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 This paper presents the human fall detection using body location (HFBL) 

and posture geometry. The main contribution of the proposed HFBL system 

is to reduce the computational complexity of fall detection system while 

maintaining accuracy, as most fall detection techniques rely on 

computationally complex algorithms from machine learning or deep 

learning. This approach examines the human posture by applying the image 

segmentation and ratio by posture geometry. Then, the distance transform is 

used to calculate the high brightness points on the human body. These points 

are the maximum values compared with the edge values. Afterward, one of 

these points is selected as a center point. A line is formed by this center point 

aligned horizontally to separate the upper area and lower area, then an 

intersection line is drawn through this center point vertically that can 

separate the four quadrants of body location. With the help of posture 

geometry, the angles are employed for prediction “Fall” or “NotFall” actions 

at each frame of video sequence. Referring to the dynamic balance, the ratio 

between the distance vectors from the center point to the right and left legs is 

calculated to confirm fall and non-fall activities, utilizing the Pythagorean 

trigonometric identity. For experiments, 2,542 images from the UR fall 

detection dataset, with dimensions of 640×480×3 were prepared through 

image segmentation to find the human body shape for analysis using the 

proposed HFBL system. Results demonstrate that the low computational 

HFBL approach can provide 91.23% accuracy, the precision value is 

99.14%, the recall value is 84.48%, and the F1-score value is 91.22%. 
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1. INTRODUCTION 

The annual population trend has also led to an increasing number of elderly people and the number 

of people aged over 80 years is projected to reach 256 million in 2030 [1]. The increasing number of elderly 

people is specifically related to the development of care technologies. In [2], the authors have presented an 

integrated smart caring home system based on the internet of things (IoT) technology. As stated on reducing 

the data calculation, the proposed energy-saving compression method on the cloud platform [3] has been 

introduced to decrease the latency of data transmission on the wearable medical sensors in embedded signal 

processing. Recently, the human fall detection system (HFDS) is a key important technology for caring the 
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elderly people using the various movements of position detection. Falls by aging people are the leading cause 

of severe injury-related death for aging people [4] such as backward fall on slippery ground, forward falls by 

tripping, sideways, and straight-down falls due to miss-stepping and fainting, respectively. Several fall 

detection systems have been modified by using various technologies classified into vision-based approaches 

as machine learning, sensors and wearable devices. As followed the vision-based system and machine 

learning system, Harrou et al. [5] have demonstrated the HFDS technique by dividing five parts of image and 

calculating the area ratio of different poses. In [6], a multi-stage convolution neural network (CNN) has been 

deployed with the inverted pendulum model for fall prediction. Based on the Openpose skeleton, Lin et al. 

[7] have analyzed the information on the changes of human bone skeletal joints in the various movements 

using long short-term memory (LSTM) and gated recurrent unit (GRU) model. In [8], a two-stage HFDS has 

been applied by comparing the energy value and 3-state scores analyzed from skeletal structure. Following 

the machine learning system, Beddiar et al. [4] modified their approach by using the angle between the center 

of the head and hip to predict results. Fall detection in [9] is performed using human skeleton and the 

machine learning system for prediction. In study [10], based on the fast pose estimation method, the time-

distributed convolutional LSTM (TD-CNN-LSTM) is used to predict the results. Keskes and Noumeir [11] 

has substantiated fall detection by spatial temporal graph convolutional networks (ST-GCN) method. In [12], 

the results of the machine learning system using postures from human silhouettes are presented. In [13], the 

skeleton information from Openpose, the movement of the center point of the hip joint, the angle between 

body center line, ground and the ratio between the width and height of human body rectangular are used for 

prediction. As a pose estimation based [14], the information ratio between deflection and acceleration 

features with machine learning system to predict the results. In [15], the information about position change 

between point of head and shoulder extracted by PoseNet was analyzed by GRU model. In [16], the 

OpenPifPaf model extracts the human pose estimation information from multi-camera and uses LSTM for 

identification.  

In this paper, we propose a human fall detection using body location (HFBL). The purpose of this 

system is to reduce the high computational complexity often found in machine learning and deep learning 

techniques applied to fall detection systems as discussed in prior research, while the proposed HFBL still 

achieves accurate and reliable fall detection. The proposed HFBL system will be performed using image 

segmentation [17] and distance to organize the human body posture for fall prediction. Then, the distance 

transform [18] is used to find a center point. An intersection line started at this center point is aligned to separate 

the upper area and lower area, including the ratio between vectors from the center point to right and left legs, to 

confirm fall and non-fall situations. Due to the low complexity design, the proposed HFBL system can be 

applied to the embedded IoT devices. 

 

 

2. PROPOSED HUMAN FALL DETECTION USING HUMAN BODY LOCATION 

The human fall detection using body location (HFBL) system is to predict human falls by the human 

body position and then to send information for assistance. Proposed HFBL system is introduced in Figure 1. 

These images or video sequences from internet protocol camera (IP Camera) are sent to make the image 

segments for finding the human body shape. The distance transformation is used to analyze the body shape to 

find the angle and ratio from the center and reference points. Finally, the angle and ratio are used to predict 

fall or non-fall activities. 

 

 

 
 

Figure 1. Overview of proposed HFBL system 

 

 

2.1.  Human segment and distance transform 

Image segmentation is a technique for classifying objects or finding locations using pixel-level 

analysis to separate objects in the images. There are several ways to classify objects or find their locations 

such as finding edges, separating colors or finding characteristics of the image. There are several techniques 

based on CNN. U-net is one of several segmentation techniques using encoder-decoder or up-sampling and 

down-sampling in each layer in a U-shape [19].  
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For the proposed HFBL model system, we introduce the ResNet-34 [20], [21] implemented with 34 

layers. The pre-trained model [22]–[24] is selected for discovering the human pose segmentation for 

encoding/decoding or up/down sampling based on U-Net. A frame of video sequences is changed from red, 

green, and blue (RGB) to gray scale for reducing the resolution. An original RGB image is shown in 

Figure 2(a). Result of human segment in gray scale is shown in Figure 2(b). 

Following the image processing, the distance transformation (DT) technique is a widely used 

technique for calculating the closest distance between the objects of interest and disinterest or the 

background. Results are stored in each pixel, which is called a distance map as shown in Figure 2(c). 

Referring to [24]–[26], we determine that an image 𝐼(𝑝, 𝑞) consists of objects of interest (𝑂𝐼) and objects of 

non - interest (𝑂̃𝐼), where (𝑝, 𝑞) ∈ {𝑂𝐼 , 𝑂̃𝐼}. 

The position of the pixel {𝑝𝑥 , 𝑝𝑦} of the objects of interest (𝑂𝐼) is defined in x-axis and y-axis, 

respectively. In similar way, the position of pixel {𝑝𝑥 , 𝑝𝑦} of objects of non-interest (𝑂̃𝐼) in x-axis and y-axis 

is intended. So, the distance between pixels of (𝑂𝐼) and (𝑂̃𝐼) can be obtained from the Euclidean distance 

𝐸𝑑(𝑝, 𝑞) as (1). 

 

𝐸𝑑(𝑝, 𝑞) =  √{(𝑝𝑥 − 𝑞𝑥)
2 + (𝑝𝑦 − 𝑞𝑦)

2
}  (1) 

 

Furthermore, we refer to the Euclidean distance transformation 𝐸𝑑(𝑝, 𝑞), which can be defined for {𝑂𝐼 , 𝑂̃𝐼} 

by (2). 

 

𝐸𝑑(𝑝, 𝑞) = {
          0              ;    𝐼(𝑝, 𝑞) ∈ {𝑂̃𝐼} 

𝑚𝑖𝑛 {𝐸𝑑(𝑝, 𝑞);   𝐼(𝑝, 𝑞) ∈ {𝑂𝐼}  
   (2) 

 

where 𝑚𝑖𝑛 {𝐸𝑑(𝑝, 𝑞)} is under condition ∀𝐼(𝑝0, 𝑞0) ∈  𝑂̃𝐼  and (𝑝0, 𝑞0) are the initial values of pixels of 

{𝑂𝐼 , 𝑂̃𝐼}. 

 

2.2.  Angle and ratio by calculus 

Referring to (2), the results from the Euclidean distance transform can identify the brightest point, 

which becomes the center point 𝐶(𝑝𝑐 , 𝑞𝑐) as defined by (3). 

 

𝐶(𝑝𝑐 , 𝑞𝑐) = 𝑚𝑎𝑥{𝐸𝐷𝑇(𝑝, 𝑞)}    (3) 
 

Subsequently, the edge values (𝑝𝑚𝑖𝑛 , 𝑞𝑚𝑖𝑛) can be computed using a minimum distance transform. 

 

𝐼(𝑝𝑚𝑖𝑛 , 𝑞𝑚𝑖𝑛) = 𝑚𝑖𝑛{𝐸𝐷𝑇(𝑝, 𝑞)}   (4) 
 

where 𝐸𝐷𝑇(𝑝, 𝑞) is referring (2). 

As shown in Figure 2, the center point C in Figure 2(c) is used to divide the image into four 

quadrants (Q1, Q2, Q3, Q4) in an anti-clockwise direction, as demonstrated in Figure 2(d), where the 

minimum distance values from (3) 𝑄1(𝑝𝑄1, 𝑞𝑄1), 𝑄2(𝑝𝑄2, 𝑞𝑄2), 𝑄3(𝑝𝑄3, 𝑞𝑄3), and 𝑄4(𝑝𝑄4 , 𝑞𝑄4) can be 

defined as (5) and (6). 

 

𝑄1(𝑝𝑄1, 𝑞𝑄1) = 𝐼(𝑝𝑚𝑖𝑛 > 𝑝𝑐  , 𝑞𝑚𝑖𝑛 < 𝑞𝑐)  ;  𝑄2(𝑝𝑄2, 𝑞𝑄2) = 𝐼(𝑝𝑚𝑖𝑛 < 𝑝𝑐  , 𝑞𝑚𝑖𝑛 < 𝑞𝑐) (5) 

 

𝑄3(𝑝𝑄3, 𝑞𝑄3) = 𝐼(𝑝𝑚𝑖𝑛 < 𝑝𝑐  , 𝑞𝑚𝑖𝑛 > 𝑞𝑐)  ;  𝑄4(𝑝𝑄2, 𝑞𝑄2) = 𝐼(𝑝𝑚𝑖𝑛 > 𝑝𝑐  , 𝑞𝑚𝑖𝑛 > 𝑞𝑐)  (6) 

 

From the (5) and (6), we can find the point 𝐴(𝑝𝑎 , 𝑞𝑎), 𝐵(𝑝𝑏 , 𝑞𝑏), 𝐸(𝑝𝑒 , 𝑞𝑒) and 𝐻(𝑝ℎ , 𝑞ℎ) in Figure 2(d) that 

can be computed by (7) and (8). 

 

𝐴(𝑝𝑎, 𝑞𝑎) = 𝑚𝑎𝑥{𝐸𝑑(𝐶, 𝑄2)}  ;  𝐵(𝑝𝑏 , 𝑞𝑏) = 𝑚𝑎𝑥{𝐸𝑑(𝐶, 𝑄1)}  (7) 

 

𝐸(𝑝𝑒 , 𝑞𝑒) = 𝑚𝑎𝑥{𝐸𝑑(𝐶, 𝑄4)}  ;  𝐻(𝑝ℎ , 𝑞ℎ) = 𝑚𝑎𝑥{𝐸𝑑(𝐶, 𝑄3)}   (8) 
 

where (𝐶, 𝑄2) denote a center point on the body and the second quadrants. From Figure 2(d), the distance 

from point C to point A, point B, point E, point H and point G that can be defined as (9) and (10). 
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𝐶𝐴⃑⃑⃑⃑  ⃑ = 𝐸𝑑(𝐶, 𝐴) ;  𝐶𝐵⃑⃑⃑⃑  ⃑ = 𝐸𝑑(𝐶, 𝐵) ; 𝐶𝐸⃑⃑⃑⃑  ⃑ = 𝐸𝑑(𝐶, 𝐸)  (9) 

 

𝐶𝐻⃑⃑ ⃑⃑  ⃑ = 𝐸𝑑(𝐶, 𝐻) ;  𝐶𝐺⃑⃑⃑⃑  ⃑ = 𝐸𝑑(𝐶, 𝐺)     (10) 
 

 

 
(a) (b) (c) (d) 

 

Figure 2. Image of human (a) original RGB, (b) segment, (c) distance map and center point,  

and (d) 4 quadrants 

 

 

Following the lower right side of Figure 3(a) for the angle calculus, angle 𝜃𝐴𝐶𝐵
°  between point A, 

point C, and point B can be calculated by (11). 

 

𝜃𝐴𝐶𝐵
° = 𝜃1

° + 𝜃2
°    (11) 

 

where the angle 𝜃1
°   and  𝜃2

°  is determined by Pythagorean trigonometric identity as (12). 

 

𝜃1
° = 𝑐𝑜𝑠−1 𝐶𝐾⃑⃑ ⃑⃑  ⃑

𝐶𝐴⃑⃑⃑⃑  ⃑
 ;  𝑐𝑜𝑠𝜃2

° =
𝐶𝐾⃑⃑ ⃑⃑  ⃑

𝐶𝐵⃑⃑⃑⃑  ⃑
   (12) 

 

Therefore, the angle 𝜃𝐴𝐶𝐵
°  (11) can be determined by (13). 

 

𝜃𝐴𝐶𝐵
° = 𝑐𝑜𝑠−1 𝐶𝐾⃑⃑ ⃑⃑  ⃑

𝐶𝐴⃑⃑⃑⃑  ⃑
+ 𝑐𝑜𝑠−1 𝐶𝐾⃑⃑ ⃑⃑  ⃑

𝐶𝐵⃑⃑⃑⃑  ⃑
   (13) 

 

The angle 𝜃𝐻𝐶𝐸
°  between point H, point C and point E as presented in Figure 3(b) which can calculated by 

(14). 

 

𝜃𝐻𝐶𝐸
° = 𝜃3

° + 𝜃4
°   (14) 

 

The angle 𝜃3
°   and 𝜃4

°  can computed by (15). 

 

𝜃3
° = 𝑐𝑜𝑠−1 𝐶𝐺⃑⃑⃑⃑  ⃑

𝐶𝐸⃑⃑⃑⃑  ⃑
 ;  𝜃4

° = 𝑐𝑜𝑠−1 𝐶𝐺⃑⃑⃑⃑  ⃑

𝐶𝐻⃑⃑⃑⃑⃑⃑ 
   (15) 

 

As (14), the angle  𝜃𝐻𝐶𝐸
°   can be calculated by (15) as (16): 

 

𝜃𝐻𝐶𝐸
° = 𝑐𝑜𝑠−1 𝐶𝐺⃑⃑⃑⃑  ⃑

𝐶𝐸⃑⃑⃑⃑  ⃑
+ 𝑐𝑜𝑠−1 𝐶𝐺⃑⃑⃑⃑  ⃑

𝐶𝐻⃑⃑⃑⃑⃑⃑ 
   (16) 

 

According to standing balance, the dynamic balance is ability to maintain balance while moving the body. 

Therefore, the ratio between the left and right legs while balancing the body is related by R1 and R2. 

 

𝑅1  =
𝐶𝐸⃑⃑⃑⃑  ⃑

𝐶𝐻⃑⃑⃑⃑⃑⃑ 
 ;  𝑅2  =

𝐶𝐻⃑⃑⃑⃑⃑⃑ 

𝐶𝐸⃑⃑⃑⃑  ⃑
      (17) 

 

where the ratio R1 between 𝐶𝐸⃑⃑⃑⃑  ⃑ and 𝐶𝐻⃑⃑ ⃑⃑  ⃑ is reciprocal to the ratio R2 between 𝐶𝐻⃑⃑ ⃑⃑  ⃑ and 𝐶𝐸⃑⃑⃑⃑  ⃑. 
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(a) (b) 

 

Figure 3. Angle (a) 𝜃𝐴𝐶𝐵
°  and (b) 𝜃𝐻𝐶𝐸

°  

 

 

2.2.  “Fall” and “NotFall” prediction  

In this section, we introduce the constraints for “Fall” and “NotFall” prediction related to body 

location and posture geometry. The prediction “NotFall” as presented in Figure 4(a) shows that the angle 𝜃𝐴𝐶𝐵
°  

is the angle between point A, point C and point B, the angle 𝜃𝐻𝐶𝐸
°  is the angle between point H, point C and 

point E. The angles 𝜃𝐴𝐶𝐵
°  and 𝜃𝐻𝐶𝐸

°  are close to 0°, the proposed HFBL system will predict “NotFall” activity.  

As Figure 4(b), the prediction “Fall” consists of 𝜃𝐴𝐶𝐵
°  and 𝜃𝐻𝐶𝐸

° , that are close to 180°, the proposed 

HFBL system will predict that human “Fall” activity. The relationship for predicting whether a person will 

fall or not fall which can be defined as (18). 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑣𝑖) = {
“𝐹𝑎𝑙𝑙” ,     𝜃𝐴𝐶𝐵

° = 180° 𝑜𝑟  𝜃𝐻𝐶𝐸
° = 180°

“𝑁𝑜𝑡𝐹𝑎𝑙𝑙”,    𝜃𝐴𝐶𝐵
° = 0° 𝑜𝑟  𝜃𝐻𝐶𝐸

° = 0°
  (18) 

 

where 𝑣𝑖 is the sequence of video data sets for simulation. 

Figures 4(a) and 4(b), the parameters {𝛽, 𝛽1} are threshold for falling and {𝛼, 𝛼1} are threshold for 

not falling. Then, we can predict whether a human will fall and not fall which can be determined by (19). 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑣𝑖) =

{
 
 

 
 “𝐹𝑎𝑙𝑙”,  𝜃𝐴𝐶𝐵

° = 180° − 𝛽 𝑜𝑟  𝜃𝐻𝐶𝐸
° = 180° − 𝛽1,

𝑤ℎ𝑒𝑛 0° ≤ {𝛽, 𝛽1} ≤ 180°

“𝑁𝑜𝑡𝐹𝑎𝑙𝑙”,  𝜃𝐴𝐶𝐵
° = 0° + 𝛼  𝑜𝑟  𝜃𝐻𝐶𝐸

° = 0° + 𝛼1,

𝑤ℎ𝑒𝑛 0° ≤ {𝛼, 𝛼1} ≤ 180°

  (19) 

 

where the summation of 𝛼, 𝛽, 𝛼1 are 𝛽1 correlated with this condition below 

 

𝛽 + 𝛼 =  𝛽1 + 𝛼1 = 180°   (20) 

 

 

 
(a) (b) 

 

Figure 4. Prediction (a) “NotFall” and (b) “Fall” 
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3. SIMULATION RESULTS 

A total of 26-video datasets was used for the simulation, with each video being 2 minutes long and 

having a resolution of 640×480. The UR fall detection datasets [27] with 2,542 images and the size of 

640×480×3 was prepared through image segmentation to find the human body shape and to analyze using 

the proposed HFBL system. The results are shown in Figure 5, Figures 6(a) to 6(i), and Tables 1 to 5. 

 

 

 
 

Figure 5. Results of the proposed HFBL model for human fall prediction 

 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

 

Figure 6. The results of (a), (d), (g) expected values of falls, (b), (e), (h) the predicted values of falls by the 

proposed HFBL model, and (c), (f), (i) the actual values of falls 
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As shown in Table 1, the experimental results were obtained by modifying the values of 𝛽 and 𝛽1 of 

the proposed HFBL model without including the values of R1 and R2. The best values in this table are  

𝛽 = 60° and 𝛽1 = 60°, with an accuracy of 78.91%, a precision of 86.80%, a recall of 71.87%, and F1-Score 

of 78.63%. All the results are obtained are low accurate. 

Table 2 is the result of the experiment by adjusting the value of 𝛽 and 𝛽1 of the proposed HFBL 

model by taking into consideration the value of R1=1.5 and R2=0.7. The best value in this table is 𝛽 = 60° 

and 𝛽1 = 30° with the value of accuracy of 91.15%, precision of 99.06%, recall of 84.37% and F1-Score of 

91.12%. The results have higher accuracy than before. 

Table 3 presents the results of the experiment by adjusting the value of 𝛽 and 𝛽1 of the proposed 

HFBL model and adjusting the value of R1=2.5 and R2=0.4 to be considered as well. The best value in this 

table is 𝛽 = 60° and 𝛽1 = 30° with the value accuracy at 91.23%, the value of precision at 99.14%, the value 

of recall at 84.48% and the value of F1-Score at 91.22%. The results demonstrate higher accuracy. 

As shown in Table 4, the experiment's results were obtained by adjusting the values of 𝛽 and 𝛽1 of 

the proposed HFBL model R1=3.5 and R2=0.3. The best values in this table are 𝛽 = 60° and 𝛽1 = 30° with 

the value of accuracy at 91.23%, the value of precision at 99.06%, the value of recall at 84.51% and the value 

of F1-Score at 91.21%. The results have higher accuracy. 

The proposed HFBL model predicts “Fall” or “NotFall” and its results are presented in Figure 5 

using a dataset of 26 video data sets. This prediction is based on a dataset of 26 video clips, each 2 minutes in 

length and with a resolution of 640×480. The prediction result (‘Predict’) is that a person will fall by the 

proposed HFBL model compared with the expectation of fall and the actual fall. As shown in Table 5, the 

∆𝑡𝐸𝑥𝑝−𝐻𝐹𝐵𝐿  is the difference between the proposed HFBL model and fall expectation. The average time of 

fall with the expected value has an average difference ∆𝑡𝐸𝑥𝑝−𝐻𝐹𝐵𝐿  at 5.31 seconds. The ∆𝑡𝐹−𝐻𝐹𝐵𝐿  is the 

difference between the proposed HFBL model and actual fall, the average time of ∆𝑡𝐹−𝐻𝐹𝐵𝐿 is 31.31 seconds. 

 

 

Table 1. Experimental results of adjusting 𝛽 and 𝛽1 values of the proposed HFBL model without R1 and R2 
β β1  𝜃𝐴𝐶𝐵

°   𝜃𝐻𝐶𝐸
°  Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

30° 30° 150° 150° 68.49 97.03 42.93 59.53 

60° 60° 120° 120° 78.91 86.80 71.87 78.63 

80° 80° 100° 100° 77.14 78.35 79.66 79.00 

30° 60° 150° 120° 71.01 96.49 48.03 64.14 

30° 80° 150° 100° 72.31 93.60 52.26 67.07 
60° 30° 120° 150° 78.68 87.25 70.85 78.20 

 

 

Table 2. Experimental results of adjusting 𝛽, 𝛽1, R1=1.5 and R2=0.7 of the proposed HFBL model 
R1=1.5, R2=0.7 

β β1  𝜃𝐴𝐶𝐵
°   𝜃𝐻𝐶𝐸

°  Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

80° 30° 100° 150° 87.18 88.49 87.58 88.03 

60° 30° 120° 150° 91.15 99.06 84.37 91.12 

30° 30° 150° 150° 74.35 99.45 52.67 68.86 

30° 80° 150° 100° 79.86 94.22 66.69 78.10 

30° 60° 150° 120° 77.81 98.55 59.68 74.34 

 

 

Table 3. Experimental results of adjusting 𝛽, 𝛽1, R1=2.5 and R2=0.4 of the proposed HFBL model 
R1=2.5, R2=0.4 

β β1  𝜃𝐴𝐶𝐵
°   𝜃𝐻𝐶𝐸

°  Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

80° 30° 100° 150° 87.29 88.82 87.46 88.14 

60° 30° 120° 150° 91.23 99.14 84.48 91.22 

30° 30° 150° 150° 74.27 99.59 52.55 68.80 
30° 80° 150° 100° 79.86 94.33 66.69 78.14 

30° 60° 150° 120° 77.81 98.67 59.69 74.39 

 

 

Table 4. Experimental results of adjusting 𝛽, 𝛽1, R1=3.5 and R2=0.3 of the proposed HFBL model 
R1=3.5, R2=0.3 

β β1  𝜃𝐴𝐶𝐵
°   𝜃𝐻𝐶𝐸

°  Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

80° 30° 100° 150° 87.25 88.50 87.73 88.11 
60° 30° 120° 150° 91.23 99.06 84.51 91.21 

30° 30° 150° 150° 74.39 99.45 52.74 68.93 
30° 80° 150° 100° 79.86 94.22 66.69 78.10 

30° 60° 150° 120° 77.89 98.56 59.82 74.45 
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Table 5. The difference ∆𝑡𝐸𝑥𝑝−𝐻𝐹𝐵𝐿  between the prediction of the proposed HFBL model and the expectation 

and the difference ∆𝑡𝐹−𝐻𝐹𝐵𝐿 between prediction of the proposed HFBL and the actual fall 
No. of sequence of video Expectation 

(sec.) 

Proposed HFBL model 

(sec.) 

Fall 

(sec.) 
∆𝑡𝐸𝑥𝑝−𝐻𝐹𝐵𝐿  

(sec.) 

∆𝑡𝐹−𝐻𝐹𝐵𝐿  

(sec.) 

1 60 62 84 2 22 

4 16 16 82 0 66 

8 56 58 100 2 42 

10 28 32 68 4 36 

17 28 30 60 2 30 

26 36 36 70 0 34 

Time average 5.31 31.31 

 

 

From Figure 6, it shows the expected value in Figure 6(a) of a person falling at 54 seconds of the 

video, and the predicted value of the person falling of the proposed HFBL model in Figure 6(b) at 60 seconds 

of the video and the actual person falling in Figure 6(c) at 84 seconds of the video. The expected value of a 

person falling in Figure 6(d) at 28 seconds of the video, the predicted value of a person falling of the 

proposed HFBL model in Figure 6(e) at 32 seconds of the video, the actual person falling in Figure 6(f) at 68 

seconds of the video, and the expected value of a person falling in Figure 6(g) at 66 seconds of the video. The 

predicted value of a person falling of the proposed HFBL model in Figure 6(h) at 72 seconds of the video, 

and the actual person falling in Figure 6(i) at 86 seconds of the video. Overall, it shows that the predicted 

value of a person falling of the proposed HFBL model is closed to the expected value of a person falling and 

can be predicted before the actual person falls. 

 

 

4. CONCLUSION  

We propose a low computational and reliable accurate fall detection HFBL model using human 

body location and posture geometry. The proposed HFBL model applied the image segmentation to find 

human posture and distance transform to calculate the reference points and angles for fall and non-fall 

prediction. A dataset of 2,542 images with the size of 640×480×3 and a dataset of 26 videos with each video 

being 2 minutes long and having a resolution of 640×480 from the UR fall detection dataset are prepared for 

simulation. By modifying only 𝛽 and 𝛼 of the proposed HFBL model, the accuracy value is 91.23%, the 

precision value is 99.14%, the recall value is 84.48%, and the F1-score value is 91.22%. The prediction of 

fallers by the proposed HFBL model can predict fallers close to the expected faller value at an average of 

5.31 seconds, and the prediction value of fallers by the proposed HFBL model can predict fallers in advance 

with the actual faller value at an average of 31.31 seconds. Future work on the proposed model may incorporate 

adaptive, tracking, and time-based functions with high accuracy. These improvements aim to reduce 

mispredictions caused by high-angle and insufficient lighting, improve accuracy for activities such as lying 

down or kneeling, and enable multi-person prediction, thus overcoming the current single-person limitation. 
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