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 Error-correcting codes are crucial to ensure data reliability in communication 

systems often affected by transmission noise. Building on previous successful 

applications of our heuristic method degenerate quantum simulated 

annealing (DQSA) to Bose–Chaudhuri–Hocquenghem (BCH) and quadratic 

residue (QR) codes. This paper proposes two algorithms designed to address 

two coding problems for Goppa codes. DQSA-dmin computes the minimum 

distance (dmin) while DQSA-Dec, serves as a hard decoder optimized for 

additive white gaussian noise (AWGN) channels. We validate DQSA-dmin 

comparing its computed minimum distances with theoretical estimates for 

algebraically constructed Goppa codes, showing accuracy and efficiency. 

DQSA-dmin further used to find the optimal Goppa codes that reach the lower 

bound of dmin for linear codes known in the literature and stored in Marcus 

Grassl's online database. Indeed, we discovered 12 Goppa codes reaching 

this lower bound. For DQSA-Dec, experimental results show that it obtains a 

bit error rate (BER) of 10-5 when SNR=7.5 for codes with lengths less than 

65, which is very interesting for a hard decoder. Additionally, a comparison 

with the Paterson algebraic decoder specific to this code family shows that 

DQSA-Dec outperforms it with a 0.6 dB coding gain at BER=10-4. These 

findings highlight the effectiveness of DQSA-based algorithms in designing 

and decoding Goppa codes. 
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1. INTRODUCTION 

Error-correcting codes are at the heart of modern communication systems, contributing essentially to 

maintaining the integrity of data transmitted over noisy and disrupted channels. They enable the detection and 

correction of errors occurring during data transmission, particularly in environments with high variability such 

as in communication systems as shown in Figure 1. In particular mobile systems [1], [2], where signals can be 

affected by interference, noise or losses due to unstable transmission conditions.  

 The optimal and efficient choosing or designing of correction codes in communication systems 

represents a fundamental challenge, as it conditions the ability to identify and correct transmission errors. 

Criteria such as the minimum distance (𝑑𝑚𝑖𝑛), which reflects the correction capability, the encoding rate, the 

simplicity of encoding, and the efficiency of the decoders, are critical to ensuring reliable and efficient 

transmission [3], [4]. However, computing the 𝑑𝑚𝑖𝑛  and decoding the codes are known to be NP-difficult 

problems [5], [6]. Among the proposed solutions, Goppa's codes stand out for their excellent structural 
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properties and robustness [7], [8], which makes them particularly suitable in communication systems [9] and 

cryptography [10]. These codes offer good error correction thanks to algorithms such as the Patterson decoder 

[11] and are also studied in the context of Gaussian noise-resilient systems (AWGNs). However, despite their 

advantages, optimizing their design, efficiently computing their 𝑑𝑚𝑖𝑛  and developing performance decoders 

remain open issues, requiring innovative approaches to complement traditional algebraic methods. The study 

of Goppa codes has traditionally relied on algebraic methods for the processing of key tasks such as computing 

the minimum distance, decoding, and constructing these codes. These approaches often exploit the 

mathematical structure of Goppa codes. However, despite their efficiency, algebraic techniques can sometimes 

be computationally expensive or limited, especially for large codes. According to our literature review and to 

our knowledge, almost no studies have explored the use of heuristic methods to solve these problems for 

Goppa codes, thus leaving a significant gap in the exploration of alternative approaches. 

 

 

 
 

Figure 1. The general system of communication 

 

 

Several notable works have advanced the development of algebraic techniques in this domain. For 

instance, the Patterson decoder [11] and Berlekamp-Massey algorithm [12] remain an essential reference for 

the efficient decoding of Goppa codes. Similarly, algebraic constructions [13]–[15] have widely studied to 

generate codes with interesting parameters by exploiting the properties of Goppa codes such as polynomials 

and finite elements. Research on minimum distance estimation [16]–[19] often relies on combinatorial or 

algebraic bounds which, while rigorous, can be difficult to compute directly for complex codes. Faced with 

this predominance of algebraic methods, it seems innovative and promising to explore heuristic methods as a 

complementary tool. Heuristic methods, such as simulated annealing offer flexibility and the ability to address 

complex optimization tasks that might be difficult for purely algebraic methods. Simulated annealing is an 

optimization technique that draws inspiration from the slow cooling of materials in metallurgy, first presented 

by Černý in 1985 [20] and Kirkpatrick et al. in 1983 [21]. With the use of this method, we aim to fill this gap 

to address the problems of minimum distance calculation, decoding and construction of optimal Goppa codes. 

In this paper, we extend the degenerate quantum simulated annealing (DQSA) method, which has 

been successfully tested on BCH and QR codes in previous works [22]–[24], to address both of these problems 

for Goppa codes. Two proposed algorithms have been developed: 

˗ DQSA-𝑑𝑚𝑖𝑛  calculator designed to compute 𝑑𝑚𝑖𝑛  quickly and accurately. 

˗ DQSA-Dec: a hard decoder optimized for AWGN channels tested and compared to algebraic Patterson 

decoder. 

We also used DQSA-𝑑𝑚𝑖𝑛  to validate the quality of algebraically constructed Goppa codes by 

comparing their calculated minimum distances with the theoretical limits. Finally, DQSA-𝑑𝑚𝑖𝑛  identified 12 

codes reaching the theoretical lower bound of 𝑑𝑚𝑖𝑛  for linear codes, validated via the Marcus Grassl database 

[25] and Brouwer's tables [26]. 

The paper begins with section 2 which provides an overview of error-correcting codes, in particular 

Goppa codes. Section 3 introduces our DQSA heuristic method used for the problems related to minimum 

distance and decoding Goppa codes. Section 4 details the DQSA-𝑑𝑚𝑖𝑛  calculator, its algorithm, and its 

efficiency in calculating minimum distances as well as identifying optimal codes. Section 5 focuses on the 

DQSA-Dec decoder, outlining its superior decoding algorithm and performance. Finally, section 6 summarizes 

the main contributions and proposes to extend DQSA to other code families and new applications. In this 

paper, several abbreviations and symbols are used for concepts. The Table 1 contains their meanings. 
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Table 1. Signification of symbols and abbreviations 
Symbol or 

abbreviation 
Signification Symbol or abbreviation Signification 

DQSA Degenerate quantum simulated annealing 

method 

SNR Signal-to-noise ratio 

BCH Bose–Chaudhuri–Hocquenghem codes dB Decibel 
QR Quadratic residues codes C (n, k, 𝑑𝑚𝑖𝑛) or C Linear code 

𝑑𝑚𝑖𝑛 Minimum distance of a code GC(n, k, 𝑑𝑚𝑖𝑛) or GC Goppa code 

DQSA-𝑑𝑚𝑖𝑛 Degenerate Quantum simulated annealing to 
determine a code's minimum distance 

n Code length (number of bits per 
codeword) 

DQSA-Dec Degenerate Quantum simulated annealing 

algorithm a Hard decoder of a Goppa code 

k Code dimension (number of information 

bits). 
AWGN Additive white Gaussian noise k/n Coding ratio of code 

BER Bit error rate, measuring the proportion of 

errors in the received bits 

tc Error correcting capability of code 

GF(q) Finite field of size q 𝐻 =  (ℎ𝑖𝑗)𝑛−𝑘×𝑛 Parity-check matrix of the code 

m Degree of the finite field extension S(RV) Syndrome of the received vector RV 

g Goppa polynomial of degree r Primary search system (PSS) PSS 
α Primitive element of a finite field in GF(2m) Equivalence search system 

(ESS) 

ESS 

L Set of points defining the support of the 
Goppa polynomial. 

E Function to evaluate Hamming weight 
of a code word 

WH(V) Hamming weight of a codeword V T Temperature is a control parameter of 

DQSA 
dH Hamming distance Ti, Tf Initial temperature, final temperature 

U= (u1, …, uk) Information vector δ Rate of temperature reduction in DQSA 

𝐺 =  (𝑔𝑖𝑗)𝑘×𝑛 Generator matrix of the code Patterson dec An algebraic decoding algorithm 
specifically designed for Goppa codes 

C⊥ (n, n – k) Dual code CodeTable An online database containing 

parameters of optimal linear codes [25] 

 

 

2. ERRORS CORRECTING CODES 

2.1.   Goppa codes 

Error-correcting codes are divided into two main families: linear and non-linear codes. Common 

types include block codes (where data is broken into blocks) and convolutional codes (where information is 

processed in streams). Goppa codes are linear codes that form a type of error-correcting codes defined from 

polynomials and algebraic curves. Valerii Goppa [7] invented Goppa codes in 1970. They were first studied 

for their properties as error-correcting codes, and then, with the appearance of the MCELIECE cryptosystem, 

they were studied for their cryptographic properties.  

Definition: 

A Goppa code is built on a finite field 𝐺𝐹(𝑞𝑚) where 𝑚 ≥ 1 is an integer and 𝑞 is a power of a prime 

number 𝑛 < 𝑞𝑚. Let 𝑔 a polynomial of degree 𝑟, 𝑔 ∈ 𝐺𝐹(𝑞𝑚) [𝑥] and 𝐿 = {𝛼1, . . . , 𝛼𝑛} ⊂ 𝐺𝐹(𝑞𝑚). The 𝛼𝑖 

are two distinct by two. (𝑐𝑎𝑟𝑑(𝐿) = 𝑛), 𝑔(𝛼𝑖) ≠ 0 for all 𝑖 = 1, . . . , 𝑛. The Goppa code denoted 𝛤(𝐿, 𝑔) is:  

 

Γ(𝐿, 𝑔) = { 𝑤 = (𝑤1, … , 𝑤𝑛  )𝜖 𝐺𝐹(𝑞𝑚) ∑
𝑤𝑖

𝑥− 𝛼𝑖  

𝑛
𝑖=1⁄ ≡ 0 𝑚𝑜𝑑 𝑔(𝑧)} (1) 

 

𝑔(𝑧) is called the Goppa polynomial; and 𝛤(𝐿, 𝑔) is a linear code of length 𝑛, dimension 𝑘 ≥ 𝑛 − 𝑚𝑟 and 

minimum distance 𝑑 ≥ 𝑟 + 1. 

 

2.2.  Linear binary block codes 

In this paper, we concentrate on linear binary block codes where the 𝑞 = 2. Consider a block code 

𝐶(𝑛, 𝑘, 𝑑𝑚𝑖𝑛). Each member 𝑉𝜖𝐶 is referred to as a codeword, there are 2k codewords in total, forming a  

k-dimensional subspace of the vector space 𝐺𝐹(2)𝑛. When the modulo-2 sum of any two codewords is also a 

codeword, the code C is referred to as linear. For a codeword V, the number of nonzero components is the 

Hamming weight, or 𝑊𝐻(𝑉). Two codewords 𝑉1 and 𝑉2 differ in the number of locations they occupy, which 

is known as the Hamming distance, or 𝑑𝐻 (𝑉1, 𝑉2). The lowest distance between any two different codewords 

in the code is known as the minimum Hamming distance or the minimum distance (𝑑𝑚𝑖𝑛) of code C.  

 

𝑑𝑚𝑖𝑛 =  𝑑𝐻(𝑉𝑖 , 𝑉𝑗  )    ∀ 𝑉𝑖 , 𝑉𝑗  ∈  𝐶    (2) 

 

It can be easily shown that the Hamming distance between two codewords in a linear block code C is equal to 

the Hamming weight of the modulo-2 sum (⊕) of the two codewords, as expressed, 
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𝑑𝑚𝑖𝑛 =  𝑊𝐻(𝑉𝑖 ⊕ 𝑉𝑗)      ∀ 𝑉𝑖 , 𝑉𝑗  ∈  𝐶   (3) 

 

The code 𝐶’s generator is 𝐺 denoted 𝐺 = (𝑔𝑖𝑗)𝑘×𝑛 where its rows form a collection of basis vectors for the 

subspace 𝐺𝐹(2)𝑘. A unique representation of each codeword 𝑉 = (𝑣1, … , 𝑣𝑛) can then be obtained by 

combining the rows of 𝐺 in a linear form. 

 

∀  1 ≤ 𝑗 ≤ 𝑛              𝑣𝑗 = ⊕

𝑖=1
𝑘

 𝑢𝑖𝑔𝑖𝑗  (4) 

 

Where 𝑈 = (𝑢1, … , 𝑢𝑘)  ∈ {0,1}𝑘 information vector.  

 

𝑉′ ∈  𝐶⊥  ⇔   ∀ 𝑉 ∈  𝐶:   𝑉′. 𝑉 = 0  (5) 

 

“.” indicates the scalar product. 

The code C⊥ (n, n – k) which is defined by (5) is linear as well, known as the dual code of C, and its generator 

matrix is represented by 𝐻 = (ℎ𝑖𝑗)𝑛−𝑘×𝑛 also referred to as the parity-check matrix. 𝑆(𝑅𝑉) = 𝐻𝑅𝑉 is the 

vector 𝑆 that results from multiplying the received vector 𝑅𝑉 by the matrix 𝐻. The syndrome is the name of 

this vector 𝑆. When the received vector has errors, the syndrome will not be zero. 

 

 

3. THE PROPOSED HEURISTIC METHOD 

Unlike classical methods to simulated annealing, which rely on a single processing system. Our 

proposed heuristic method based on the simulated annealing algorithm, introduces two distinct subsystems, 

exploiting the properties of degenerate quantum systems, where several quantum states share the same energy. 

This leads to the creation of a new method called degenerate quantum simulated annealing (DQSA) [22]–[24]. 

The DQSA consists of two distinct processing subsystems: the PSS and the ESS: 

a. Primary search system (PSS): This subsystem operates similarly to a traditional simulated annealing 

algorithm. It evolves a non-equivalent state using carefully chosen and varied neighbor functions to search 

for new neighboring states. 

b. Equivalence search system (ESS): When the PSS encounters equivalent states, the ESS takes over. It 

explores alternative states with the same energy, generating and evaluating several equivalent states to find 

the most promising one. 

 The DQSA, is adapted to efficiently explore the solution space, offering a DQSA-𝑑𝑚𝑖𝑛  calculator 

algorithm capable of determining the minimum distance between code words. At the same time, our DQSA 

method allows us to develop a high-performance DQSA-Dec Hard decoder algorithm, optimizing the 

correction of errors in a received code word. As a heuristic method, the DQSA-based algorithms performances 

depend on several parameters. The initial values of the DQSA-𝑑𝑚𝑖𝑛  calculator in Algorithm 1 and the  

DQSA-Dec decoder Algorithm 3), i.e., the initial 𝑇𝑖  and final temperatures 𝑇𝑓, the cooling rate θ, the number 

of iterations N and the Starting subsystem, were optimized through 15 numerical tests. In each trial, these 

parameters were varied and combined to assess their influence on performance. After analyzing the results, the 

average of the best-performing configurations was selected as the optimal configuration. 

 

 

4. DQSA-𝒅𝒎𝒊𝒏  CALCULATOR ALGORITHM 

To show how DQSA applies to computing the minimum distance of Goppa codes, we present an 

analogy between the physical model of DQSA and its algorithmic (DQSA-𝑑𝑚𝑖𝑛  Calculator) use in 

optimization. Concepts like energy states are mapped to cost functions, enabling an efficient search for optimal 

codes. This relationship is detailed in algorithm 1 and summarized in Table 2. 

 

4.1.  Determination of the Function (E) to evaluate in algorithm 2 of DSA-𝒅𝒎𝒊𝒏 calculator 

By substituting (2) into (3) and taking into account the fact that. 

 

𝑊𝐻(𝑉) =  ∑ 𝑣𝑗
𝑛
𝑗=1   (6) 

 

𝑊𝑒 ℎ𝑎𝑣𝑒   𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛
𝑢∈{0,1}𝑘

𝑢≠0

∑ ( ⨁𝑢𝑖𝑔𝑖𝑗𝑖=1
𝑘 )𝑛

𝑗=1  (7) 

 

𝐿𝑒𝑡              𝐸(𝑉) =  ∑ ( ⨁𝑢𝑖𝑔𝑖𝑗𝑖=1
𝑘 )𝑛

𝑗=1  (8) 
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𝑤ℎ𝑒𝑟𝑒  𝑈 = (𝑢1, . . . , 𝑢𝑘) ∈ {0,1}𝑘 −   {0} 

 

Thus, the function 𝐸(𝑉) returns the Hamming weight of the codeword 𝑉. 

 

 

Table 2. The analogy between DQSA and DQSA-𝑑𝑚𝑖𝑛  calculator 
DQSA method DQSA-𝑑𝑚𝑖𝑛lculator 

PSS state The information vector's codeword having a specific Hamming weight. 

ESS state The information vector’s codeword having the same given Hamming weight. 

Energy (E) E= value of the Hamming weight of a given codeword 
Neighbor state Generating a new information vector having in the case of: 

1. PSS treatment: a specific Hamming Weight 

2. ESS treatment: the same Hamming Weight 
Temperature Controlling the calculator via iterations number 

final state Final result (codeword having the least Hamming weight) 

 

 

4.2.  DSA-𝒅𝒎𝒊𝒏 calculator algorithm 

Algorithm 1 represents the steps of our DSA-𝑑𝑚𝑖𝑛  calculator. 
 

Algorithm 1. DSA-𝑑𝑚𝑖𝑛  minimum Hamming weight calculator 
Inputs: 

1. Tl_I: Total Iterations by temperature value, Tl_I ϵ [20, 5000]   
2. Ti=1.5, Tf=0.002, δ=0.89 
3. Starting subsystem= PSS 

Output:  

Value of codeword having the least Hamming weight  

1. While (T > Tf) do: 

2. For iteration from 1 to Tl_I do: 

3.  If the current subsystem is PSS then Generate neighbor state (Ui+1) from PSS 

processing; 

4.  Else generate neighbor state (Ui+1) from ESS processing; 

5.       End if 

6.  Evaluate ∆E = E (Vi+1) – E (Vi); 

7.  If ∆E ≤ 0 then Ui  Ui+1; 

8.  Else if (random (0, 1) ≤ Exp (-∆E/T)) 

9.   Then Ui  Ui+1; 

10.            End if 

11.  End if 

12.  End For 

13. With certain probability, switch between PSS and ESS;  

14.   T  δ*T; 

15. End while 
 

4.3.  Algebraic construction 

The Goppa codes used in this study were constructed algebraically, from specific polynomials 𝑔(𝑧) 

and L-sets points defined on a finite field. The minimum distance cannot be determined directly, it is 

estimated based on the error correction capability 𝑡, but This construction has been optimized to ensure 

minimum dimensions and distances close to the theoretical limits. In the Table 3 contains our construction of 

the Goppa codes on 𝐺𝐹(2𝑚) chosen to evaluate our DQSA-𝑑𝑚𝑖𝑛  calculator.  
 

 

Table 3. Our construction of Goppa codes 
Our construction of Goppa codes Goppa code parameters Minimum distance 

estimated 
Code Goppa 

notation Polynomial g(z) Set of Points 𝐿 n k 

z2+z+1 {𝛼𝑖/𝑖 𝑖𝑛 [0. . .20]} ⸦ 𝐺𝐹(25) 21 11 5 𝐺𝐶(21,11) 

z4+z3+1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .31]} ⸦ 𝐺𝐹(25) 31 11 9 𝐺𝐶(31,11) 

z6+z+1 {𝛼𝑖/𝑖 𝑖𝑛 [3. . .64]} ⸦ 𝐺𝐹(27) 62 20 13 𝐺𝐶(62,20) 

z10+z3+1 {𝛼𝑖/𝑖 𝑖𝑛 [0. . .117]} ⸦ 𝐺𝐹(27) 117 47 21 𝐺𝐶(117,47) 

z7+z5+1 {𝛼𝑖/𝑖 𝑖𝑛 [2. . .127]} ⸦ 𝐺𝐹(27) 126 77 15 𝐺𝐶(126,77) 

z6+z3+1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .195]} ⸦ 𝐺𝐹(28) 195 147 13 𝐺𝐶(195,147) 

z5+z3+ z2+z+1 {𝛼𝑖/𝑖 𝑖𝑛 [3. . .219]} ⸦ 𝐺𝐹(28) 217 177 11 𝐺𝐶(217,177) 

z13+z10+z19+z+1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .255]} ⸦ 𝐺𝐹(28) 255 151 27 𝐺𝐶(255,151) 

z7+z6+z5+z4+z2+z+1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .255]} ⸦ 𝐺𝐹(28) 255 199 15 𝐺𝐶(255,199) 

z7+z6+z5+z4+z2+z+1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .305]} ⸦ 𝐺𝐹(29) 305 242 15 𝐺𝐶(306,242) 

z6+z3+ z2+z+1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .315]} ⸦ 𝐺𝐹(29) 315 261 13 𝐺𝐶(315,270) 
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4.4.  Evaluation the DQSA-𝒅𝒎𝒊𝒏  to compute minimal distance of Goppa codes  

The objective of the evaluation is to test the effectiveness of DQS-𝑑𝑚𝑖𝑛  on Goppa codes whose 

estimated minimum distance is calculated. For the Goppa codes constructed in this study, the calculated 

minimum distances were systematically compared to the theoretical estimates. In parallel, for each result found 

we calculate the number of iterations and the computation time needed to find such a value. 

The results in Table 4 present a comparison between the calculated and estimated minimum distances 

of various Goppa codes using our DQSA-𝑑𝑚𝑖𝑛  Calculator. In general, the calculated distances align closely 

with the estimated ones, with minor discrepancies in some cases (e.g., GC(217,177) shows 10 instead of 11, 

and GC(315,261) shows 14 instead of 13). The number of iterations varies significantly, with some codes 

requiring extensive iterations (e.g., GC(195,147) with over 465,000 iterations), while others converge much 

faster (e.g., GC(64,50) with just 345 iterations). Although the computation time is substantial for larger codes, 

it remains manageable, with the longest time being 184 seconds. These results indicate that our Calculator is 

effective, even as the code length methods 300 and the code rate nears 1/2, which increases computational 

complexity. Despite this, DQS-𝑑𝑚𝑖𝑛  successfully finds the estimated values. 

 

 

Table 4. Results of DQSA-𝑑𝑚𝑖𝑛  for Goppa codes 
GOPPA CODE Minimum distance 

estimated theoretically 
Minimum distance found 

by DQSA-𝑑𝑚𝑖𝑛 Calculator 

Iteration number Run 
Time(s) 

𝐺𝐶(21,11) 5 5 80 < 1 
𝐺𝐶(31,11) 9 9 108 < 1 
𝐺𝐶(62,20) 13 13 305 < 1 

𝐺𝐶(117,47) 21 21 119087 5 
𝐺𝐶(126,77) 15 15 15867 < 1 

𝐺𝐶(195,147) 13 13 465609 39 
𝐺𝐶(217,177) 11 10 107345 10 
𝐺𝐶(255,151) 27 29 1414569 184 
𝐺𝐶(255,199) 15 15 433467 23 
𝐺𝐶(305,242) 15 16 86193 6 
𝐺𝐶(315,261) 13 14 145123 10 

 

 

4.5.  Finding the optimal Goppa codes using DQSA-𝒅𝒎𝒊𝒏 

Once evaluated and validated, DQSA-𝑑𝑚𝑖𝑛  was used to identify Goppa codes reaching the theoretical 

lower bound of 𝑑𝑚𝑖𝑛  for linear codes existing in the literature. This search discovered 12 codes that matched 

this bound as reported in the Marcus Grassl database codes [25]. For this, as shown in Algorithm 2, we aim to 

find an optimal Goppa code by maximizing the 𝑑𝑚𝑖𝑛  while respecting the code parameters. This starts with 

initialization, setting 𝑑𝑚𝑖𝑛  to zero and constructing the GF(2m) and P(x). Using a specified number of 

iterations, it randomly generates L sets of GF(2m) elements and a g(z) of the given degree. The algorithm 

ensures that g(z) is irreducible and that no element in L is the root of g(z). It then uses the DQSA-𝑑𝑚𝑖𝑛  

calculator function to calculate 𝑑𝑚𝑖𝑛  for each found configuration of the code. If the resulting 𝑑𝑚𝑖𝑛  is the 

greatest and equal to or greater than the theoretical lower bound, the corresponding parameters L, g(z), and 

code dimensions are stored as optimal. This process continues until the best configuration is identified. 

 

Algorithm 2. To find an optimal Goppa code 
Inputs: 

1. n: where 𝑛 ≤ 2𝑚. 

2. k: where 𝑘 < 𝑛. 
3. m: Degree of extension of the 𝐺𝐹(2𝑚). 

4. Lower_bd: lower bound of 𝑑𝑚𝑖𝑛 for linear codes existing in the literature 

5. degree_g: Degree of the Goppa polynomial 𝑔(𝑧). 
6. num_iterations: Number of iterations for the random search. 

7. DQSA-𝑑𝑚𝑖𝑛 (n,k,L,g) calculator function: Returns 𝑑𝑚𝑖𝑛 for the Goppa code defined by 

n,k,L,g. 

Outputs:  

1. Maximum of minimum distance 𝑑𝑚𝑖𝑛. 

2. Optimal elements set L over GF(2m). 
3. Optimal polynomial g(z). 
4. k (effective code dimension). 
5. n (effective code length). 

 

A. Initialize: 𝑑𝑚𝑖𝑛 ← 0, L ← ∅, g ← 1, k ← 0 
B. Construct: GF(2m) and P(x) 
C. For i from 1 to num_iterations Do: 
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1. Randomly generate L = {α^j : j ∈ [1, n]} in GF(2m) 
2. Generate a polynomial g(z) of degree degree_g 

3. If (g(z) is irreducible AND ∄ x ∈ L such that g(z) = 0) THEN 
• Calculer 𝑑𝑚𝑖𝑛 ← DQSA-𝑑𝑚𝑖𝑛(n, k, L, g) 

• If (𝑑𝑚𝑖𝑛 is maximum AND equal to lower_bd) THEN store 𝑑𝑚𝑖𝑛, L, g, and k  

• End If 

4. End If 
D. End For 

 

The Table 5 highlights the discovery of 12 Goppa codes with n between 100 and 106. These codes 

reach the lower limit of 𝑑𝑚𝑖𝑛  for linear codes, the use of the generator polynomial rather than a generating 

matrix, makes the coding simplified, and the algebraic operations more efficient. With a coding rate close to 

1/2, these codes offer an excellent balance between redundancy and efficiency. In addition, their error 

correction capacity, ranging from 4 to 7 errors, makes them ideal candidates for communication systems 

requiring reliability and robustness. 

For each identified code, the parameters, including the set 𝐿, the Goppa polynomial 𝑔(𝑧), and other 

specifications, were input into the algebraic calculator of Magma [27]. This enabled an independent 

recalculation of the 𝑑𝑚𝑖𝑛, confirming the consistency and accuracy of the results obtained using the heuristic 

DQSA-𝑑𝑚𝑖𝑛  calculator, as shown in Table 5. This additional validation strengthens the reliability of our 

heuristic method. 

 

 

Table 5. List of the 12 discovery Goppa code  
No Goppa Code Parameters 𝑑𝑚𝑖𝑛 

found by 

DQSA 

𝑑𝑚𝑖𝑛’s 

Lower 

bound 

𝑑𝑚𝑖𝑛 by 

Magma [27] 

Calculator 

Advantages of the 

found code Polynomial 𝑔(𝑧) Set of Points 𝐿 n k 

1 𝑧4 + 𝑧3 + 𝑧2 + 𝑧 + 1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .105]} ⸦ 𝐺𝐹(27) 105 77 9 9 9 1. Reaching the lower 

bound of 𝑑𝑚𝑖𝑛 for 

equivalent linear 
codes. 

2. Coding based on a 

polynomial generator 

simplifying algebraic 

operations, instead of 

the generator matrix. 
3. Coding rate close to 

1/2. 

4. Correcting capability 
between 4 and 7 

errors. 

2 𝑧5 + 𝑧4 + 𝑧3 + 𝑧2 + 𝑧
+ 1 

{𝛼𝑖/𝑖 𝑖𝑛 [1. . .105]} ⸦ 𝐺𝐹(27) 105 70 11 11 11 

3 𝑧3 + 𝑧2 + 𝑧 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .105]} ⸦ 𝐺𝐹(27) 105 84 7 7 7 

4 𝑧5 + 𝑧4 + 𝑧3  + 𝑧2

+ 𝑧 

{𝛼𝑖/𝑖 𝑖𝑛 [1. . .106]} ⸦ 𝐺𝐹(27) 106 71 11 11 11 

5 𝑧3 + 𝑧2 + 𝑧 + 1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .100]} ⸦ 𝐺𝐹(27) 100 79 7 7 7 

6 𝑧4 + 𝑧3 + 𝑧2  + 𝑧 + 1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .100]} ⸦ 𝐺𝐹(27) 100 72 9 9 9 

7 𝑧5 + 𝑧4 + 𝑧3  +  𝑧2

+ 𝑧 + 1 

{𝛼𝑖/𝑖 𝑖𝑛 [1. . .102]} ⸦ 𝐺𝐹(27) 102 67 11 11 11 

8 𝑧6 + 𝑧5 + 𝑧4  + 𝑧3

+ 𝑧2 + 𝑧 + 1 
{𝛼𝑖/𝑖 𝑖𝑛 [1. . .102]} ⸦ 𝐺𝐹(27) 102 60 13 13 13 

9 𝑧7 + 𝑧6 + 𝑧5  + 𝑧4

+ 𝑧3  + 𝑧2 + 𝑧 

{𝛼^𝑖/𝑖 𝑖𝑛 [1. . .102]} ⸦ 𝐺𝐹(27) 102 53 15 15 15 

10 𝑧3 + 𝑧2 + 𝑧 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .103]} ⸦ 𝐺𝐹(27) 103 82 7 7 7 

11 𝑧4 + 𝑧3 + 𝑧2  + 𝑧 + 1 {𝛼𝑖/𝑖 𝑖𝑛 [1. . .103]} ⸦ 𝐺𝐹(27) 103 75 9 9 9 

12 𝑧5 + 𝑧4 + 𝑧3  + 𝑧2

+ 𝑧 

{𝛼𝑖/𝑖 𝑖𝑛 [1. . .103]} ⸦ 𝐺𝐹(27) 103 68 11 11 11 

 

 

5. DQSA-DEC DECODER 

This section introduces the application of the DQSA method to Goppa code decoding through a hard-

decision algorithm named DQSA-Dec. It builds on the analogy between physical principles of DQSA and the 

optimization process used in decoding. This correspondence is summarized in Table 6 and formalized in 

Algorithm 3 which describes the implementation of the DQSA-Dec decoder. 

 

 

Table 6. The analogy between DQSA and DQSA-Dec 
DQSA method DQSA-Dec 

PSS state The information vector’s received vector having a specific Hamming weight. 

ESS state The information vector’s received vector having the same given Hamming weight. 
Energy (E) E=value of the hamming weight of a given codeword 

Neighbor state Generating a new information vector having in the case of: 

1. PSS treatment: a specific Hamming Weight 
2. ESS treatment: the same Hamming Weight 

Temperature Controlling the decoder via iterations number 

final state final result (Decoded vector ≈ codeword) 
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Algorithm 3. Which describes the implementation of the DQSA-Dec decoder 
Inputs: 

1. RV: received vector 
2. tc: error correcting capability of code 
3. Tl_I: Total Iterations by temperature value, Tl_I ϵ [50,2000]     
4. Ti=0.3, Tf=0.002,  
5. δ=0.89 
6. Starting subsystem=PSS 

Output: Decoded vector 

1. Compute the hard decision version of the received vector RV, denoted h 

2. If the syndrome of h is zero, Then output h as the Decoded vector   

    Else 

3. Determine the information vector U associated with h 

4. Identify the least reliable positions in RV 

5. While (Ti > Tf) do: 

6. For iteration from 1 to Tl_I do: 

7. If current subsystem is PSS, then generate a neighbor vector U* using PSS 

processing; 

8.  Else generate U* using ESS processing; 

9.  End if 

10.  Compute E(h*), the objective function for the new vector; 

11.  If (E(h*)≤tc+1) or (random(0,1)≤Exp(-E(h*)/Ti)), then update UU*; hh*; 

12.  End if 

13.  End For 

14.  With certain probability, switch between PSS and ESS;  

15.  Decrease temperature Ti  δ*Ti; 

16. End while  
17. Output h as the Decoded vector 

End if 

 

5.1.  Determination of the function (E) to evaluate in algorithm 3 of DSA-Dec 

To evaluate the received vector, we determinate the function E as follows: 

Let ℎ = (ℎ1, … , ℎ𝑛)𝜖[0,1]𝑛 represents the hard-decision version of received vector RV, and 𝑈 = (𝑢1, … , 𝑢𝑘) 

𝜖 [0,1]𝑘 represents the information vector corresponding to h. For ℎ∗ = (ℎ1
∗ , … , ℎ𝑛

∗ ) 𝜖 𝐶 corresponding to the 

information vector of h* is 𝑈∗ = (𝑢1
∗, … , 𝑢𝑘

∗ ) 𝜖 [0,1]𝑘  we define: 

 

𝐸(ℎ∗) =  ∑ [ℎ𝑖 ⊕ ( ⨁𝑗=1
𝑘  𝑢𝑗

∗𝑔𝑖𝑗)] 𝑛
𝑖=1  (9) 

 

The algorithm of decoder (DSA-Dec) aims to find the information vector U* corresponding to the codeword 

h*, this information vector drives E (h*) to a number less or equal to (tc+1) of codes.  

 

5.2.  Simulation results DQSA-Dec 

To validate the efficiency and performance of our DQSA-Dec decoder, we performed a series of 

numerical simulations on an AWGN channel as shown in Table 7 applied to Goppa codes GC(21,11,5),  

GC(31,11,9), and GC(62,20,13). These codes, with a coding rate close to 1/2, were tested through multiple 

trials, varying the number of iterations between 100 and 10,000. The algorithm 2 of decoder, developed in 

C++, was executed on a Windows 11 computer running on an Intel Core i5 (11th Gen, 2.4 GHz) with 8 GB 

RAM. All DQSA-Dec performances were compared to the algebraic Patterson decoder [11]. 

Figure 2 shows that the DQSA-Dec outperforms the Patterson decoder in relation to bit error rate 

(BER) on all SNR values, offering a 0.6 dB coding gain at BER = 10-4. This highlights the effectiveness of 

DQSA-Dec, even with only 100 iterations. In Figure 3 we show that the DQSA-Dec decoder outperforms the 

Patterson decoder in terms of BER across all SNR values, with significant improvements as the number of 

iterations increases, especially at higher SNR levels. Figure 4 shows that the Patterson decoder outperforms 

DQSA-Dec for 3000 and 6000 iterations in terms of BER across all SNR levels, but the performance 

improving for DQSA-Dec with 10,000 iterations achieved the same BER values as Patterson decoder. 

 

 

Table 7. Simulation parameters for DQSA-Dec 
Parameter Value 

Channel Type AWGN 

Modulation Scheme BPSK 

Minimum residual bit errors 200 
Minimum transmitted blocks 1500 
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Figure 2. Performance DQSA-Dec Vs Patterson Dec for GC(21, 11, 5) 

 

 

 
 

Figure 3. Performance DQSA-Dec Vs Patterson Dec for GC(31, 11, 9) 

 

 

 
 

Figure 4. Performance DQSA-Dec Vs Patterson Dec for GC(62, 20, 13) 
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6. CONCLUSION 

This work has demonstrated the effectiveness of the DQSA heuristic method as an alternative and 

complementary solution, to traditional algebraic techniques, to solve the challenges related to Goppa codes. 

We proposed two original tools: DQSA-𝑑𝑚𝑖𝑛  for estimating the minimum distance, and DQSA-Dec for hard 

decoding over AWGN channels. DQSA-𝑑𝑚𝑖𝑛  was validated through close alignment with theoretical 

distances, and it led to the discovery of 12 optimal Goppa codes that reach the lower bound of 𝑑𝑚𝑖𝑛  for linear 

codes. DQSA-Dec demonstrated superior performance to the Patterson decoder, offering a 0.6 dB coding 

gain at BER = 10-4, which is notable for a hard-decision decoder. Moreover, both tools exhibited 

computational efficiency, reducing processing time significantly. 

These results pave the way for extending the method to other families of error-correcting codes, 

further optimizing its parameters, and exploring potential applications in cryptography and quantum error 

correction systems. Additionally, future work will focus on comparing DQSA to other heuristic approaches 

and assessing its performance in more complex communication environments. 
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