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Chronic diseases like asthma, diabetes, stroke, and heart discase are the
major causes of morbidity globally, which emphasizes the need for efficient
predictive models to facilitate early detection and precautionary measures.
Previous studies have used machine learning approaches for single-disease
prediction, where models are designed for specific diseases, such as diabetes
or heart disease. However, very few attempts have been made to develop
unified frameworks for predicting multiple diseases simultaneously. This
work presents a novel, unified framework using an ensemble of extreme
gradient boosting classifier (XGBClassifier) and artificial neural networks
(ANN) as individual classifiers to concurrently predict the risk of developing
asthma, diabetes, stroke, and heart disease. This work follows a
questionnaire-based approach that utilizes demographic, lifestyle, health
metrics, symptoms and exposure-related data to create personalized risk
assessments. The model achieves satisfactory accuracy rates of 95.82% for
asthma, 96.68% for diabetes, 94.91% for stroke, and 94.52% for heart
disease. The findings highlight how this novel hybrid model serves as an
effective approach to tackle the intricate interactions between chronic
ailments. The research also includes a user-friendly website that comprises a
questionnaire and makes use of the best performing model to predict the
probabilities of developing different diseases.
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1. INTRODUCTION

Over the last few decades, chronic diseases have reached unprecedented levels across the globe. The
most prominent ones include asthma, diabetes, stroke, and cardiovascular disease. These conditions, taken
together, form a huge burden on the health care systems around the world [1]. Heart diseases alone are
responsible for almost 17.9 million deaths annually, as claimed by the World Health Organization (WHO)
and over 500 million people suffer from chronic respiratory ailments, including asthma [2]. Diabetes affects
almost 500 million people, and the figure is projected to increase by 25% in 2030 [3]. Preventive detection
and prevention of these diseases have become one of the key challenges in modern healthcare systems,
especially in areas where there is a lack of modern medical facilities and diagnostic equipment. These
conditions are especially prevalent in developing countries, where healthcare access may be limited.
Traditional diagnostic approaches generally need sophisticated laboratory testing, skilled medical personnel,
and adequate resources, which hampers prompt identification and treatment. These issues are exacerbated in
rural and impoverished communities, where access to specialized health services is limited or nonexistent.
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The advent of computational methods in machine learning and the sphere of artificial intelligence,
especially ensemble learning techniques, has changed the methodologies that are used in disease prediction.
While the traditional methods used in medical diagnosis depend on a combination of clinical acumen and
laboratory assessments, ensemble strategies like voting classifiers, in the presence of powerful algorithms
such as extreme gradient boosting (XGBoost) and artificial neural network (ANN) interchangeably used as
multi-layer perceptron (MLP) as used in this approach [4], are indeed valid alternatives for exact disease
forecasting. Latest technological advancements greatly affect preventive care as early diagnosis of health
problems has tremendously improved patient outcomes and decreased healthcare costs.

Comprehensive approaches to disease prediction are also vital because chronic diseases are often
interrelated with common risk factors and coexisting symptoms. For instance, the risk factors related to
environmental aspects can simultaneously increase respiratory and cardiovascular conditions, such as air
quality or pollution level. However, diabetes is widely regarded as a factor that significantly elevates the
potential for heart conditions and stroke [5]. The interaction among these chronic illnesses makes a call for
holistic methodologies in predicting them, involving assessment of many interconnected risk factors and their
complexities.

This research addresses these problems through an innovative multiple disease predictive system;
the ensemble combines XGBClassifier and ANN to evaluate simultaneously the hazard of bronchial asthma,
diabetes, stroke, and coronary heart disease. The integrated approach will use a system based on questions
that will be demographic, lifestyle, health metrics, symptoms, and exposure-based to create personalized risk
analysis. The uniqueness in methodology is reflected in its integrated framework designed for multiple
disease prediction, thereby addressing a notable gap within the existing frame of research, which primarily
focuses on models for the prediction of single diseases.

The rest of this paper is prepared as follows: section 2 affords an in-depth review of literature
pertaining to the scope of machine learning in disease prediction. Section 3 addresses the methodologies that
include data collection/pre-processing to the voting classifier with XGBClassifier and ANN. Furthermore,
section 4 deals with the experiment results on different metrics. Lastly, section 5 has a summary of findings
with a future perspective.

2. RELATED WORK

Recent research has shown substantial advances in the development of integrated systems for
predicting numerous diseases at once. Gopisetti ef al. [6] suggested a method to forecast several diseases
using machine learning, demonstrating the ability to create user-friendly online applications in healthcare
diagnostics utilizing frameworks such as Streamlit. Ray et al. [7] discussed different machine learning
techniques for forecasting a variety of diseases and highlighted the importance of diagnostic tools in an
integrated manner in modern healthcare conditions.

Significant advancements have been made in stroke prediction in recent years. The latest research
carried out by Gupta ef al. [8] achieved an accuracy of 95.16% in neural networks which is an important
milestone in the prediction of strokes. Rahman et al. [9] took their findings a step forward to produce 99%
accuracy with the aid of Random Forest ensemble algorithms. There is, however an important work by
Mridha et al. [10] that emphasizes proper validation techniques wherein they proved how although random
forest obtained 90.36% accuracy on the entire dataset, with the more realistic train-test split, it came out to be
82.23%, thereby proving the significance of avoiding data leakage in model evaluation. Elangovan et al. [11]
significantly contributed to the literature by discussing the critical problem of imbalanced datasets in stroke
prediction, offering very useful insights on how to deal with this ubiquitous problem in medical data analysis.

Several major studies have come out on diabetes prediction. Hasan ef al. [12] investigated the
application of ensemble algorithms in predicting diabetes, whereas Mujumdar and Vaidehi [13] reported
significant outcomes utilizing different algorithms—specifically, their gradient boost model demonstrated an
accuracy of 93%, whereas the logistic regression model achieved an outstanding accuracy of 96%. Diabetes
prediction is always being improved, and Rani's research [14] claimed 99% accuracy using decision trees.
Some studies, like Soni and Varma [15], showed more modest results, as random forest obtained 77%
accuracy, showing the diversity of models' performance on different datasets and approaches. Yahyaoui et al.
[16] suggested valuable insights despite using a smaller dataset of 768 samples, achieving 83.67% accuracy.

The research in asthma prediction has focused significantly on ecological factors. The trend in
medical care usage due to environmental factors has been discussed by Jo ef al. [17], and Hwang et al. [18]
have applied deep learning methods for predicting the count of asthma patients through environmental
information. Louisias et al. [19] studied the environmental determinants of asthma with regard to its
symptoms, especially the role of pollen, allergens, and dust. A systematic review by Jayamini et al. [20] has
analyzed an extensive range of machine learning techniques, which includes techniques such as logistic
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regression, decision trees and ensemble methods like random forests, gradient boosting machines, and neural
networks to predict asthma exacerbations.

Various research studies on the prediction of heart disease have proven to be effective using
different methodologies. Dritsas and Trigka [21] achieved high accuracy with 87.8% and area under the
curve (AUC) of 98.2% using a stacking ensemble model applied after synthetic minority over-sampling
technique (SMOTE), utilizing 10-fold cross-validation. Bhatt ez al. [22] showed success with MLP models at
87.23%. Kavitha et al. [23] proposed a hybrid model with accuracy 88.7%, and Sarra et al. [24] achieved
better performance using an ANN model, which depicted up to 93.44% in accuracy and AUC of 0.95. Recent
work by Yadav et al. [25] achieved 94.51% accuracy with AdaBoost and random forest feature selection,
though their precision (48.33) and recall (39.52) metrics on test data highlight persistent challenges in clinical
applicability. Overall, the set of studies represents the development and advancement of heart disease
prediction models, which in several contexts, demonstrate promising progress.

3. METHODOLOGY

The current work attempts to develop a strong and integrated framework for predicting the
developing risk of chronic conditions, including asthma, diabetes, stroke, and heart diseases. The motivation
behind developing such a framework is to assist practitioners as well as patients during health care by
providing timely warnings and suitable advice. For this purpose, we used multiple machine learning
algorithms, applied preprocessing techniques to improve data quality, and adopted an ensemble-based
approach to improve accuracy in prediction as highlighted by Figure 1.
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Figure 1. Flow diagram of model

3.1. Data source

The current study used datasets from free source to predict the likelihood of four chronic diseases:
asthma, diabetes, stroke, and heart disease. These datasets included vast amounts of data containing
demographic, medical, and lifestyle attributes relevant to each disease.

- Diabetes dataset (https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset): 1t contained
100,000 instances with feature descriptions including age, gender, body mass index (BMI), history of
hypertension, factors such as a history of heart disease, smoking habits, Glycated hemoglobin (HbAlc)
levels, and blood glucose measurements. The target variable for diabetes is binary.

- Stroke dataset (https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset): It comprises 5,110
records with features that include age, gender, marital status, hypertension, heart disease, smoking, glucose
levels, BMI, and type of work, and residence with a binary target variable for the stroke.

- Asthma dataset (https://www.kaggle.com/datasets/rabieelkharoua/asthma-disease-dataset): There are 2,392
samples and 29 variables in the asthma dataset. The variables comprise demographics (age, gender,
ethnicity), lifestyle factors (smoking, physical activity, diet, sleep), environmental exposures (pollution,
pollen, dust), medical history (family asthma, allergies, eczema), clinical tests (forced expiratory volume
in 1 second, forced vital capacity), and symptoms (wheezing, dyspnea, chest tightness, coughing). The
target variable is the asthma diagnosis.
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- Heart disease dataset (https://www.kaggle.com/datasets/tarekmuhammed/patients-data-for-medical-field/data):
This dataset contained 237,630 records. It included demographics, along with height and weight, BMI,
medical history such as a heart attack, angina, stroke, diabetes, or asthma, lifestyle factors like smoking or
e-cigarettes, preventive care like vaccinations, chest scans, and recent health events, such as Coronavirus
disease of 2019 (COVID-19). Heart disease history was the binary target variable.

3.2. Data pre-processing
3.2.1. Data cleaning

Every dataset was cleaned and freed of redundancy by removing duplicate entries and imputing
missing values. Numerical features were handled using median imputation while categorical features were
handled using mode imputation. Irrelevant attributes, such as patient IDs, were eliminated in order to achieve
good accuracy.

3.2.2. Feature engineering

The feature engineering method was used to enhance the prediction ability of the model. Numerical
features, including age, BMI, blood glucose, blood pressure, and HbA ¢, were scaled using standard scaling
to align them on the same scale. Binary features were subjected for label encoding such as gender, presence
of certain disorder and one-hot encoding was implemented for multi-class ones like the medical conditions,
the type of work, education and race/ethnicity. This allowed for proper interpretation of the categorical data.
Using heatmap analysis, a feature selection method based on correlation was employed to determine which
predictors are most pertinent and reduce the number of dimensions while keeping the ability to predict.

3.3. Modeling
3.3.1. XGBoost classifier

Extreme gradient boosting, or XGBoost for short, is a potent supervised machine learning technique
for tasks involving regression and classification. It uses a boosting technique to expand on decision trees,
where in relevant variables are given more weight and used in the subsequent decision tree in case the tree
makes a false prediction. The outputs of each classifier or predictor are subsequently integrated to form a
more robust and accurate model. By altering weights according to previous errors, XGBoost mixes the
outputs of several trees additively, in contrast to Random Forest, which averages them. This enables more
complex predictions. Regularization to avoid overfitting, parallel processing for performance, and a weighted
quantile sketch technique for handling sparse data are important aspects. The loss function, algorithm of
XGBoost classifier is as follows:

N M

Lygp = Z L()’i ,F(xi)) + Z 2(hy)

i=1 m=1

1
N(h) =yT + E/l||w2||

here, L(y;, F(xi)) is log loss function, £2(h) is regularization term for each tree h, T is number of leaves of
the tree, y is parameter to control lowest loss reduction gain to split a node, and w is output values from the
leaves.

Algorithm of XGBoost classifier
1. Model initialization
Initialize Fo(x)=0
2. Iterative boosting process
for t = 1 to T:
- Calculate the gradient of the loss function gizfggﬁg?ﬁ
L
- Fits decision tree to predict these gradients
- Computes tree predictions ht(x)
- Updating the model as Fi1 (x)=Ft(x)+ht (x)
where is nthe learning rate (0<n<1)
- Application of regularization components as:
L2 regularization on leaf weights (1Y wf)
Complexity penalty on number of leaves (T)
Total objective: Loss+ A1) sz +yT
3. The final model is an ensemble of T trees combined additively and predictions based on
cumulative tree outputs.
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3.3.2. Multi-layer perceptron

Among the types of artificial neural networks is a multilayer perceptron (MLP). The architecture
accommodates an input layer, one or more hidden layers, and an output layer. The weighted sum of inputs of
each layer in a neural network is used by the neurons for performing activation functions. MLPs can learn
complex patterns through the process of backpropagation wherein the weights are modified by reversing the
propagation of errors. They do exceedingly well on tasks such as image recognition and natural language
processing because they can mimic nonlinear interactions. A pictorial representation of an MLP architecture
is shown in Figure 2. Performance requirements for MLPs require optimal settings of characteristic
parameters like the learning rate and the count of hidden layers among others.

Input Layer 1st Hidden Layer 2nd Hidden Layer Output Layer,
with 64 neurons, with 32 neurons, Sigmoid
Relu Activation Relu Activation optimization

Figure 2. A multi-unit perceptron with 2 hidden layers of 64 and 32 neurons in each layer respectively

Algorithm 1. Multi-unit perceptron
1. Model initialization
Weights W®* and biases b are initialized for each layer of MLP.
2. Defining the architecture of MLP namely:
- L: Total number of layers in MLP.
- hi: Number of neurons in each layer 1.
- 7n: Learning rate.
- E: Number of iterations/epochs.
- Rectified Linear Unit (ReLU) activation for the hidden layers, f(z) = max(0,z)
1

- Sigmoid activation function for the output layer, (z) Py
3. Training the model
for e = 1 to E:
a. Forward propagation
- Input to network a®=x
- For each layer 1=1 to L-1 (all hidden layers):
Z M=) | 511 4D
aM’=ReLU((z?P)
- When output layer reached 1=L:
2 (1) =g (1) | 5 (L-1) 415 (1)
a™= Sigmoid(z (L))
a'V represents the predicted output J.
b. Loss computation
Since classification loss is computed using binary cross-entropy function

L——li[ ilog@) + (1 —y)log(1 —)]
= m Ly Yitog yi)tog N

c. Backward propagation
- Computation of gradient of loss with respect to output

aL
w - __—_ (., (L)
8 _aa(L)OU(Z )
- Propagating the error through hidden layers backward
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For l=L—-1 to 1:
6(l) — (W(Hl))T.é'(Hl) O ReLUf(Z(l))
d. Updating parameters using Adam optimizer
4. The end model consists of computed weights and biases for all layers and output is
predicted using forward propagation through the trained parameters given by formula

9 = Sigmoid(z®™)

3.3.3. Voting classifier

It is an ensemble technique that uses several models to enhance the accuracy of classification. It
uses majority voting or probability averaging to combine predictions from various classifiers (such as
decision trees and support vector machines). By utilizing the advantages of various models, this method
improves resilience and lowers the possibility of overfitting.

4. RESULT ANALYSIS

The models were tested to forecast health conditions such as Asthma, Diabetes, Stroke, and heart
diseases. For that purpose, two primary models have been utilized: XGBoost classifier (XGBC) and ANN.
Further refining of results was achieved using voting classifier by taking both models together.

The approach uses the XGBoost model with the XGBClassifier from the XGBoost library,
optimized with use_label_encoder = False and evaluated using logloss. The former is trained using default
parameters and the results were robust across all target disecases. The model demonstrated high predictive
performance, benefitting from XGBoost’s ability to handle missing data and capture complex relationships.

The ANN was designed using the Keras library in TensorFlow, with a sequential architecture having
three fully connected layers: 64 neurons with rectified linear unit (ReLU) activation in the first layer,
32 neurons with ReLU in the hidden layer, and a single neuron with sigmoid activation for binary
classification running for 50 epochs. The model used the Adam optimizer, binary cross-entropy loss function
with accuracy as the evaluation criterion. The accuracy of the model as evaluated on the datasets is as
tabulated in Table 1.

Table 1. Accuracy of different models for disease prediction

Disease Model Accuracy (%)

Asthma XGBC 95.82
ANN 95.82

Voting Classifier 95.82
Diabetes XGBC 97.085
ANN 96.76

Voting Classifier 96.68

Stroke XGBC 94.28
ANN 9491

Voting Classifier 94.91

Heart disease XGBC 94.45
ANN 94.61

Voting Classifier 94.52

The classification reports for stroke, diabetes, asthma, and heart disease predictions are illustrated in
Figures 3 to 6. For stroke and asthma in Figures 3 and 5, the model achieved excellent precision, recall, and
Fl-scores for the negative class (all above 0.95), while positive class metrics were absent due to class
imbalance; nonetheless, macro and weighted averages remained robust. In diabetes prediction in Figure 4,
strong performance was observed for both classes, with positive class precision, recall, and F1-scores
exceeding 0.75, and overall averages above 0.95, reflecting balanced detection. For heart disease in Figure 6,
the model maintained high scores for the negative class, while positive class metrics were moderate, leading
to solid macro and weighted averages. These results underscore the model’s strong and consistent
performance in accurately identifying both negative and positive cases across all disease categories and
demonstrate the model’s robust capability and positive impact in multi-disease prediction.

The user interface dashboard provides users with a clear and interactive means to input their data
and view preliminary results. Data collection was facilitated by the structured questionnaire illustrated in
Figure 7, which ensured comprehensive and standardized input from all users. The output of the predictive
model, presented in Figure 8, visually displays the percentage risk of each disease for every participant,
highlighting variations and enabling targeted analysis.
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Classification Report for Stroke Prediction (Voting Classifier - Hard)
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Figure 3. Classification report for stroke prediction representing precision, recall, F1-score for positive,
negative classes along with macro and weighted average
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Figure 4. Classification report for diabetes prediction representing precision, recall, F1-score for positive,
negative classes along with macro and weighted average

Classification Report for Asthma Prediction (Voting Classifier - Hard)
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Figure 5. Classification report for asthma prediction representing precision, recall, F1-score for positive,
negative classes along with macro and weighted average
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Classification Report for Heart Disease Prediction (Voting Classifier - Hard)
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Figure 6. Classification report for heart disease prediction representing precision, recall, F1-score for
positive, negative classes along with macro and weighted average

What

Figure 7. Questionnaire to collect data for analysis

Figure 8. Disease risk output of the model
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5.  CONCLUSION

This work introduces a system developed to predict the risk of four of the most significant chronic
diseases namely asthma, diabetes, stroke, and cardiovascular disease, by making use of machine learning
techniques. The model achieves remarkable accuracy for all four diseases via ensemble learning using
XGBoost classifier and ANN with a hard voting classifier approach. The results are as follows: In the case of
asthma prediction, XGBoost classifier and ANN achieved accuracies of 95.82% and 95.82% respectively,
whereas the voting classifier maintained an accuracy of 95.82%. In diabetes prognosis, XGBoost classifier
achieved an accuracy of 97.085%, ANN logged 96.76% while the voting classifier evaluated the metrics to
96.68% accuracy. Stroke prediction models also performed well, with XGBoost classifier at 94.28%, ANN at
94.91%, and the voting classifier remaining consistent at 94.91%. The prediction of heart disease produced
an accuracy of 94.45% for XGBoost classifier, 94.61% for ANN, and 94.52% for the voting classifier. The
findings emphasize the dependability of the proposed system, which consistently attains accuracies
exceeding 94%. This accentuates the promise of ensemble learning approaches in the healthcare domain by
harnessing the advantages of individual models while alleviating their limitations.

A web application that is designed to be user-friendly was built for this research to enhance the
accessibility of this application to healthcare providers and patients. It includes a smooth interface for
gathering real-time inputs through a questionnaire that can contribute in making accurate predictions of the
four chronic conditions. In conclusion, this research calls attention to the promise of machine learning
techniques in accurately predicting a range of chronic diseases. The creation of an ergonomic web
application significantly improves its applicability, successfully connecting cutting-edge technology with
the practical demands of healthcare in real-world settings. This research opens up new avenues for
advancements in predictive healthcare and facilitates the ongoing digital evolution in medical diagnosis
and prognosis.

There are numerous arecas where the established system could be improved in the future.
Incorporating data from real-time health monitoring would significantly enhance the system's capacity for
dynamic prediction. Furthermore, inclusion of a wider variety of diseases and ailments could improve the
system's efficacy for thorough health analysis. Also, studying the effect of demographic and regional
differences on model performance would lead to large-scale implementation of the model. It could also be
used to detect disease progression patterns and to make the prediction more personalized genomic data set
can be input. To enhance the user experience while using the platform, interpretable Artificial Intelligence
techniques can be used to provide explanations of the factors used during predictions.
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