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 In wind energy conversion systems, maximum power point tracking (MPPT) 

performance is crucial, as it is directly related to wind speed variability and 

the characteristics of the equipment used. Maximum power point tracking 

controllers are essential for optimizing the efficiency of wind power 

generation. This paper presents the development of three distinct approaches 

to maximum power point tracking: the classical perturb and observe (P&O) 

method, and two other techniques based on artificial intelligence, namely 

long short-term memory (LSTM) networks and deep neural networks 

(DNNs). Rather than focusing solely on the development of an intelligent 

neural network-based maximum power point tracking model, our work 

emphasizes the design of a deep neural network controller with an optimized 

architecture and a reduced number of layers and neurons per layer, thereby 

simplifying its implementation in embedded process control units while 

maintaining high maximum power point tracking performance. The results 

obtained show that our optimized deep neural network model identifies the 

point of maximum power more effectively than other techniques, 

demonstrating remarkable performance in terms of response time, accuracy, 

and the quality of the generated power. 
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1. INTRODUCTION 

Renewable energy sources, particularly wind power, are playing a key role in the global transition to 

sustainable energy [1]. Wind farms generate electricity by harnessing the kinetic energy of the wind, thereby 

reducing dependence on fossil fuels and cutting greenhouse gas emissions. For wind turbines to operate 

efficiently, it is necessary to extract as much power as possible despite variations in wind speed. This 

fluctuation complicates the maximum power point tracking (MPPT) process. For each specific wind speed, 

there is an optimum operating point that guarantees maximum energy production. This is why MPPT 

algorithms are essential for continuously adjusting turbine performance to achieve maximum energy 

production [2], [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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To increase energy extraction from wind turbines, conversion systems often use permanent magnet 

synchronous generators (PMSGs), which has given rise to extensive research into optimization strategies  

[4], [5]. Numerous MPTT methods and converter designs have been proposed to improve efficiency. These 

methods vary in terms of cost, convergence speed, complexity, sensor requirements and simplicity of 

implementation [6]. MPPT techniques are generally grouped into classical and artificial intelligence methods 

[7]–[9]. Traditional approaches such as fractional open-circuit voltage (VOC) and incremental conductance 

(IC), hill climbing (HC), and perturb and observe (P&O), are simple but can react slowly to rapid wind 

changes. Solutions based on artificial intelligence, such as neural networks and fuzzy logic, can overcome 

these limitations and achieve higher performance. These latter make it possible to model the relationships 

between different system variables in a complex way, and to adapt the control strategy in real time. 

Most existing work in the literature of wind turbine maximum power point tracking focuses on 

improving tracking speed, reducing oscillations, and maximizing extracted power. Our work continues to 

pursue these objectives while proposing an innovative approach: an optimized MPPT model, designed to 

minimize computational resources while guaranteeing high-performance tracking. This article presents the 

application of three maximum power point tracking techniques: one classical technique, that is, perturbation 

and observation, and two intelligent techniques, which are artificial neural network architectures, long short-

term memory (LSTM) and deep neural networks (DNN). In particular, we focus on optimizing the structure 

of neural networks to reduce their complexity and facilitate their implementation in embedded systems.  

This document is divided into four main sections. First, the wind turbine and PMSG generator 

models are described in detail. Next, the development and validation of the control strategies are presented. 

The third part discusses the simulation results. Finally, the conclusion summarizes the study and presents 

prospects for future improvements. 

 

 

2. THE STUDIED WIND TURBINE SYSTEMS 

As shown in Figure 1, the system under study comprises a wind turbine equipped with a permanent 

magnet synchronous generator. This device transforms the wind's mechanical energy into electrical energy in 

the form of three-phase alternating current. The electrical energy generated by the PMSG is then rectified 

into direct current by a diode bridge. This direct current is then boosted in voltage by a boost converter, 

enabling the maximum power point to be tracked and the voltage level to be adapted to the requirements of 

the electrical load. 

The key element of our system is the maximum power point tracking control techniques. These 

techniques, such as perturb and observe, long short-term memory networks and deep neural networks, aim to 

continuously optimize the operation of the wind turbine in order to get the maximum available energy from 

the wind. By adjusting the generator's operating point, the system's energy efficiency is maximized. 

 

 

 
 

Figure 1. Block diagram of the studied system 

 

 

2.1.  Model of wind turbine  

The wind turbine is a device used for converting the wind's energy from kinetic energy into 

mechanical energy. This conversion process can be described by an equation that relates the mechanical 

power produced (Pm) to the wind speed [10]–[13]. 
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𝑃𝑚 =
1

2
 𝐶𝑝𝜌𝜋𝑅𝑡

2𝑉𝑤
2   (1) 

 

In permanent operation, this power is proportional to the air density (𝜌), the area swept by the blades 

(determined by the turbine radius Rt), and the cube of the wind speed (Vw). A coefficient of performance (Cp) 

is also included in this equation, representing the turbine's energy efficiency. This coefficient is strongly 

influenced by geometric parameters such as the number of blades, their pitch, and their profile, and is 

theoretically limited by Betz's law. The tip speed ratio (λ) is defined as the relationship between the speed of 

the blade tips and the wind speed: 

 

𝜆 =
𝛺𝑅𝑡

𝑉𝑤
  (2) 

 

The torque produced by the turbine (𝑇𝑚) is then expressed by (3): 

 

𝑇𝑚 =
𝑃𝑚

𝛺
= 

1

2𝛺
 𝐶𝑝(𝜆, 𝛽)𝜋𝜌𝑅𝑡

2𝑉𝑤
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When the speed ratio is kept at its optimal value 𝜆_𝑜𝑝𝑡, the power coefficient reaches its maximum 𝐶𝑝_𝑚𝑎𝑥. 

In this condition, the maximum extractable power from the wind turbine is: 

 

𝑃𝑡
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

=
1

2
 𝐶𝑝𝑀𝜌𝜋𝑅𝑡

2𝑉𝑤
2  (4) 

 

Figure 2 illustrates that for each wind speed. There is an optimal rotor speed that allows the turbine 

to capture maximum power. This fluctuation in the power point highlights the importance of developing and 

integrating effective monitoring or tracking methods to ensure wind turbines consistently produce maximum 

power. 

 

 

 
 

Figure 2. Power curves for a wind turbine at various wind speeds 

 

 

2.2.  Permanent magnet synchronous generator model 

PSMGs are commonly employed in wind energy systems and operate on three phases produced by 

stator field windings. By neglecting the homopolar components of the flux, the model can be simplified using 

Park transformations [14]–[17]. The simplified mathematical model is described by the system of (5) and (6): 

 

{
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The electromagnetic torque can then be defined by (6): 

 

𝑇𝑒𝑚 =
3

2
(
𝑃

2
) [(𝐿𝑑 − 𝐿𝑞)𝐼𝑑𝐼𝑞 + 𝐼𝑞∅𝑓] (6) 

 

where 𝑃 denotes the number of pole pairs and ω is the generator’s angular speed. The ∅𝑓 refers to the 

permanent magnet flux. 𝐼𝑑 and 𝐼𝑞  are the direct and quadrature components of the stator current, respectively. 

𝑉𝑑 and 𝑉𝑞  indicates the direct and quadrature voltages of the stator. 𝐿𝑑 and 𝐿𝑞 stands for the stator’s direct 

and quadrature inductances, and 𝑅𝑠 represents the stator resistance. 

 

 

3. WIND ENERGY CONVERSION SYSTEM (WECS) CONTROL STRATEGY 

Renewable energy sources, such as wind turbines, are characterized by intermittent and fluctuating 

energy production. To maximize energy capture from these sources, MPPT algorithms are used. By tracking 

the power of the DC link and dynamically adjusting the system's operating parameters, MPPT techniques 

enable the system to track the point of maximum power and extract the maximum available power from the 

wind resource [18]–[20]. To overcome the limitations of conventional MPPT controllers (fixed pitch, 

oscillations around the MPP, low tracking efficiency, complexity due to a large number of hidden neurons), 

we propose intelligent MPPT controllers based on an optimized DNN and LSTM neural network.  

For MPPT control, neural network training involves pre-processing noisy data, then dividing it into 

training, validation and test sets. In both DNN and LSTM cases, the controller uses voltage (𝑉𝑑𝑐) and current 

(𝐼𝑑𝑐) as inputs and aims to optimally adjust the duty cycle of the DC/DC converter. This section will be 

dedicated to the presentation of the controllers (LSTM and DNN) used and their development stages.  

 

3.1.  Long short-term memory (LSTM)  

LSTMs are a type of recurrent neural network (RNN) ideal for time series data. They are useful for 

optimizing energy extraction in wind turbines by implementing MPPT algorithms. In this study, we propose 

to use an LSTM network to predict the MPP of a wind turbine in real time. In the case of MPPT control, 

LSTMs are trained to model the non-linear relationship between input variables (voltage, current) and the 

output variable (duty cycle) used to control the DC/DC inverter. Table 1 illustrates the components of the 

LSTM controller architecture used in this study. It shows a two-dimensional input sequence processed by a 

10-unit LSTM layer, plus a fully connected layer and a regression output layer with a single output. 

Figure 3 shows the performance of the LSTM controller. The first curve illustrates the evolution of 

root mean square error (RMSE). This curve shows a rapid decrease in error at the start of training, then 

stabilizes at a low value. This indicates that the model is learning efficiently from the training data and is 

achieving satisfactory performance. The second curve represents the loss function, whose evolution is almost 

similar to that of the RMSE. The decrease in this loss means that the model is successfully minimizing the 

difference between its predictions and actual values. 

 

 

 
 

Figure 3. LSTM controller training performances 
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Table 1. The used LSTM controller architecture 
 Name Type Activations 

1 Sequence input with 2 dimensions Sequence input 2 
2 LSTM with 10 hidden units LSTM 10 

3 Fully Connected fully connected layer 1 

4 R-mean-squared-error Regression output 1 

 

 

3.2.  Optimized deep neural networks 

ANNs are information processing systems inspired by the human brain. They have been the subject 

of intense research and the extraction of pertinent information from complex data. Their flexible architecture 

enables ANNs to learn patterns, make predictions and aid decision-making in many areas, such as MPPT for 

wind turbines, which is their application objective in our case. Figure 4 shows the architecture of an ANN 

conceived for tracking the point of maximum power. The neural network uses voltage and current as inputs. 

It is trained to predict the optimal duty cycle to apply to the DC/DC converter, with the aim of extracting 

maximum power from the wind turbine. 

The design of neural networks poses challenges of computational complexity, as the number of 

layers in the network can lead to excessive computation times. It is crucial to find a balance between model 

complexity and capacity for generalization. This study aims to optimize the architecture of a deep neural 

network to reduce computational costs while maximizing performance. To achieve this, we carried out 

several series of experiments. We varied parameters such as the number of hidden and output layers (HL and 

HO), activation functions, number of neurons per layer, number of learning iterations and optimization 

algorithms. The detailed results of these experiments are presented in Table 2. 

 

 

 
 

Figure 4. MPPT artificial neural network architecture 

 

 

Table 2. Summary of best training results 
Algorithm MLP model structure HL and OL R square MSE (x10-4) N° of Epoch 

Variable learning rate gradient descent [2-10-1] Logsig - Purelin 0.937 3.3409 321 

[2-4-1] Tansig - Purelin 0.926 1.02598 428 

[2-6-1] Purelin - Purelin 0.942 4.32863 197 

Gradient descent with momentum [2-3-1] Logsig - Purelin 0.947 1.32985 386 

[2-4-1] Tansig - Purelin 0.926 2.29044 484 
[2-7-1] Purelin - Purelin 0.932 3.32875 783 

The resilient backpropagation algorithm [2-5-1] Logsig - Purelin 0.923 0.70639 101 

[2-9-1] Tansig - Purelin 0.956 0.90728 94 
[2-12-1] Purelin - Purelin 0.942 1.42508 75 

Levenberg-Marquardt 

[2-5-1] Logsig - Purelin 0.956 0.48489 74 

[2-7-1] Tansig - Purelin 0.956 0.89862 93 
[2-9-1] Purelin - Purelin 0.937 0.97868 52 

 

 

Table 2 shows that, when using the Levenberg-Marquardt algorithm as the training optimization 

approach with a [2-5-1] architecture and using the Logsig-Pulin activation functions as the hidden layer and 

output layer activation functions, respectively, we achieved satisfactory results in terms of MSE and 

correlation coefficient at epoch 74. These improved results are shown in Figures 5(a) and 5(b). Analysis of 

the performance curve reveals two distinct phases in model learning. From the first few epochs we observe a 

rapid decrease in the mean square error, reflecting effective mapping of relationships in the data and a 
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correctly adjusted learning rate. This initial phase shows a progressive convergence towards a remarkable 

minimum value of 4,8489×10-5 reached at 74 epochs. The final stabilization of the error at this extremely low 

level (of the order of 10-5), with no noticeable fluctuation, confirms not only the model's ability to perfectly 

minimize the gap between predictions and target values, but also the absence of overlearning. Moreover, the 

correlation coefficient shown in Figure 5(b) is very close to 1, shows the strong correlation between the 

optimized DNN model outputs and desired outputs. 

 

 

 
(a) 

 

 
(b) 

 

Figure 5. DNN model performance: training, validation and testing (a) DNN training performance and  

(b) regression analysis of the DNN model 

 

 

4. RESULTS AND DISCUSSION 

The objective of this section is to present, analyze, and compare the results of maximum power 

point tracking provided by the LSTM and DNN models, as well as by the classic P&O method. To validate 

the robustness of the models we have developed, we will test them under two distinct operational conditions. 

The first will involve tracking the maximum power point in an environment of constant wind speed, while 

the second will assess their ability to adapt to variations in wind speed. 

Scenario 1: Constant wind speed 

In this case, the wind turbine was given a constant wind speed (12 m/s). Figures 6(a), 6(b), and 6(c) 

illustrate the maximum power produced using different methods: respectively, the method based on the 

perturbation-observation technique (P&O_P), the proposed method based on the LSTM model (LSTM_P), 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4454-4464 

4460 

and the method based on the proposed optimized DNN model (DNN_P). Figure 6(d) shows a comparison 

between the power extracted by the three techniques and the theoretical maximum power (Theoretical_P). It 

is clear that the three methods are very close in terms of maximum power, but a significant difference is 

observed when using the proposed DNN model. In fact, the use of the optimized DNN model offers higher 

performance, with an efficiency of 98.7% and a remarkable tracking speed. The optimized DNN model 

succeeds in locating the point of maximum power in 0.032 seconds. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 6. The maximum power extracted (constant wind speed) using (a) P&O_P, (b) LSTM_P, (c) DNN_P, 

and (d) Theoretical_P 

 3 
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Scenario 2: variable wind speed 

To validate the robustness of the tracking system in a dynamic environment, we simulated rapid 

variations in wind speed (5 m/s, 7 m/s, 10 m/s and 12 m/s). The results presented in Figure 7 shows that the 

optimized DNN model stands out for its ability to efficiently track the point of maximum power, even in the 

presence of suddenly varying wind speeds. In fact, it is characterized by its reduced oscillations, high 

efficiency, and very short response time compared to existing work in the field of MPPT tracking 

improvement for wind power systems [21]–[25].  

 

 

 
 

 
 

 
 

 
 

Figure 7. The maximum power extracted (variable wind speed) 
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5. CONCLUSION 

This paper presents an approach to MPTT in wind power systems, a crucial challenge for optimizing 

energy production and making wind power installations efficient. Our comparative study shows that this 

solution outperforms both the conventional (P&O) method and the LSTM network-based approach, offering 

remarkable performance on several levels such as oscillation rate and maximum power point localization 

speed. The main objective of this research was to design an intelligent controller capable not only of adapting 

in real time to rapid and unpredictable fluctuations in wind speed, but also of maximizing energy extraction 

while maintaining optimum operational stability and with optimized neural architecture. Our optimized DNN 

model has some remarkable features that make it particularly suitable for real-time applications: a reduced 

oscillation rate around the MPP, a very fast convergence speed, and a very compact neural architecture. 

These exceptional performances in terms of stability, speed and efficiency make our approach particularly 

interesting for real-time implementation. 
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