes. Increasing the 

number of wolves beyond this configuration yielded no further improvements and resulted in a slight decline 

in efficiency. These findings highlight the importance of identifying an optimal configuration that strikes a 

balance among classification accuracy, computational expense, and search efficacy. 

 

 

Table 1. DGWOA performance under varying numbers of wolves and iterations 
Number of wolves Number of iterations Accuracy Precision 

20 5 0.81 0.75 
50 8 0.81 0.75 
110 10 0.99 1.00 
120 15 0.76 0.62 
135 25 0.81 0.75 
180 30 0.78 0.65 
200 50 0.82 0.70 

 

 

3.2.  Rule set generation 

Table 2 presents the classification rules generated by the DGWOA algorithm, yielding four distinct 

rules: one for the normal condition (F0–Class 1) and three for fault scenarios (F1, F2, and F3–Classes 2, 3, 

and 4). While some rules achieved high classification accuracy and substantial data coverage, reaching 

benchmark level performance, others showed reduced accuracy and lower coverage, indicating variability in 

generalization. Rule coverage ranged from 16% to 34% (94 to 198 instances), highlighting areas for potential 

refinement to improve completeness and reliability. Table 3 presents the true-positives (TP), false-positives 

(FP), true-negatives (TN), and false-negatives (FN) values per class, and Table 4 provides a confusion 

matrix-based performance analysis, enabling a detailed evaluation across all fault categories. 

 

 

Table 2. The resulting rules 
Rule # Generated rules Class Number 

of terms 
Number of instances 

correctly covered 
Number of instances 
not correctly covered 

Rule's 
accuracy 

01 If range1 in range (0.00193) - (0.1069) 

and range3 in range > (0) then Normal 
mode (F0) 

Class1 2 94/100 0 16 % 

02 If range1 in range (0.1069) - (5.3141) and 

range3 in range > (0) then Default1 (F1) 

Class2 2 144/146 1 24% 

03 If range3 in range (-4.25) - (-0.0662) and 

range4 in range < (0) then Default2 (F2) 

Class3 2 143/144 0 24% 

04 If range4 in range > (0.0621) then 
Default3 (F3) 

Class4 1 198/198 0 34% 

Evaluate Correctly classified instances = 96 out of 97.96 

Model accuracy= 0.99 

Model precision= 1.0 

 

               Attribute value                    Attribute label                                                  Term 

 

If Attribute X Equals Value 1, Attribute Y equals Value 2, AND Attribute Z equals Value 3 Then the class is C 

 

                                                                                             

 

Initial Conditions Outcome 
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Table 3. Model performance 
Class TP FP TN FN Accuracy Precision 

Class C1 25 0 73 0 1.0 1.00 
Class C2 23 0 75 0 1.0 1.00 

Class C3 23 0 73 2 0.98 1.00 

Class C4 25 0 73 0 1.0 1.00 

 

 

3.3.  Evaluation of model performance using receiver operating characteristic curves and area under 

the curve  

Figure 4 presents the results of the receiver operating characteristic (ROC) curve and area under the 

curve (AUC) metrics, indicating that the model effectively distinguishes between positive and negative 

instances across all four classes (C1, C2, C3, and C4). The precision and AUC scores for C1, C2, and C4 are 

nearly perfect, approaching 1.00, while those for C3 are 0.98 and 0.96, respectively. These values 

substantially exceed the random classification threshold (AUC = 0.5), as in Figure 5. Analysis of classifier 

performance using confusion matrix illustrated in the figure. Overall, the results confirm the model’s strong 

classification performance, its robust discriminative power across multiple categories, and its high predictive 

accuracy, supporting its applicability in complex classification tasks. 

 

 

 
 

Figure 4. Multi-class ROC curves with AUC, accuracy, and precision 

 

 

 
 

Figure 5. Analysis of classifier performance using confusion matrix 
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3.4.  Assessment of DGWOA in comparison with conventional techniques 

The proposed DGWOA algorithm was evaluated through two comparative experiments on a 

benchmark dataset one using traditional classifiers [33], the other using WEKA-based models. The results 

confirmed its superior performance, with 99.48% accuracy, 0.99 AUC, 0.9896 F1-score, perfect precision, 

and 0.9796 recall. DGWOA also generated interpretable “if–then” rules, aligning with explainable AI (XAI). 

In contrast, ensemble models such as AdaBoost and random forest demonstrated high accuracy but lacked 

interpretability. Conventional and low-performing models (e.g., CN2, naive Bayes, and ZenoR) 

underperformed or failed to generate rules as summarized in Table 4 and illustrated in Figure 6. Overall, 

DGWOA demonstrates a strong balance between predictive accuracy and transparency, making it suitable for 

high-stakes decision-making . 

 

 

Table 4. Comparative analysis with other classifiers 

 

 

 
 

Figure 6. Comparing algorithms using different criteria 

 

 

3.5.  Statistical stability of DGWOA based on max fitness performance 

To evaluate the reliability of the DGWOA algorithm's performance, 30 independent iterations were 

conducted, with 110 wolves and 10 internal iterations. The results revealed that the algorithm achieved a 

maximum objective function value of 0.0025641 in 28 out of 30 runs, indicating strong numerical stability and 

the ability to reproduce outcomes under identical experimental conditions consistently. The arithmetic mean of 

the fitness values was 0.00256109, and the median (0.0025641) matched the maximum value itself, reflecting a 

distribution tightly centered on the optimal value with no significant deviations. A very low standard deviation 

of 1.128e-05 further supports the observation of minimal dispersion, emphasizing the robustness of the 

algorithm and its reduced sensitivity to the stochastic nature typical of population-based metaheuristics, as 

shown in Figure 7. The minimum fitness value of 0.00251889 was observed in only two out of the 30 runs, 

representing the lowest performance recorded. Although slightly lower than the maximum, this difference is 

minor and may lead to local optima or reduced population diversity during early iterations, limiting the 

algorithm's exploratory effectiveness [35], [36]. Nevertheless, the rarity of such deviations reinforces the 

algorithm's overall consistency and its ability to maintain high performance across multiple runs. 

Model CA (%) F1-Score (%) Precission (%) Recall (%) Specificity (%) Generation the 

Rules (If-Then) 

DGWOA 99.48 98.96 100 97.96 100 YES 

Adaboost [33] 95 94.9 95.8 95 98.3 NO 

Random forest [33] 81 80.6 83.4 81 93.7 NO 

Lasso-regression [33] 76 75.3 79.9 76 92 NO 
Ridge-regression [33] 71 69.4 73.3 71 90.3 NO 

Naives Bayes [33] 60 58.9 58.4 60 86.7 NO 

CN2 rule induction [33] 50 48.5 51.8 50 83.3 YES 
Zenor (WEKA Platform) 25.5 10.4 6.5 25.5 74.5 NO 

Oner (WEKA Platform) 67.6 42.9 38.7 51.0 84.1 NO 

Decision table  
(WEKA platform) 

0.735 66.1 85.6 73.5 90.9 YES 
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Figure 7. Statistical stability analysis of DGWOA based on max fitness performance 
 

 

4. CONCLUSON  

This research has shown the efficacy of an upgraded DGWOA, augmented with machine learning 

principles, in addressing fault detection and diagnostic issues in industrial systems. The proposed method was 

validated using real-world data from a photovoltaic (PV) system, wherein continuous variables were 

discretized to generate interpretable classification rules. The DGWOA successfully produced four 

classification rules, one representing normal operating conditions and three corresponding to fault states (F1, 

F2, and F3), achieving an overall classification accuracy of 99.48% and a precision of 100%. For a 

comprehensive assessment of the robustness and reliability of the proposed approach, two independent 

comparative evaluations were conducted. The first involved a set of well-established classification algorithms 

referenced in prior studies, while the second focused on rule-based classifiers available within the Weka 

platform. In both cases, the DGWOA demonstrated superior performance, highlighting its capacity to 

generate accurate and generalizable classification rules in complex diagnostic scenarios. Moreover, a 

statistical stability analysis based on the maximum fitness values was performed, further confirming the 

algorithm’s numerical consistency and resilience to stochastic variation, which is often inherent in 

population-based metaheuristics. These findings underscore the effectiveness of DGWOA not only in 

achieving high classification accuracy but also in maintaining stable behavior across multiple runs. Future 

work will extend the application of DGWOA to various industrial domains, including wind energy systems 

and electric motors. Subsequent studies will focus on evaluating its scalability with large-scale datasets and 

investigating its integration with advanced intelligent optimization and learning techniques to enhance 

diagnostic performance in complex and dynamic industrial environments. 
 

 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the University of Abbas Laghrour, Khenchela, Algeria, and the 

SATIT Laboratory, University of Khenchela for their valuable support and resources. 
 

 

FUNDING INFORMATION 

Authors state no funding involved . 
 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration. 
 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Slimani hassina ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Chouhale Ouahiba ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓  ✓ ✓  

Beddiaf Yassine      ✓      ✓ ✓ ✓  

Mahdaoui Rafik ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓  ✓ ✓  

Hichem Haouassi   ✓  ✓ ✓    ✓   ✓  

Hamdi Romaissa      ✓    ✓ ✓    



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5286-5296 

5294 

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

The authors affirm that they have no conflicts of interest. 

 

 

DATA AVAILABILITY 

The dataset used in this research, entitled “Fault Detection Dataset in Photovoltaic Farms,” is freely 

accessible on Kaggle and can be found at:  

https://www.kaggle.com/datasets/amrezzeldinrashed/fault-detection-dataset-in-photovoltaic-farms. 

 

 

REFERENCES 
[1] X. Liu, S. Yuan, H. Yu, and Z. Liu, “How ecological policy stringency moderates the influence of industrial innovation on 

environmental sustainability: the role of renewable energy transition in BRICST countries,” Renewable Energy, vol. 207,  

pp. 194–204, May 2023, doi: 10.1016/j.renene.2023.01.045. 
[2] X. Li, H. Tian, and L. Wang, “Solar energy and environmental sustainability: cost benefit analysis and ecological impact 

assessment,” Highlights in Science, Engineering and Technology, vol. 96, pp. 72–77, May 2024, doi: 10.54097/rqt9rw05. 

[3] Q. Hassan et al., “The renewable energy role in the global energy transformations,” Renewable Energy Focus, vol. 48, p. 100545, 
Mar. 2024, doi: 10.1016/j.ref.2024.100545. 

[4] S. Yi, K. Raza Abbasi, K. Hussain, A. Albaker, and R. Alvarado, “Environmental concerns in the United States: can renewable 

energy, fossil fuel energy, and natural resources depletion help?,” Gondwana Research, vol. 117, pp. 41–55, May 2023,  
doi: 10.1016/j.gr.2022.12.021. 

[5] S. Vergura, “A complete and simplified datasheet-based model of PV cells in variable environmental conditions for circuit 

simulation,” Energies, vol. 9, no. 5, p. 326, Apr. 2016, doi: 10.3390/en9050326. 
[6] M. K. H. Rabaia et al., “Environmental impacts of solar energy systems: a review,” Science of The Total Environment, vol. 754, 

p. 141989, Feb. 2021, doi: 10.1016/j.scitotenv.2020.141989. 

[7] E. Garoudja, F. Harrou, Y. Sun, K. Kara, A. Chouder, and S. Silvestre, “Statistical fault detection in photovoltaic systems,” Solar 
Energy, vol. 150, pp. 485–499, Jul. 2017, doi: 10.1016/j.solener.2017.04.043. 

[8] M. Abdelsattar, A. AbdelMoety, and A. Emad-Eldeen, “Advanced machine learning techniques for predicting power generation 

and fault detection in solar photovoltaic systems,” Neural Computing and Applications, vol. 37, no. 15, pp. 8825–8844, May 
2025, doi: 10.1007/s00521-025-11035-6. 

[9] Z. Gu, G. Xiong, and X. Fu, “Parameter extraction of solar photovoltaic cell and module models with metaheuristic algorithms: a 

review,” Sustainability, vol. 15, no. 4, p. 3312, Feb. 2023, doi: 10.3390/su15043312. 
[10] A. M. Nassef, M. A. Abdelkareem, H. M. Maghrabie, and A. Baroutaji, “Review of metaheuristic optimization algorithms for 

power systems problems,” Sustainability, vol. 15, no. 12, p. 9434, Jun. 2023, doi: 10.3390/su15129434. 

[11] A. A. Juan et al., “A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics,” Annals of 
Operations Research, vol. 320, no. 2, pp. 831–861, Jan. 2023, doi: 10.1007/s10479-021-04142-9. 

[12] H. Bakır, “Comparative performance analysis of metaheuristic search algorithms in parameter extraction for various solar cell 

models,” Environmental Challenges, vol. 11, p. 100720, Apr. 2023, doi: 10.1016/j.envc.2023.100720. 
[13] R. Ghanbarzadeh, A. Hosseinalipour, and A. Ghaffari, “A novel network intrusion detection method based on metaheuristic 

optimisation algorithms,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 6, pp. 7575–7592, Jun. 2023, 

doi: 10.1007/s12652-023-04571-3. 
[14] P. J. Gnetchejo, S. Ndjakomo Essiane, A. Dadjé, D. Mbadjoun Wapet, and P. Ele, “Optimal design of the modelling parameters of 

photovoltaic modules and array through metaheuristic with Secant method,” Energy Conversion and Management: X, vol. 15,  

p. 100273, Aug. 2022, doi: 10.1016/j.ecmx.2022.100273. 
[15] E.-J. Liu, Y.-H. Hung, and C.-W. Hong, “Improved metaheuristic optimization algorithm applied to hydrogen fuel cell and 

photovoltaic cell parameter extraction,” Energies, vol. 14, no. 3, p. 619, Jan. 2021, doi: 10.3390/en14030619. 

[16] O. Sánchez Vargas, L. G. Vela Valdés, M. Borunda, R. E. Lozoya-Ponce, J. Aguayo Alquicira, and S. E. De León Aldaco, 
“ANFIS-PSO-based optimization for THD reduction in cascaded multilevel inverter UPS systems,” Electronics, vol. 13, no. 22,  

p. 4456, Nov. 2024, doi: 10.3390/electronics13224456. 

[17] N. B. Repalle, P. Sarala, L. Mihet-Popa, S. R. Kotha, and N. Rajeswaran, “Implementation of a novel tabu search optimization 
algorithm to extract parasitic parameters of solar panel,” Energies, vol. 15, no. 13, p. 4515, Jun. 2022, doi: 

10.3390/en15134515. 
[18] O. Alqaraghuli and A. Ibrahim, “Optimizing photovoltaic system diagnostics: integrating machine learning and DBFLA  

for advanced fault detection and classification,” Electronics, vol. 14, no. 8, p. 1495, Apr. 2025, doi: 

10.3390/electronics14081495. 
[19] M. Qaraad, S. Amjad, N. K. Hussein, M. A. Farag, S. Mirjalili, and M. A. Elhosseini, “Quadratic interpolation and a new local 

search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation,” Expert Systems with 

Applications, vol. 236, p. 121417, Feb. 2024, doi: 10.1016/j.eswa.2023.121417. 
[20] S. Sebbane and N. El Akchioui, “Improving the diagnosis of partial shading faults by utilising artificial neural networks optimised 

with the whale optimisation algorithm,” International Journal of Automation and Control, vol. 19, no. 3, pp. 306–330, 2025,  

doi: 10.1504/IJAAC.2025.145916. 

[21] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 

https://www.kaggle.com/datasets/amrezzeldinrashed/fault-detection-dataset-in-photovoltaic-farms


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Explainable fault diagnosis using discrete grey wolf optimization algorithm for … (Slimani Hassina) 

5295 

2014, doi: 10.1016/j.advengsoft.2013.12.007. 
[22] M. Nasir, A. Sadollah, S. Mirjalili, S. A. Mansouri, M. Safaraliev, and A. Rezaee Jordehi, “A comprehensive review on 

applications of grey wolf optimizer in energy systems,” Archives of Computational Methods in Engineering, vol. 32, no. 4,  

pp. 2279–2319, May 2025, doi: 10.1007/s11831-024-10214-3. 
[23]  R. Zriouile, L. Bouhouch, I. Isknan, and A. Elfanaoui, “Performance evaluation of grey wolf optimizer and P&O MPPT for PV 

systems under shading,” in 2025 5th International Conference on Innovative Research in Applied Science, Engineering and 

Technology (IRASET), IEEE, May 2025, pp. 1–7. doi: 10.1109/IRASET64571.2025.11007987. 
[24] R. Motamarri, N. Bhookya, and B. Chitti Babu, “Modified grey wolf optimization for global maximum power point tracking 

under partial shading conditions in photovoltaic system,” International Journal of Circuit Theory and Applications, vol. 49, no. 7, 

pp. 1884–1901, Jul. 2021, doi: 10.1002/cta.3018. 
[25] I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and J.-F. Lin, “An enhanced grey wolf optimization 

algorithm for photovoltaic maximum power point tracking control under partial shading conditions,” IEEE Open Journal of the 

Industrial Electronics Society, vol. 3, pp. 392–408, 2022, doi: 10.1109/OJIES.2022.3179284. 
[26] S. A. Celtek, S. Kul, M. K. Singla, J. Gupta, M. Safaraliev, and H. Zeinoddini‐Meymand, “Grey wolf‐based heuristic methods for 

accurate parameter extraction to optimize the performance of PV modules,” IET Renewable Power Generation, vol. 18, no. 14, 

pp. 2248–2260, Oct. 2024, doi: 10.1049/rpg2.13061. 
[27] I. Dagal, A.-W. Ibrahim, and A. Harrison, “Leveraging a novel grey wolf algorithm for optimization of photovoltaic-battery 

energy storage system under partial shading conditions,” Computers and Electrical Engineering, vol. 122, p. 109991, Mar. 2025, 

doi: 10.1016/j.compeleceng.2024.109991. 
[28] L. Liu, “Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding 

mode control and improved grey wolf optimization,” Measurement and Control, vol. 58, no. 2, pp. 227–244, Feb. 2025,  

doi: 10.1177/00202940241258821. 
[29] M. G. Yenealem, “Mitigation of high photovoltaic penetration effects in electrical grid systems using a hybrid particle swarm and grey 

wolf optimization approach,” International Journal of Energy Research, vol. 2024, no. 1, Jan. 2024, doi: 10.1155/2024/1481027. 

[30] N. Deghfel, A. E. Badoud, A. A. Al‐Ahmadi, M. Bajaj, I. Zaitsev, and S. S. M. Ghoneim, “Improving maximum power point 
tracking efficiency in solar photovoltaic systems using super‐twisting algorithm and grey wolf optimizer,” IET Renewable Power 

Generation, vol. 18, no. 15, pp. 3329–3354, Nov. 2024, doi: 10.1049/rpg2.13138. 

[31] A. G. Abera, T. T. Yetayew, and A. B. Alyu, “Optimized solar PV integration for voltage enhancement and loss reduction in the 
Kombolcha distribution system using hybrid grey wolf-particle swarm optimization,” Results in Engineering, vol. 26, p. 105484, 

Jun. 2025, doi: 10.1016/j.rineng.2025.105484. 

[32] S. S. M. Ghoneim, A. E. Rashed, and N. I. Elkalashy, “Fault detection algorithms for achieving service continuity in photovoltaic 
farms,” Intelligent Automation & Soft Computing, vol. 29, no. 3, pp. 467–479, 2021, doi: 10.32604/iasc.2021.016681. 

[33] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. T. Yang, “Data mining for Internet of Things: a survey,” IEEE Communications 

Surveys & Tutorials, vol. 16, no. 1, pp. 77–97, 2014, doi: 10.1109/SURV.2013.103013.00206. 
[34] M. Supriyamenon and P. Rajarajeswari, “A review on association rule mining techniques with respect to their privacy preserving 

capabilities,” International Journal of Applied Engineering Research, vol. 12, no. 24, pp. 15484–15488, 2017. 

[35] D. Antipov, A. Neumann, and F. Neumann, “Local optima in diversity optimization: non-trivial offspring population is essential,” 
in International Conference on Parallel Problem Solving from Nature, 2024, pp. 181–196. doi: 10.1007/978-3-031-70071-2_12. 

[36] Y. Li, Q. Yu, and Z. Du, “Sand cat swarm optimization algorithm and its application integrating elite decentralization and 

crossbar strategy,” Scientific Reports, vol. 14, no. 1, p. 8927, Apr. 2024, doi: 10.1038/s41598-024-59597-0. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Slimani Hassina     obtained her bachelor's degree in experimental sciences from 

Mohamed Seddik Ben Yahia High School, Skikda, Algeria, in 1995, and then a state engineer 

degree in electrotechnics specialized in electrical control from Baji Mokhtar University, 

Annaba, Algeria, in 2000, pursuing a Ph.D. in electrotechnics at Abbas Leghrour University in 

Khenchela, Algeria. Working as a state engineer for University Laboratories: Electrical 

Engineering Research Laboratories (LES) at Skikda University, Algeria. She can be contacted 

at email: simani.hassina@univ-khenchela.dz. 

  

 

Chouhal Ouahiba     obtained her Ph.D. in industrial engineering from the 

University of Batna, Algeria, in 2018, and later earned her habilitation à diriger des recherches 

(HDR) from the University of Batna 2 in 2020. She is currently serving as an assistant 

professor in the Department of Computer Science at the University of Khenchela, Algeria. 

Previously, she received her magister degree in computer science from the University of 

Tebessa in 2004. Her research interests focus on evolutionary computation, artificial 

intelligence, industrial fault diagnosis and prognosis, multi-agent systems, and service-

oriented architectures (SOA). She can be contacted at email: chouhal_wahiba@yahoo.fr. 

  

mailto:simani.hassina@univ-khenchela.dz
https://orcid.org/0009-0003-2717-1344
https://scholar.google.co.id/citations?hl=id&user=oFRDB80AAAAJ
https://orcid.org/0009-0000-6717-7319
https://scholar.google.fr/citations?hl=fr&user=xyR9szgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=37662125100


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5286-5296 

5296 

 

Beddiaf Yassine     earned his bachelor's degree in electrical engineering in 1989, 

followed by an M.Sc. in 1994 and a Ph.D. in 2016, from the University of Batna-At 

Khenchela University in Algeria. He was the head of the Industrial Engineering Department 

from 2012 to 2016, and since 2014, he has also been serving as a faculty member in the same 

department. He has held the rank of maître de conférences (class A) since 2021, in recognition 

of his academic contributions. His research domain primarily focuses on the robust control of 

electrical systems, with particular emphasis on the applications of artificial intelligence. He 

can be contacted at email: beddiaf.yassine@univ-khenchela.dz. 

  

 

Mahdaoui Rafik     earned his doctorate in the field of sciences related to industrial 

engineering from the University of Batna in 2013, with a dissertation entitled “Contribution  

to the Dynamic Monitoring of Temporal Production in Evolving Systems Utilizing Neuro-

Fuzzy Systems.” He currently serves as a professor in the Department of Mathematics and 

Computer Science at the University of Abbes Laghrour Khenchela, Algeria, where he leads 

the IT security team within the ICOSI Laboratory. His main research interests include 

computer science, software security, and industrial systems. He can contacted at email: 

Mahdaoui.Rafik@univ-khenchela.dz. 

 

Haouassi Hichem     received his Ph.D. in industrial engineering sciences from the 

University of Batna in 2012. He currently holds the position of professor in the department of 

mathematics and computer science at the University of Abbes Laghrour Khenchela, Algeria, 

where he also leads the software engineering research team within the ICOSI Laboratory. His 

research interests include algorithms, computer science, and data mining. He can contacted at 

email: Haouassi.Hichem@univ-khenchela.dz. 

  

 

Hamdi Romaissa     obtained her bachelor’s degree in electrical engineering from 

Ababsa Abd Alhamid High School, Ain Beida, Algeria, in 2014. She subsequently obtained a 

master’s in electrical engineering, with a focus on electrical networks, from Larbi Ben M’hidi 

University, Oum El Bouaghi, Algeria, in 2019. She is currently pursuing a Ph.D. in electrical 

control at Abbes Laghrour University, Khenchela, Algeria. She can be contacted at email: 

hamdi.roumaissa@univ-khenchela. 

 

 

 

 

 

https://orcid.org/0000-0003-0115-3546
https://scholar.google.co.id/citations?hl=id&user=HXQKytsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57035251000
https://orcid.org/0000-0002-8447-6027
https://scholar.google.co.id/citations?hl=id&user=eGVjhsIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=37661988900
https://orcid.org/0000-0001-8465-499X
https://scholar.google.com/citations?user=6jCb7tEAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=36843916600
https://orcid.org/0009-0009-4216-2001
https://scholar.google.com/citations?user=SSaXJSkAAAAJ&hl=fr

