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 The classification of geometric patterns, particularly in Islamic art, presents 

a compelling challenge for the field of computer vision due to its intricate 

symmetry and scale invariance. This study proposes an ensemble learning 

framework to classify geometric patterns, leveraging the novel quaternion 

cartesian fractional Hahn moments (QCFrHMs) as a robust feature 

extraction method. QCFrHMs integrate the fractional Hahn polynomial and 

quaternion algebra to provide compact, invariant descriptors for geometric 

patterns. Combined with Zernike Moments, this dual-feature approach 

ensures resilience against rotation, scaling, and noise variations. The 

extracted features were evaluated using support vector machines (SVM), 

random forest, and a soft-voting ensemble classifier. Experiments were 

conducted on a dataset comprising 1,204 geometric images categorized into 

two symmetry groups (p4m and p6m). Results demonstrated that the 

ensemble classifier outperformed standalone models, achieving a 

classification accuracy of 82.15%. The integration of QCFrHMs 

significantly enhanced the system's robustness compared to traditional 

Zernike-only approaches, which aligns with findings in prior studies. This 

research contributes to the fields of image processing and pattern recognition 

by introducing an efficient feature extraction technique combined with 

ensemble learning for precise and scalable geometric pattern classification. 

The implications extend to art preservation, architectural analysis, and 

automated indexing of cultural heritage imagery. 
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1. INTRODUCTION 

Advances in computational techniques and machine learning have recently unlocked new 

opportunities for analyzing complex visual patterns, particularly within cultural heritage and artistic domains 

[1]. Geometric patterns, with their intricate symmetry, mathematical precision, and aesthetic appeal, 

hallmarks as they were of Islamic art, present a unique challenge and opportunity. These patterns have long 

fascinated mathematicians, artists, and computer scientists alike. Despite their apparent simplicity, the 

classification of such patterns is a complex problem requiring powerful methods capable of addressing 

variations in scale, rotation, and noise [2]–[7].  

https://creativecommons.org/licenses/by-sa/4.0/
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Morocco’s rich artistic tradition reflects its position as a cultural crossroads in the Islamic world. 

From the 11th century onward, Moroccan ornamentation developed through successive dynasties, each 

leaving its mark on the country's architectural and decorative heritage [8], [9]. Characterized by its 

symmetry, vibrant colors, and intricate designs, Moroccan ornamentation is seen in mosques, madrasas, 

palaces, and public spaces. Three primary themes dominate Moroccan ornamental art: 

a. Geometric patterns: Showcasing the precision and ingenuity of craftsmen. 

b. Floral patterns (Tawriq): Representing stylized natural motifs. 

c. Calligraphy: Combining artistry with scriptural reverence. 

These themes are expressed through diverse materials, including plaster, wood, zellijs (mosaics), and carved 

stone. 

Traditional pattern recognition methods have relied on a host of feature descriptors like Zernike 

moments, which support rotational invariance and have proven their worth in extracting the most valuable 

geometric features. However, the natural limitations of these descriptors, and in particular their handling with 

higher-order complexities and color images, call for more sophisticated approaches [10], [11]. This 

encourages the exploration of novel descriptors based on moments, with quaternion cartesian fractional Hahn 

moments (QCFrHMs) being one of the most promising candidates [12].  

QCFrHMs generalize the classic moments representation capabilities by embedding quaternion 

algebra and fractional polynomials for a compact, holistic representation of grayscale and color patterns. This 

work further proposes an extended framework that integrates QCFrHMs with the ensemble learning 

technique for classification in the context of geometric patterns. By integrating ensemble learning, which 

allows the aggregation of the abilities of multiple classifiers, the robustness and precision of the system are 

increased. We demonstrate the effectiveness of this approach using random forests (RF henceforth), support 

vector machine (SVM henceforth), and a soft-voting classifier on a dataset of Islamic geometric patterns 

categorized into their respective symmetry groups. Previous works have already underlined the importance of 

a robust descriptor to ensure rotation and scale invariance. Likewise, some recent works demonstrated 

QCFrHMs on color image analysis and proved their application in watermarking and pattern recognition 

tasks. Besides, the symmetry research in Islamic geometric patterns conducted by Kaplan and Salesin 

demonstrates that mathematical models are highly important in the comprehension and elaboration of such 

complex patterns. All these works confirm the urgent need to combine advanced descriptors, such as 

QCFrHMs, with machine learning methodologies for improving the results in classification. In fact, the 

experimental results demonstrated that the incorporation of QCFrHMs significantly improved classification 

performance, especially under noisy, rotated, and scaled variations. The development here will fill not only 

the gaps in the existing pattern recognition arena but also extend to more general applications in digital 

archiving, cultural heritage preservation, and automated indexing of artistic designs. This work presents an 

example of how advanced moment descriptors and ensemble learning can merge their strengths successfully 

to solve complex computational problems. 

We have structured this paper as follows. The forthcoming section deals with some related works 

that exist regarding geometric pattern classification and some moment-based descriptors. Next, this work 

details on the methodology proposed, relating the QCFrHM's implementation with the concept of the 

ensemble learning framework. This work then wraps up by discussing the implications of experimental 

results and offering a concluding remark that stipulates a few future directions for further research. 

 

 

2. RELATED WORK 

The classification of geometric patterns, particularly Islamic geometric patterns, has been a focus of 

research in image analysis and computer vision for several decades. quaternion cartesian fractional Hahn 

moments (QCFrHMs) represent a significant advancement in this domain by offering robust descriptors for 

both grayscale and color images. This section explores foundational research and recent advancements 

leading to these innovative methods. 

Orthogonal moments, such as Zernike moments, have long been utilized for shape-based image 

classification due to their rotational invariance and robustness. Ahadian and Bastanfard [13] demonstrated the 

efficacy of Zernike moments for classifying Islamic geometric patterns. Using neural networks and K-nearest 

neighbors (KNN) classifiers, they achieved an accuracy of 96.03% by optimizing pre-processing and feature 

extraction techniques. Noise reduction, segmentation, and Zernike moment-based descriptors were central to 

their approach, although the method was limited to grayscale images. Zernike moments are mathematically 

defined as [14]: 

 

𝑍𝑛𝑚 =  
𝑛+1

𝜋
 ∫ 𝑉𝑛𝑚(𝑥, 𝑦)𝑓(𝑥, 𝑦)

{𝑥2+ 𝑦2≤ 1}
𝑑𝑥𝑑𝑦 (1) 
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indeed, defines the Zernike moments, where Vnm(x,y) (often expressed in polar form) are the Zernike 

polynomials. One of the major advantages of Zernike moments is their rotational invariance, which is why 

they are commonly used in geometric pattern classification and shape recognition. 

The emergence of quaternion algebra in image descriptors has marked a paradigm shift in image 

representation. Yamni [15] introduced QCFrHMs as a generalization of classical Hahn moments, extending 

their capabilities to fractional orders and leveraging quaternion theory for compact and holistic color image 

processing. QCFrHMs addressed several limitations of previous methods by: 

a. Utilizing fractional Hahn polynomials (FrHPs) to enhance accuracy and flexibility. 

b. Encoding color information seamlessly using quaternion representation. 

c. Fractional Hahn polynomials are defined recursively as [16]: 

 

ℎ𝑛
(𝛼,𝛽)

(𝑥) =  
(2𝑛+𝛼+𝛽−1)(𝑥−1)ℎ𝑛−1

(𝛼,𝛽)
(𝑥)−(𝑛+𝛼−1)(𝑛+𝛽)ℎ𝑛−2

(𝛼,𝛽)
(𝑥)

𝑛
 (2) 

 

With the initial conditions 

 

ℎ0(𝑥) = 1 and ℎ1(𝑥) = (𝛼 − 𝛽) + (1 + 𝛼 + 𝛽)(𝑥 − 1)  

 

QCFrHMs effectively encode the inherent symmetry in geometric patterns by processing color 

images in a holistic and compact manner, capturing both global and local symmetries. These advancements 

have broadened the scope of applications for QCFrHMs, including image watermarking, edge detection, and 

pattern recognition. Compared to traditional Hahn moments, QCFrHMs demonstrate reduced computational 

complexity and enhanced numerical stability. Their robustness to geometric transformations such as rotation 

and scaling makes them particularly effective for complex image processing tasks [17]. 

Modern feature extraction techniques combine complementary descriptors to maximize performance. 

For example, integrating QCFrHMs with Zernike moments captures both global and local characteristics of 

geometric patterns. Literature suggests that such combinations are pivotal in real-time applications like 

automated pattern recognition. Additionally, advancements in machine learning classifiers, including RF, 

SVM, and ensemble learning methods, complement these feature extraction techniques. Ensemble approaches, 

such as voting classifiers, enhance accuracy by leveraging the strengths of multiple models [18]. 

QCFrHMs and related methodologies have catalyzed new research directions in image analysis 

[19]–[21]. Potential applications include: 

a. Cultural heritage preservation: digitizing and classifying historical geometric patterns for reconstruction 

and archival purposes. 

b. Medical imaging: improving diagnostic accuracy through enhanced pattern recognition. 

c. Content-based image retrieval: enabling efficient indexing and retrieval in multimedia databases. 

d. High-security applications: digital watermarking and forgery detection through compact and discriminative 

image representations. 

The integration of deep learning frameworks with QCFrHMs for end-to-end classification pipelines 

should be the central focus for future research. Exploring their applicability in 3D object analysis, real-time 

video processing, and generative modeling for geometric pattern synthesis also holds significant promise. By 

combining traditional orthogonal moments with modern quaternion-based approaches and advanced machine 

learning techniques, QCFrHMs set a new benchmark in geometric pattern classification, offering robust, 

efficient, and versatile solutions [22]–[24]. 

 

 

3. METHODOLOGY 

3.1.  Dataset preparation 

3.1.1. Dataset constitution 

In the current investigation, we assembled a dataset of images depicting geometric motifs with two 

types of symmetries: four-fold symmetry (p4m) and six-fold symmetry (p6m). These categories were 

deliberately chosen due to their frequent occurrence in tiling art, ornamental designs, and crystallographic 

patterns. 

a. p4m symmetry: Commonly found in square tiling arrangements, ceramic art, and certain mandala-like 

patterns. Figure 1 shows an example from the database of this type of symmetry. 

b. p6m symmetry: Characteristic of hexagonal layouts, such as honeycomb structures or Islamic-inspired 

motifs with hexagonal symmetry. Figure 2 shows an example from the database of this symmetry type. 
By capturing the distinct qualities of p4m and p6m, our dataset provides a fertile ground for exploring 

symmetry-based classification tasks. 
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Figure 1. Example from the database illustrating p4m symmetry 

 

 

 
 

Figure 2. Example from the database illustrating p6m symmetry 

 

 

3.1.2. Image preprocessing 

The preprocessing pipeline in this study ensures high-quality input for feature extraction by 

incorporating techniques such as Median filtering and Otsu’s thresholding, along with augmentation using 

Gaussian noise. Median filtering is applied to the resized grayscale images to reduce impulsive noise while 

preserving critical edges. For segmentation, Otsu’s Thresholding is employed to separate the foreground 

(geometric motifs) from the background. Otsu’s method computes the optimal threshold by minimizing intra-

class variance, defined as: 

 

𝜎𝑏
2 =  

(𝜇𝑇𝑃1−𝜇1)2

𝑃1(1−𝑃1)
 (3) 

 

where 𝜇𝑇 is the total mean intensity of the image 𝜇1 is the mean intensity of the foreground pixels, and 𝑃1 is 

the proportion of pixels classified as foreground. This ensures precise segmentation, particularly for images 

with varying intensity distributions. 

To further enhance the robustness of the feature extraction process, Gaussian noise is added during 

dataset augmentation. This is modeled mathematically as: 

 

𝐼(𝑥, 𝑦) =  𝐼0(𝑥, 𝑦) + 𝜂(𝑥, 𝑦)  (4) 

 

where 𝐼(𝑥, 𝑦) represents the noisy image, 𝐼0(𝑥, 𝑦) is the original image, and 𝜂(𝑥, 𝑦) is the Gaussian noise 

with zero mean and a specified variance. This augmentation tests the system's resilience to real-world 

scenarios where noise is prevalent, such as variations in lighting or sensor imperfections. The preprocessing 

pipeline thus combines denoising, segmentation, and augmentation to prepare images for feature extraction, 

ensuring both robustness and precision. 

 

3.1.3. Segmentation 

With the preprocessed images in hand, the next step involved segmentation to isolate the geometric 

motif from its background. We utilized Otsu’s thresholding, a well-established technique that automatically 

determines the optimal threshold by minimizing intra-class variance: 

a. The result is a binary mask partitioning the image into foreground (motif) and background regions. 

b. This segmentation proves crucial for accurate feature extraction, as it directs attention to only the shape of 

interest. 

 

3.2.  Feature extraction 

The feature extraction process in this study employs two powerful descriptors: QCFrHMs and 

Zernike moments, chosen for their ability to robustly encode geometric and symmetry features under various 

transformations. QCFrHMs build upon the Fractional Hahn Polynomials, which were introduced in the 

related work section, to derive robust moment coefficients. These polynomials, defined recursively, provide 
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inherent stability under transformations such as rotation, scaling, and moderate noise interference. By using 

the recursion formula ℎ𝑛
(𝛼,𝛽)

(𝑥) and its initial conditions, as described in related work, the coefficients 

required for QCFrHMs are efficiently computed. 

QCFrHMs further enhance their descriptive power by encoding color information through 

quaternion algebra. Each pixel of a color image is represented as a quaternion 

 

𝑞(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) + 𝐺(𝑥, 𝑦)𝑖 + 𝐵(𝑥, 𝑦)𝑗   (5) 

 

where 𝑅(𝑥, 𝑦), 𝐺(𝑥, 𝑦), and 𝐵(𝑥, 𝑦) correspond to the pixel intensities in the red, green, and blue channels, 

respectively. This holistic representation enables QCFrHMs to capture both amplitude and phase details 

simultaneously, offering a compact and multidimensional feature set. 

Zernike moments complement QCFrHMs by providing rotational invariance, which is particularly 

effective for geometric pattern classification. As detailed in the related work section, Zernike moments are 

computed using orthogonal polynomials 𝑉𝑛𝑚 (r,θ), where the radial component 𝑅𝑛𝑚 (r) captures variations in 

the radial direction, and the angular component 𝑒𝑖𝑚𝜃  ensures invariance to rotation [25]. The radial 

polynomial 𝑅𝑛𝑚 (r) is defined as: 

 

𝑅𝑛𝑚(𝑟) =  ∑
(−1)𝑠(𝑛−𝑠)!

𝑠!(
𝑛+|𝑚|

2
−𝑠)!(

𝑛−|𝑚|

2
−𝑠)!

𝑛−|𝑚|

2
𝑠=0 𝑟𝑛−2𝑠 (6) 

 

This decomposition enables Zernike moments to encapsulate both global and local features of the geometric 

patterns, making them an invaluable addition to the feature extraction process. 

The combined use of QCFrHMs and Zernike moments results in a unified feature vector that 

captures intricate geometric details while maintaining robustness across transformations. The features from 

both descriptors are normalized to ensure comparability and concatenated into a single vector. This vector, 

initially comprising 34 raw features, is further refined during dimensionality reduction to enhance 

computational efficiency and mitigate overfitting. This dual-feature approach significantly improves the 

classification performance by leveraging the strengths of both QCFrHMs and Zernike moments. 

 

3.3.  Dimensionality reduction 

3.3.1 Principal component analysis  

To curtail dimensionality without sacrificing crucial variance, we employed principal component 

analysis (PCA) as a dimensionality reduction technique. PCA identifies orthogonal axes, or principal 

components, that capture the highest variance in the feature space by performing eigenvalue decomposition 

on the covariance matrix of the data. Mathematically, the covariance matrix 𝐶 is computed as: 𝐶 = 𝑋𝑇𝑋, 

where 𝑋 represents the centered data matrix. The eigenvalue decomposition of 𝐶 yields eigenvalues 𝜆𝑖 and 

eigenvectors 𝑣𝑖, expressed as 𝐶𝑣𝑖 = 𝜆𝑖𝑣𝑖  [26]. Here, the eigenvalues 𝜆𝑖  quantify the amount of variance 

explained by their corresponding eigenvectors, which define the directions of maximum variance in the data. 

Principal components are then selected based on a variance threshold; in this study, we retained components 

that collectively explained 95% of the total variance, reducing the feature space from 34 to 10 dimensions. 

This approach not only minimizes the risk of overfitting but also significantly reduces the computational load 

for subsequent classification tasks while preserving the most informative features. 

 

3.3.2. t-SNE Visualization 

We leveraged t-distributed stochastic neighbor embedding (t-SNE) to visualize the separability of 

the data in a more intuitive 2D or 3D space, enabling better interpretability of the extracted features. t-SNE 

works by modeling high-dimensional data points 𝑥𝑖 and 𝑥𝑗 as probabilities 𝑝𝑖𝑗 , where the similarity between 

data points in the high-dimensional space is defined using a Gaussian distribution: 

 

𝑝𝑖𝑗 =
exp (−

||𝑥𝑖−𝑥𝑗||
2

2𝜎2 )

∑ exp (−
||𝑥𝑘−𝑥𝑙||

2

2𝜎2 )𝑘≠𝑙

 () 

 

where ||𝑥𝑖 − 𝑥𝑗||2 is the squared Euclidean distance between points 𝑥𝑖 and 𝑥𝑗, and σ controls the bandwidth 

of the Gaussian kernel [27]. In the lower-dimensional space, t-SNE minimizes the Kullback-Leibler (KL) 

divergence between the joint probability distribution 𝑝𝑖𝑗  in the original space and 𝑞𝑖𝑗  in the embedded space, 

defined using a student’s t-distribution: 
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𝑞𝑖𝑗 =
 (1+||𝑥𝑖−𝑥𝑗||2)−1

∑  (1+||𝑦𝑘−𝑦𝑙||2)−1
𝑘≠𝑙

  () 

 

This optimization results in a visually interpretable embedding, where similar points in the high-dimensional 

space are placed closer together in the low-dimensional space. Using t-SNE, we observed two distinct 

clusters corresponding to the p4m and p6m symmetries, validating the efficacy of our feature extraction 

process. These visualizations enhance the interpretability of the dataset, especially when clear groupings 

emerge, demonstrating the discriminative power of the extracted features. 

 

3.4.  Model training and evaluation 

3.4.1. Classifier selection and training 

Our investigation compared three classification methods RF, SVM, and a voting classifier—each 

contributing unique strengths to the classification task. RF is an ensemble method that constructs multiple 

decision trees through a bagging technique, where the final prediction is derived by majority voting or 

averaging. This approach is highly resilient to noise and demonstrates flexibility across diverse feature sets. 

To optimize its performance, hyperparameters such as the number of trees (nestimators) and the maximum 

tree depth (max_depth) were tuned using GridSearchCV. In contrast, the SVM classifier, equipped with a 

radial basis function (RBF) kernel, was implemented to model complex, nonlinear decision boundaries. 

GridSearchCV was similarly applied to select the optimal cost parameter (C) and kernel coefficient (γ), 

allowing the SVM to excel in high-dimensional spaces and with limited datasets. To combine the advantages 

of these two models, a voting classifier was constructed, integrating RF and SVM predictions through a 

weighted ensemble strategy. Weights were assigned to each model based on their validation performance, 

ensuring balanced contributions to the final decision. This ensemble approach effectively leveraged the 

variance reduction capabilities of RF and the margin optimization strengths of SVM, resulting in enhanced 

generalization and improved classification performance.  

The following pseudocode outlines the complete workflow of the classifier selection and training 

methodology: 

 

Algorithm 1. Classifier selection and training workflow 

1. Load dataset of geometric patterns (p4m and p6m symmetries). 

2. Preprocess each image: 

a. Convert to grayscale. 

b. Resize to 256×256. 

c. Apply median filtering for noise reduction. 

d. Segment using Otsu's thresholding. 

3. Compute features: 

a. Calculate QCFrHMs using fractional Hahn polynomials. 

b. Compute Zernike Moments. 

c. Combine and normalize features into a unified vector. 

4. Apply PCA for dimensionality reduction (retain 95% variance). 

5. Split dataset into training (80%) and test (20%) sets. 

6. Train classifiers: 

a. Optimize RF hyperparameters with GridSearchCV. 

b. Optimize SVM hyperparameters with GridSearchCV. 

c. Combine RF and SVM predictions using a voting classifier. 

7. Evaluate performance on the test set: 

a. Calculate accuracy, precision, recall, and F1-Score. 

b. Visualize results and analyze misclassifications. 

 

3.4.2. Training and validation protocols 

The dataset, in the course of ensuring reliable model training and validation, was divided into two 

subsets: 80% was allocated for training and hyperparameter optimization, while the remaining 20% was 

reserved for the final test phase. To mitigate overfitting and enhance the robustness of hyperparameter 

tuning, a k-fold cross-validation strategy (commonly 𝑘 = 5) was implemented, partitioning the training data 

into five folds and iteratively using four folds for training and one for validation. Additionally, all features 

were standardized using StandardScaler to maintain consistency across the dataset. This process involved 

zero-centering the mean and scaling each feature to unit variance, ensuring uniformity in feature magnitudes 

and facilitating more stable model performance. 
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3.4.3. Evaluation metrics 

Our model evaluation was based on four primary metrics, each offering distinct insights into 

classification performance: Accuracy, Precision, Recall, and the F1-Score. Accuracy, a general measure of 

overall performance, calculates the fraction of correctly classified samples over the total dataset. 

Mathematically, it is defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,  (9) 

 

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, 

respectively. Precision, also known as positive predictive value, measures the proportion of predicted 

positives that are actual positives, reflecting the model's ability to avoid false positives. Recall, or sensitivity, 

evaluates the fraction of actual positives correctly identified, indicating the model’s capability to detect true 

positives. To balance precision and recall, especially in scenarios with imbalanced class distributions, the  

F1-Score is used. It is defined as the harmonic mean of Precision and Recall: 

 

𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
,  (10) 

 

This combination of metrics provides a comprehensive evaluation framework, allowing for nuanced 

interpretation of the model's strengths and weaknesses across different aspects of classification. 

 

 

4. RESULTS 

4.1.  Feature analysis 

After preprocessing, the dataset consisted of 1,204 images, which underwent dimensionality 

reduction using PCA. From the initial 34 extracted features, 10 principal components were retained, 

preserving approximately 95% of the total variance. As shown in Figure 3, the first few components capture 

the majority of the dataset’s variance, highlighting the efficacy of PCA in reducing dimensionality while 

maintaining critical information. The variance curve clearly indicates diminishing returns beyond the 10th 

component, justifying their selection for further analysis. To evaluate the feature separability, we applied  

t-SNE to project the data into a lower-dimensional space for visualization. As depicted in Figure 4, the t-SNE 

plot reveals distinct clustering of the two symmetry classes (p4m and p6m). The clusters indicate that the 

feature extraction techniques, including quaternion cartesian fractional Hahn moments (QCFrHMs) and 

Zernike moments, effectively captured the unique characteristics of each class. The clear separation in the  

t-SNE plot validates the robustness of the extracted features and their suitability for classification tasks. The 

PCA and t-SNE results collectively demonstrate that the dimensionality reduction and visualization 

techniques provided meaningful insights into the dataset’s structure. These findings underscore the 

importance of leveraging advanced feature extraction methods to achieve high classification performance. 

 

 

 
 

Figure 3. PCA variance explained by each component 
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Figure 4. t-SNE visualization of the feature space for p4m and p6m classes 

 

 

4.2.  Classifier performance 

To evaluate the effectiveness of the proposed methods, three classifiers RF, SVM, and the voting 

classifier, were applied to classify the p4m and p6m symmetry classes. The results demonstrate the 

robustness of these models in handling the dataset’s complexity, as summarized in Table 1. Table 1 

showcases the performance metrics pertaining to three classifiers RF, SVM, and the voting classifier, applied 

to the classification of p4m and p6m symmetry classes. The metrics include accuracy, precision, recall, and 

F1-Score for each class. Among the models, the voting classifier achieved the highest overall accuracy of 

82.2%, along with balanced metrics across both symmetry classes, demonstrating the effectiveness of 

ensemble learning in leveraging the strengths of RF and SVM. Specifically, the voting classifier excelled 

with a precision of 0.83 and recall of 0.85 for the p4m class, while maintaining strong performance in the 

p6m class with a precision of 0.81 and recall of 0.78. 

The RF classifier followed closely with an accuracy of 81.3%, showcasing its robustness due to its 

bagging-based variance reduction capabilities. On the other hand, the SVM classifier, although achieving a 

respectable accuracy of 78.0%, highlighted the complexity of the dataset and the subtle differences between 

the p4m and p6m symmetry patterns. Despite these differences, SVM displayed balanced performance with a 

precision and recall of 0.80 for the p4m class and 0.76 precision and 0.75 recall for the p6m class. 

The confusion matrix offers a clear visualization of the classification outcomes, showing the 

distribution of correct and incorrect predictions for each symmetry class. This level of detail helps in 

identifying strengths and areas for improvement in the voting classifier's performance. The confusion matrix 

for the voting classifier, which provides a detailed view of the classification performance. For the p4m class, 

114 true positives and 19 false negatives were recorded, while for the p6m class, 86 true positives and 22 

false negatives were observed. This matrix underscores the voting classifier’s ability to effectively 

distinguish between the two symmetry groups, with slightly higher accuracy observed for the p4m class 

compared to the p6m class. Figures 5 and 6 provide visual insights into the classification performance.  

Figure 5 presents the confusion matrix, highlighting the distribution of true positives, false positives, and 

misclassifications. Figure 6 compares the accuracy across all three classifiers, showcasing the superior 

performance of the voting classifier. These results validate the ensemble approach, which successfully 

combines RF’s variance reduction with SVM’s margin-based discrimination to achieve enhanced accuracy 

and stability. 

 

 

Table 1. Performance metrics of classification models 
Classifier Accuracy Precision (p4m) Recall (p4m) F1-Score (p4m) Precision (p6m) Recall (p6m) F1-Score (p6m) 

RF 0.813 0.81 0.86 0.84 0.82 0.75 0.81 

SVM 0.78 0.8 0.8 0.8 0.76 0.75 0.75 

Voting classifier 0.822 0.83 0.85 0.84 0.81 0.78 0.8 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 5, October 2025: 4630-4641 

4638 

 
 

Figure 5. Confusion matrix for the voting classifier 

 

 

 
 

Figure 6. Accuracy comparison across classifiers (RF, SVM, and voting classifier) 

 

 

4.3.  Misclassification analysis 

Upon closer examination, misclassifications predominantly arose under three challenging 

conditions. First, intense Gaussian noise often obscured critical geometric features, complicating the 

identification of symmetry lines and patterns. This was particularly evident in heavily augmented images, 

where noise introduced irregularities that moment descriptors struggled to process. Second, extreme rotations 

distorted the original symmetry of certain p4m and p6m motifs, creating ambiguous patterns that blurred the 

distinctions between the two classes. Such distortions posed significant challenges for the robustness of the 

descriptors. Lastly, low contrast in the images led to incomplete or imperfect segmentation, resulting in the 

loss of key structural details required for accurate feature extraction. 

The analysis depicted in Figure 7 provides insights into the error distribution, showing that most 

misclassifications arise under conditions of noise, extreme rotations, or low contrast, further validating the 

need for robust preprocessing. By reviewing these outliers, we can pinpoint areas for potential improvement 

in both preprocessing and the computation of moment descriptors. Addressing these challenges—such as 

enhancing noise filtering, improving contrast adjustment techniques, or refining the feature extraction 

pipeline—could further bolster the classifier's performance, especially under adverse conditions. 
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Figure 7. Misclassification analysis illustrating the frequency of errors in classifying p4m and p6m 

symmetries 

 

 

5. DISCUSSION 

The integration of QCFrHMs provided robust descriptors that significantly improved the 

classification accuracy of geometric patterns with enhanced robustness against rotations and scaling. 

QCFrHMs effectively captured fine-grained shape details, especially when integrated with Zernike 

descriptors, forming a complementary, dual-layer feature representation that encapsulated both global and 

local structural symmetries. This turned out to be a very effective combination and gave a remarkable 

accuracy for the differentiation of the classes p4m and p6m, reaching even 82.2% with the voting classifier. 

The ensemble model capitalized on the strengths of RF and SVM, wherein RF provided stability by variance 

reduction through bagging, whereas SVM ensured robust margin-based classification in high-dimensional 

spaces. This synergy thus created a situation where the weaknesses of individual models were offset, their 

strengths consolidated to provide performance uniformly across diverse conditions. 

Despite all these advances, some of the methodological limitations appear. Computing higher-order 

moments of the fractional order proves computationally expensive for very large datasets, and though median 

filtering was performed, parts of the residual noise may compromise the precision of the moment-based 

descriptors. While Gaussian noise, rotation, and scaling enhanced the robustness, other real-world 

complexities, such as variable lighting or occlusions, may not be fully captured by these augmentations. 

Comparing these results with the existing literature where Zernike Moments have been widely lauded for 

shape classification, our approach represents a quantum leap by introducing QCFrHMs that offer enhanced 

resilience and flexibility. 

What is more, this embedding of ensemble learning is on trend according to modern tendencies in 

classification; this once again underlined its capability for enhancing the accuracy and stability over single 

models. These results proved that the QCFrHMs are robust and, even more important, the ensemble strategy 

effectively worked to advance the state-of-the-art in the geometric pattern classification, opening a very firm 

ground for the applications into cultural heritage preservation and automation of design. 

 

 

6. CONCLUSION 

This research has underscored the effectiveness of combining ensemble learning with advanced 

moment-based descriptors particularly quaternion cartesian fractional Hahn moments (QCFrHMs) and 

Zernike moments to classify geometric motifs exhibiting p4m and p6m symmetries. By integrating both 

descriptor sets, critical geometric traits are more comprehensively captured, while dimensionality reduction 

via PCA maintains a balance between complexity and accuracy by retaining components covering 95% of the 

variance. Among the classifiers tested, the voting classifier composed of a RF and an SVM outperforms 

standalone models, highlighting the advantage of merging complementary algorithms. Although the current 

results are promising, future work can focus on mitigating computational overhead, enhancing noise 

resilience, and extending the framework to additional symmetry types or real-time applications. By blending 
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fractional Hahn polynomial theory with modern ensemble methods, this research opens new pathways in 

shape analysis and promises wide-ranging applications in computer vision, from industrial quality control to 

the digital exploration of elaborate ornamental art. Real-time implementation could leverage GPU 

acceleration and approximate sampling techniques; multi-class symmetry classification could explore 

additional symmetry groups (p2, p3, p4, p4g, and p6) and automated motif detection in complex images; and 

deep-learning-based expansions, such as transfer learning or feature fusion with QCFrHMs and Zernike 

Moments, might produce even more robust, efficient, and precise classification methods.  
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