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 The worldwide effect of the coronavirus disease (COVID-19) pandemic has 

been catastrophic, leading to a significant number of fatalities worldwide. In 

response to the outbreak, health care institutions have proposed the use of 

chest computed tomography (CT) as an important diagnosis tool for rapid 

diagnosis, leveraging deep learning approaches for disease detection. This 

paper aims to progress a robust methodology towards accurate diagnosis of 

COVID-19 based on deep learning approaches with chest CT images. We 

propose a mask region-based convolutional neural network (Mask R-CNN) 

model architecture that is well-trained and used to discriminate between  

COVID-19-infected and uninfected cases. In order to improve feature 

extraction, the proposed model incorporates a fuzzy color enhancement 

preprocessing technique that reduces image fuzziness and increases contrast. 

A publicly available chest CT dataset is considered for quantitative 

evaluation of the proposed architecture model, which includes various 

frontal image views of COVID-19 and non-COVID-19 cases. The proposed 

approach yielded an accuracy of 98.8% with 98.4% precision and 98.5% 

recall. Additionally, the proposed model architecture has been quantitatively 

evaluated in comparison with benchmark approaches, yielding superior 

performance in terms of conventional evaluation metrics. 
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1. INTRODUCTION 

The coronavirus disease (COVID-19) rising in Wuhan, China, 2019, has quickly evolved into a 

global health crisis. The virus spreads primarily through respiratory droplets, thus accurate and efficient 

diagnosis is vital in preventing transmission and managing patient care. The reverse transcription polymerase 

chain reaction (RT-PCR) was the principle diagnostic technique that has been used globally in order to detect 

viral ribonucleic acid (RNA) from nasopharyngeal swabs [1]. While RT-PCR is specific and widely adopted, 

it suffers from a number of limitations, such as long processing times, high dependency on specialized 

reagents and equipment, and moderate sensitivity rates, with studies reporting sensitivities as low as 71% [2]. 

Computed tomography (CT) imaging is a well-known medical imaging modality that allows for non-invasive 

visualization of internal body structures and is widely utilized in a variety of applications [3]. CT scans have 

demonstrated significant sensitivity when considered for detecting COVID-19-related pulmonary 

https://creativecommons.org/licenses/by-sa/4.0/
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abnormalities—reported to be as high as 98% [4]. CT scans are capable of exploiting characteristic features 

such as ground-glass opacities and other lung irregularities, even with patients who are asymptomatic or have 

negative RT-PCR. As a result, several healthcare institutions have adopted CT imaging as a complementary 

or alternative diagnostic tool, particularly during early-stage infections or in scenarios requiring rapid patient 

triage [5]. 

Despite its advantages, accurate interpretation of chest CT images is still very difficult, where 

diagnostic indicators can vary widely depending on the stage of infection and whether comorbidities are 

present. Moreover, manual interpretation is time-consuming and also subject to inter-observer variability that 

typically increases and becomes an issue in case of high patient volumes during the pandemic. Due to these 

limitations, there is increasing interest in using the application of artificial intelligence and deep learning to 

medical imaging, in order to provide fast, consistent, and scalable diagnostic assistance [6]. Several deep 

learning models have been researched recently for COVID-19 detection and segmentation tasks from chest 

X-ray and CT medical images. Preliminary research works have achieved promising classification results 

leveraging convolutional neural networks (CNNs) medical imaging datasets [7], [8]. However, the clinical 

relevance of these models was limited due to their lack of spatial awareness and inability to locate diseased 

tissues. Segmentation  based frameworks, including U-Net, were proposed to tackle this problem, which 

allows for pixel-level detection and identification of infection regions. Despite the effectiveness of these 

models, they still struggle with generalizing to images with variable quality or subtle signs of disease. 

Different advanced segmentation techniques have been researched; however, mask region-based 

convolutional neural network (Mask R-CNN) [9] has emerged as an efficient and powerful approach, which 

uniquely combines object detection and semantic segmentation in a unified framework [10], [11]. It has been 

studied and shown effective in a range of medical imaging tasks, including lung nodule detection [12], liver 

and multi-organ segmentation [13] , breast tumor classification [14], and early cancer diagnosis [15]. Mask 

R-CNN is well-suited for identifying COVID-19-infected regions due to its ability to deliver accurate, 

instance-level, pixel-wise predictions. However, many of its current applications overlook the importance of 

preprocessing, especially in cases where low image contrast makes infected regions harder to identify. 

To tackle these drawbacks, we propose a novel framework that brings together a Mask R-CNN-based 

segmentation model with fuzzy logic-based contrast enhancement. Fuzzy logic is well-suited to handle two 

prominent challenges in medical image analysis, which are uncertainty and ambiguity. The proposed approach 

transforms CT images into a fuzzy domain using adaptive fuzzifiers to identify crossover points, which is then 

followed by a contrast enhancement operator that amplifies high-intensity regions (e.g., lesions) while 

suppressing background noise. This preprocessing step significantly improves the quality of input images and 

enhances the segmentation accuracy of the proposed model. This paper makes the following key contributions: 

a. Introduce a fuzzy logic-based image contrast enhancement technique designed to highlight low-contrast 

COVID-19 infection regions in CT images of chest.  

b. Developing an enhanced Mask R-CNN segmentation framework that effectively leverages the contrast-

enhanced input images, and allows for precise pixel-level infection detection. 

c. Extensive experimental validation on a public COVID-19 CT dataset, showing improved performance 

over baseline and state-of-the-art models in terms of standard performance metrics. 

The remaining of the paper is organized as follows: section 2 provides an overview of related work 

in COVID-19 detection and segmentation from CT scans, along with a critical analysis of recent approaches. 

Section 3 details the proposed methodology, including the fuzzy enhancement process and the Mask R-CNN 

architecture. The experimental setup, performance metrics, and quantitative model evaluation on a public 

dataset are provided in section 4. The conclusion and potential future directions are discussed in section 5. 

 

 

2. RELATED WORK  

We present a survey of research work focused on deep learning-based detection. Our emphasis is on 

approaches that have significantly contributed to diagnostic tasks from CT and X-ray imaging modalities, 

and we highlight their methodologies, findings, and the remaining challenges our work aims to address.  

Jin et al. [16] developed a comprehensive deep learning system that performed lung segmentation and 

localized infectious slices for COVID-19 diagnosis. Despite, their work has achieved encouraging results, it 

relied on manually constructed pipelines for segmentation, which limited end-to-end automation. Inspired by 

the VGG architecture, Hu et al. [17] introduced a weakly supervised multiscale deep learning framework that 

effectively assimilates multi-scale lesion features. However, their approach did not leverage pixel-level 

segmentation capabilities and exhibited limitations in handling high inter-class similarities. 

Polsinelli et al. [18] presented a SqueezeNet CNN architecture, in order to provide rapid inference 

for COVID-19 diagnosis from CT scans. However, their approach was efficient in terms of processing time, 

but because of the simplified architecture of the model, the level of accuracy suffered. On the other hand, 
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Biswas et al. [19] investigated an ensemble strategy combining successful network architectures including 

VGG-16, ResNet50 [20], and Xception [21]. Their model achieved remarkable generalization capabilities by 

utilizing transfer learning, however, the ensemble’s computational demands were significantly higher, thus 

limiting its practicality in real-world clinical procedures. In contrast, Zhao et al. [22] have researched a 

different route through modifying the ResNet-v2 architecture. In order to enhance training reliability and 

overall model performance, they implemented weight standardization and replaced batch normalization with 

group normalization. Although this enhanced the robustness of their proposed system, it lacked explicit 

region-level segmentation, which is essential for medical diagnostic interpretability. 

Significant advancements have been achieved in object detection frameworks in addition to 

classification focused research, beginning with R-CNN [23] and progressing through Fast R-CNN [24] and 

Faster R-CNN [25]. These models introduced region proposal mechanisms and bounding box prediction, 

which significantly improved detection accuracy. Region proposal networks (RPNs) were incorporated into 

Faster R-CNN, which resulted in significant speed and accuracy improvements. Due to robustness of Faster 

R-CNN, it served as the foundation for numerous subsequent enhancements [26] and remains top performer 

in several benchmarks. Recently, Mask R-CNN [9] has been presented, which extending the work of Faster 

R-CNN for both object detection and instant segmentation tasks in computer vision. The main contribution of 

Mask R-CNN is in its capability to perform pixel-wise segmentation in addition to object detection. The 

addition of an extra “mask head” branch improves precise segmentation masks for individual objects. The 

model also introduces two significant architectural which are alignments of regions of interest (RoI) 

corrected spatial misalignment and feature pyramid networks. RoI alignment tackles limitations of traditional 

RoI pooling through bilinear interpolation during the pooling phase. This leads to improved segmentation 

accuracy, especially when dealing with small object instances.  

Despite these advancements, many existing research works either do not support fine-grained 

segmentation or struggle with effective CT image preprocessing for handling low contrast and image 

fuzziness. Additionally, a number of research works rely on relatively small datasets, which limits the 

generalizability of their results. Consequently, this paper introduces an efficient Mask R-CNN–based 

architecture tailored for COVID-19 detection in chest CT scans that effectively leverages the contrast-

enhanced input images. A key novelty of the proposed architecture is the introduction of a fuzzy color 

enhancement preprocessing technique that significantly improves image clarity and contrast. We validate our 

method on a large, publicly available dataset and benchmark its performance against several state-of-the-art 

models, demonstrating clear advantages across standard evaluation metrics. 

 

 

3. PROPOSED MODEL ARCHITECTURE 

Figure 1 depicts the main steps of the proposed model architecture. 

 

 

 
 

Figure 1. Proposed model architecture workflow 

 

 

3.1.  Image preprocessing using fuzzy color enhancement 

To address the challenges of CT images, such as low contrast, particularly in early-stage COVID-19 

infections, we incorporated a fuzzy logic-based image enhancement technique [27] as a preprocessing step, 

detailed in Algorithm 1. This technique allows for significant improvement of brightness and contrast 

across CT images, therefore enabling more accurate segmentation in the subsequent Mask R-CNN stage. 

The fuzzy enhancement process begins by decomposing the image into overlapping fuzzy regions, each 

representing a distinct object that captures varying levels of uncertainty in brightness and contrast. Instead 

of assigning hard boundaries, each pixel is given a membership value for each region, based on how far 

away it is from the center of the region. These membership values influence the pixel’s contribution during 

variance calculations, allowing the algorithm to better model uncertainty and reveal subtle structural details 
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that are critical for early diagnosis. Algorithm 1 details the enhancement process, which proceeds as 

follows: 

a. For each pixel, the mean and variance within its fuzzy neighborhood are computed, weighted by the 

membership degrees. 

b. These localized statistics are used to adjust pixel intensity, emphasizing regions of interest and suppressing 

background noise. 

c. The enhanced image is reconstructed by aggregating the results from all fuzzy windows, producing a 

globally consistent but locally adaptive contrast enhancement. 

 

Algorithm 1. Fuzzy color-based image enhancement 
Input:  RGB image I, Window size w, Fuzzifier parameters α, β 

Output: Enhanced image Ienhanced 

1. for each color channel c ∈ {R, G, B}, do: 
2.      Ic ← extract the channel c from I. 

3.      Ic
enhanced ← zero matrix of same size as Ic. 

4.     for each pixel p in Ic do: 

5.         Wp ← extract w × w window centered at p. 

6.          Initialize total_weight ← 0, weighted_sum ← 0 

7.          for each pixel q  ∈ Wp, do: 
8.             d ← EuclideanDistance(p,q). 

9.             μ ← exp(-α · dβ)   

{Membership degree} 

10.             total_weight ← total_weight + μ. 

11.             weighted_sum ← weighted_sum + μ · Ic(q). 

12.           End for 

13.           mean ← 
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑢𝑚

𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡
  

14.           weighted_variance ← 0 

15.           for each pixel q  ∈ Wp, do: 
16.               d← EuclideanDistance(p,q). 

17.               μ ← exp(-α · dβ). 

18.              weighted_variance ← weighted_variance + μ · (Ic(q) - mean)
2. 

19.            End for 

20.            variance = 
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡
 

21.            Ic
enhanced (p) = Enhance(Ic(p), mean, variance) 

22.       End for  

23.       Store Ic
enhanced in output channels 

24.    End for 

25.    Ienhanced = Merge(IR
enhanced, IG

enhanced, IB
enhanced) 

Return Ienhanced 

 

In this paper, the algorithm was applied separately to each of the three color channels (RGB) of the 

CT image. Though CT images are often greyscale, some datasets store them in three-channel format; thus, 

our method handles each channel in parallel and merges the outputs to reconstruct the final image. In contrast 

to conventional techniques for enhancing image contrast, including histogram equalization and its adaptive 

variant, CLAHE, fuzzy enhancement offers two main advantages. Firstly, it efficiently models uncertainty, 

which is essential for medical images, where pathological characteristics are frequently subtle. Secondly, it 

adjusts locally, enhancing visibility without introducing any artifacts or noise. Figure 2(a) showing improved 

contrast in lung regions potentially affected by infection. Figure 2(b) illustrates the effect of fuzzy color 

enhancement on a sample CT scan,  

 

 

  
(a) (b) 

 

Figure 2. Fuzzy CT image enhancement (a) original CT image and (b) fuzzy colored enhanced image 
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3.2.  Mask R-CNN-based segmentation and classification 

In the second step of our pipeline, we apply a Mask R-CNN framework outlined in Algorithm 2 to 

detect and segment infected regions from preprocessed CT images, as shown in Figure 1. Mask R-CNN adds 

on top of Faster R-CNN a parallel branch for predicting pixel-wise segmentation masks, allowing 

simultaneous object detection and instance segmentation. The architecture consists of three core components, 

as described in Algorithm 2: 

a. Backbone feature extractor (ResNet50 + FPN): We utilize a ResNet50 model as the backbone for feature 

extraction due to its ability to balance between depth and computational efficiency. ResNet50 is 

composed of 48 convolutional layers, along with a max-pooling layer and a global average pooling layer. 

Aiming to enhance feature representation across multiple scales, we incorporate a feature pyramid 

network (FPN) [25] on top of ResNet50. FPN constructs a feature pyramid that captures both low-level 

and high-level features, which enhances the ability to detect lesions in CT images of different sizes and 

scales. COVID-19 lesions, e.g. ground-glass opacities, can appear at different sizes and intensities, 

sometimes scattered in the lungs. By combining high and low resolution features, FPN aids in the 

detection of both larger abnormalities and tiny early-stage lesions. This is essential for reliable detection 

across disease progression. 

b. Region proposal network (RPN): The RPN generate region proposals through applying a small network 

over the feature maps generated by the FPN. The coordinates of each anchor box are fine-tuned and given 

an objectness score. By reducing the number of possible areas where infection might exist, the RPN helps 

to improve the efficiency of the subsequent classification and segmentation. 

c. Region of interest alignment (RoIAlign): To accurately map the region proposals onto the feature map, 

we employ RoIAlign [28]. This method outperforms conventional RoI pooling by employing bilinear 

interpolation instead of coarse quantization. This ensures spatial alignment is preserved, which is 

especially critical for medical imaging where pixel-level accuracy is crucial. The RoIAlign process 

involves the steps detailed Algorithm 2. Inputs are feature maps and region proposals generated by FPN 

and RPN, respectively. Region proposals are subdivided into equal-sized grids to extract features from the 

matching regions in the input feature map. The aligned features from these grids represent the 

characteristics of each proposal.  

After acquiring the spatially aligned features, a fully convolutional network [9] is used to generate 

binary masks for each proposed region. In parallel, a classification branch classifies each region into one of 

the predefined categories (e.g., infected vs. non-infected). The classification pipeline begins with 

convolutional layers followed by fully connected layers which encode spatial and contextual information 

from the RoI-aligned maps. Combining these elements allows the proposed model to accurately segment 

COVID-19 lesions from CT images in an end-to-end manner, classify them, and enable localization. This 

capability addresses the limitation of earlier CNN-based models, which lacked spatial localization and relied 

on whole-image classification, therefore reducing clinical interpretability. 

 

Algorithm 2. COVID-19 lesion detection using mask R-CNN 
Input: Preprocessed CT image I 

Output: Region-level classifications and segmentation masks 

1. Extract feature maps from I using ResNet50 backbone 
2. Construct multi-scale feature maps using Feature Pyramid Network (FPN) 

3. Generate region proposals ℛ using RPN on FPN features 
    for each feature map level Pl do: 

         Slide a small 3 × 3 window over Pl 

         for each window position: 

             a. Generate anchor boxes with multiple scales and aspirations 

             b. Predict the objectness score for each anchor (foreground/background) 

             c. Regress bounding box offsets for anchor refinement 

          End for 

     End for 

4. For each region proposal r ∈ ℛ do 
a. Apply RoIAlign on r to extract a fixed-size feature map 

b. Classify the region r using a CNN classifier 

c. Generate a binary segmentation mask using a parallel FCN mask branch 

End for  

5. Aggregate classification scores and masks for final prediction 
Return Predicted region classes and corresponding segmentation masks 

 

 

4. RESULTS AND DISCUSSION 

In this section, we provide a thorough description of the experimental setup, including details of the 

dataset used, the employed evaluation metrics, and the methodology followed for performance evaluation. 
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Furthermore, we present a rigorous quantitative evaluation of the proposed model architecture, comparing its 

results against established benchmark models to demonstrate its effectiveness and superiority. 

 

4.1.  Experimental setup and dataset 

The proposed model architecture was carried out and evaluated on a PC with an Intel Core i5 7th 

generation processor, 8 GB of RAM, a GTX 1080 GPU with 4 GB of RAM, and running a Windows 

operating system. We utilized the publicly available COVIDx-CT dataset [29], [30] for the evaluation, which 

consists of a 104,009 chest CT slice collected from 1,489 patient cases. This dataset aggregates chest CT 

examinations from multiple hospital cohorts across China as part of the China Consortium of Chest CT 

Image Investigation (CC-CCII). The imaging data include chest CT volumes representing three categories: 

COVID-19 pneumonia, common pneumonia resulting from non-COVID-19 infections, and normal 

(uninfected) cases. 

Figure 3 shows image samples for each of the three dataset categories: Figure 3(a) shows a  

COVID-19 case, Figure 3(b) shows a non-COVID-19 pneumonia case, and Figure 3(c) shows a normal case 

from a healthy individual. The COVIDx-CT dataset is chosen due to its high quality, well-organized 

structure, and readiness for direct use in benchmarking evaluation. Its standardized format and 

comprehensive coverage of infection types make it particularly suitable for consistent evaluation and 

comparison of deep learning model performance. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 3. Samples of COVIDx-CT dataset (a) COVID-19 and pneumonia case, (b) non-COVID-19 

pneumonia case, and (c) shows a normal case from a healthy individual 

 

 

We followed the distribution proposed in [29], thus, we adopted a data split strategy that divides the 

COVIDx-CT dataset into 60% training–20% test–20% validation, respectively. To avoid data leakage and 

maintain the integrity of the evaluation, care was taken to ensure that CT scans from a single patient were 

allocated just to one of the sets. The resulting distribution is summarized in Table 1 and visually represented in 

Figure 4. This splitting approach consistently produces the most consistent and accurate results performance 

across all evaluated benchmarking models. To further ensure fairness and minimize selection bias, the data split 

was randomized for each experimental run while maintaining the overall distribution proportions. This strategy 

contributed to a robust and unbiased evaluation of the proposed architecture performance. 

 

 

Table 1. COVIDx-CT dataset distribution 
Type Normal Pneumonia COVID-19 Total 

Train 28202 21568 12635 62405 

Validation 8658 7251 4893 202802 
Test 8658 7251 4893 20802 
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Figure 4. Dataset distribution 

 

 

4.2.  Evaluation metrics 

To evaluate the performance of the proposed model architecture, we employ standard evaluation 

metrics, including Precision, Recall, F1-score, and Accuracy: 

a. Precision: The proportion of true positive COVID-19 cases predicted by the model to the total number of 

model predictions (i.e., true positives (TP) and false positives (FP)). This metric provides insights about 

the rate of false positives. The lower the number of false positives, the higher the yield. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (1) 

 

b. Recall: This is the sensitivity of the model. It is the ratio of predicted TP to the total number of actual 

positive instances, which includes true positives and false negatives. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (2) 

 

c. F1-score: Takes into account both false positives and false negatives by averaging the precision and recall 

metrics. It is important in cases where the distribution of classes is unequal. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙 
     (3) 

 

d. Accuracy: This is the most often used and straightforward categorization metric. It is calculated as the 

number of correct predictions divided by the number of samples. Although high accuracy is typically 

desirable, in some cases where the class distribution is not symmetric, it may not be an informative 

evaluation. In these scenarios, precision, recall, and F1-score offer a more thorough assessment of model 

performance. 

 

Accuracy =  
𝑇𝑃+𝑇𝑁 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
    (4) 
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4.3.  Performance evaluations and benchmarking 

The proposed model architecture has undergone training for 100 epochs. The performance metrics 

of the proposed architecture are quantitatively summarized in Table 2 with benchmarking models. We have 

considered various benchmark models that use different deep learning models as their backbone. We are 

mainly interested in benchmark models that apply to CT images. Most of the benchmark approaches have 

evaluated their architectures on small datasets; in contrast, we have performed this comparison evaluation on 

larger datasets [29], [30]. We used the same distribution of datasets into train, validation, and test as 

discussed in section 4.2 for all benchmark approaches. 

The results in Table 2 clearly show that the proposed Mask R-CNN model significantly outperforms 

all benchmark architectures. The yielded gains in accuracy, recall, and F1-score point to the proposed 

model's adaptability in COVID-19 detection with minimum false positives and false negatives. That is 

particularly vital in clinical procedures where early and accurate diagnosis can significantly affect treatment 

planning and isolation protocols. The ability to distinguish between COVID-19 and other pneumonias further 

enhances its utility in real-world applications. Unlike previous models which are typically trained on limited 

data, our proposed model shows consistent performance over a large dataset, reflecting its generalizability. 

The superior model performance in detecting pathogenic variations in CT images comes from the integration 

of FPN and fuzzy preprocessing, which ensure better spatial representation and well-contrasted image inputs. 

Additionally, to assess the contribution of key architectural components, we conducted an ablation 

study, as presented in Table 3. Specifically, we evaluated the effects of fuzzy color enhancement, FPN, and 

the RoIAlign process. For comparison, we used a baseline model based on ResNet [20], which excludes these 

enhancements. The baseline achieved a precision of 93.1% and an F1-score of 91.4%, whereas our complete 

model attained 98.4% precision and a 97.4% F1-score. The gained performance improvement emphasizes the 

importance of every incorporated component. Hence, fuzzy preprocessing enhances contrast and structural 

visibility in CT scans. FPN enables effective multi-scale feature extraction, and RoIAlign ensures accurate 

spatial alignment of features during segmentation. These developments taken together help to create a more 

robust and clinically relevant COVID-19 detection system. 

Table 4 evaluates the proposed model architecture in the case of using different ResNet variants, 

such as ResNet41, ResNet50, and ResNet101 as our backbone networks. According to the comparative 

evaluation, ResNet50 offers the best balance between performance and computational efficiency. It 

achieves high scores across all evaluation metrics, with a precision of 98.43%, recall of 98.51%, F1-score of 

97.46%, and accuracy of 98.82%. On one hand, ResNet41 enables faster processing times at the expense of 

accuracy and recall, where the number of convolutional layers is reduced. On the other hand, ResNet101 

does not bring too many improvements in terms of accuracy compared to ResNet50, despite its network 

depth defined by the quantity of convolutional layers and longer processing time. The marginal gain in 

accuracy (only 0.12% over ResNet50) does not justify the additional cost in most practical scenarios. 

Therefore, ResNet50 emerges as the most suitable backbone for our architecture, offering an optimal trade-

off between speed, model size, and detection performance, making it well-suited for deployment in real-

world clinical settings. 

 

 

Table 2. Comparison of the proposed model architecture and benchmark architecture 
Model Precision Recall F1 Accuracy 

VGG 16-based model [7] 93.20% 94.10% 93.60% 94.10% 
Bayesian-based model [31] 92.40% 92.80% 92.10% 92.50% 

DensNet-based model [32] 93.30% 94.10% 92.50% 93.70% 

ResNet-based model [8] 93.80% 93.40% 93.60% 93.90% 
Proposed model architecture 98.40% 98.50% 97.40% 98.80% 

 

 

Table 3. Ablation study: performance comparison with and without key enhancements 
Architecture Precision Recall F1 Accuracy 

Baseline ResNet [20] 93.1% 93.6% 91.4% 93.6% 
Proposed full model 98.4% 98.5% 97.4% 98.8% 

 

 

Table 4. Proposed model architecture evaluation with respect to different backbone layers 
Backbone Precision Recall F1 Accuracy 

ResNet41 93.73% 90.13% 94.64% 93.72% 
ResNet50 98.43% 98.51% 97.46% 98.82% 

ResNet101 98.89% 98.81% 97.95% 98.94% 
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Figure 5 depicts the confusion matrix for the proposed model architecture. The analysis of 

misclassifications reveals that 33 non-COVID-19 pneumonia images were misclassified as normal, and 13 

COVID-19 images were misclassified as normal. Further, the proposed model misclassified 42 COVID-19 

cases as non-COVID-19 pneumonia, while 54 non-COVID-19 cases were misclassified as COVID-19. This 

indicates difficulty in distinguishing between these two clinically similar conditions, which is important in 

clinical procedures where correct treatment depends on proper classification. The misclassifications of 

COVID-19 as non-COVID-19 pneumonia (false negatives) are a critical concern, as they may lead to delayed 

or improper treatment decisions. Conversely, the misclassifications of non-COVID-19 pneumonia as 

COVID-19 (false positives) could result in unnecessary isolation, though they pose a lower risk in terms of 

public health management. Considering the model sensitivity and specificity, the yielded sensitivity detection 

for COVID-19 is 98.87%, while the specificity is 99.44%. Some misclassifications result from the 

radiological similarities between COVID-19 and other forms of pneumonia, which make distinction difficult. 

 

 

 
 

Figure 5. Confusion matrix representing the classification results of the proposed model on the dataset [29] 

 

 

5. CONCLUSION 

This paper proposed an effective Mask R-CNN-based architecture for the diagnosis of COVID-19 

from chest CT images. The proposed architecture incorporates a novel image enhancement technique based 

on fuzzy logic, yielding notable improvements in contrast and reduces CT image ambiguity. Moreover, 

additional components are integrated, such as FPN and RoIAlign, which enhance spatial feature 

representation and classification accuracy. The presented architecture is quantitatively assessed on a general 

dataset, hence yields a superior performance over several benchmark models with an accuracy of 98.8%. 

These findings show the model’s reliability and robustness, making it a promising candidate for clinical 

support in the early detection of COVID-19. Apart from its immediate application to COVID-19 diagnosis, 

the model's modular design and adaptability imply a great possibility for extension to other chest-related 

diseases, such as non-COVID-19 pneumonia or lung fibrosis. Furthermore, its performance on a large dataset 

enhances its generalizability and practical preparation for application in medical imaging systems. In 

summary, the effectiveness of the proposed architecture demonstrates how tailored preprocessing and deep 

learning architectures can significantly improve disease detection accuracy. Future work could explore 

incorporating additional clinical metadata—such as patient symptoms, medical history, or laboratory results, 

which could further improve model’s capability to differentiate between visually similar CT scans and 

improve diagnostic precision. 
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