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Error-correcting codes are crucial to ensure data reliability in communication
systems often affected by transmission noise. Building on previous successful
applications of our heuristic method degenerate quantum simulated
annealing (DQSA) to Bose—Chaudhuri-Hocquenghem (BCH) and quadratic
residue (QR) codes. This paper proposes two algorithms designed to address
two coding problems for Goppa codes. DQSA-duin computes the minimum
distance (dmin) while DQSA-Dec, serves as a hard decoder optimized for
additive white gaussian noise (AWGN) channels. We validate DQSA-din
comparing its computed minimum distances with theoretical estimates for
algebraically constructed Goppa codes, showing accuracy and efficiency.
DQSA-dnin further used to find the optimal Goppa codes that reach the lower
bound of duin for linear codes known in the literature and stored in Marcus
Grassl's online database. Indeed, we discovered 12 Goppa codes reaching
this lower bound. For DQSA-Dec, experimental results show that it obtains a
bit error rate (BER) of 10-5 when SNR=7.5 for codes with lengths less than
65, which is very interesting for a hard decoder. Additionally, a comparison
with the Paterson algebraic decoder specific to this code family shows that
DQSA-Dec outperforms it with a 0.6 dB coding gain at BER=10-4. These
findings highlight the effectiveness of DQSA-based algorithms in designing
and decoding Goppa codes.
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1. INTRODUCTION

Error-correcting codes are at the heart of modern communication systems, contributing essentially to
maintaining the integrity of data transmitted over noisy and disrupted channels. They enable the detection and
correction of errors occurring during data transmission, particularly in environments with high variability such
as in communication systems as shown in Figure 1. In particular mobile systems [1], [2], where signals can be
affected by interference, noise or losses due to unstable transmission conditions.

The optimal and efficient choosing or designing of correction codes in communication systems
represents a fundamental challenge, as it conditions the ability to identify and correct transmission errors.
Criteria such as the minimum distance (d,,,;,), which reflects the correction capability, the encoding rate, the
simplicity of encoding, and the efficiency of the decoders, are critical to ensuring reliable and efficient
transmission [3], [4]. However, computing the d,,;, and decoding the codes are known to be NP-difficult
problems [5], [6]. Among the proposed solutions, Goppa's codes stand out for their excellent structural
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properties and robustness [7], [8], which makes them particularly suitable in communication systems [9] and
cryptography [10]. These codes offer good error correction thanks to algorithms such as the Patterson decoder
[11] and are also studied in the context of Gaussian noise-resilient systems (AWGNs). However, despite their
advantages, optimizing their design, efficiently computing their d,,;, and developing performance decoders
remain open issues, requiring innovative approaches to complement traditional algebraic methods. The study
of Goppa codes has traditionally relied on algebraic methods for the processing of key tasks such as computing
the minimum distance, decoding, and constructing these codes. These approaches often exploit the
mathematical structure of Goppa codes. However, despite their efficiency, algebraic techniques can sometimes
be computationally expensive or limited, especially for large codes. According to our literature review and to
our knowledge, almost no studies have explored the use of heuristic methods to solve these problems for
Goppa codes, thus leaving a significant gap in the exploration of alternative approaches.

Source Source Channel Modulator
—» —» >
Encoder Encoder l

Numerical data

Channal

Perturbations
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Destination Source P Channel Demodulator I
Decoder Decoder

Figure 1. The general system of communication

Several notable works have advanced the development of algebraic techniques in this domain. For
instance, the Patterson decoder [11] and Berlekamp-Massey algorithm [12] remain an essential reference for
the efficient decoding of Goppa codes. Similarly, algebraic constructions [13]-[15] have widely studied to
generate codes with interesting parameters by exploiting the properties of Goppa codes such as polynomials
and finite elements. Research on minimum distance estimation [16]-[19] often relies on combinatorial or
algebraic bounds which, while rigorous, can be difficult to compute directly for complex codes. Faced with
this predominance of algebraic methods, it seems innovative and promising to explore heuristic methods as a
complementary tool. Heuristic methods, such as simulated annealing offer flexibility and the ability to address
complex optimization tasks that might be difficult for purely algebraic methods. Simulated annealing is an
optimization technique that draws inspiration from the slow cooling of materials in metallurgy, first presented
by Cerny in 1985 [20] and Kirkpatrick ef al. in 1983 [21]. With the use of this method, we aim to fill this gap
to address the problems of minimum distance calculation, decoding and construction of optimal Goppa codes.

In this paper, we extend the degenerate quantum simulated annealing (DQSA) method, which has
been successfully tested on BCH and QR codes in previous works [22]-[24], to address both of these problems
for Goppa codes. Two proposed algorithms have been developed:

- DQSA-d,,;, calculator designed to compute d,,,;, quickly and accurately.
- DQSA-Dec: a hard decoder optimized for AWGN channels tested and compared to algebraic Patterson
decoder.

We also used DQSA-d,,;, to validate the quality of algebraically constructed Goppa codes by
comparing their calculated minimum distances with the theoretical limits. Finally, DQSA-d,,;, identified 12
codes reaching the theoretical lower bound of d,,;,, for linear codes, validated via the Marcus Grassl database
[25] and Brouwer's tables [26].

The paper begins with section 2 which provides an overview of error-correcting codes, in particular
Goppa codes. Section 3 introduces our DQSA heuristic method used for the problems related to minimum
distance and decoding Goppa codes. Section 4 details the DQSA-d,,;, calculator, its algorithm, and its
efficiency in calculating minimum distances as well as identifying optimal codes. Section 5 focuses on the
DQSA-Dec decoder, outlining its superior decoding algorithm and performance. Finally, section 6 summarizes
the main contributions and proposes to extend DQSA to other code families and new applications. In this
paper, several abbreviations and symbols are used for concepts. The Table 1 contains their meanings.
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Table 1. Signification of symbols and abbreviations

Symbol or Signification Symbol or abbreviation Signification
abbreviation
DQSA Degenerate quantum simulated annealing SNR Signal-to-noise ratio
method
BCH Bose—Chaudhuri-Hocquenghem codes dB Decibel
QR Quadratic residues codes C (n, k, dpn) or C Linear code
dinin Minimum distance of a code GC(n, k, d i) or GC Goppa code
DQSA-d,,;, Degenerate Quantum simulated annealing to n Code length (number of bits per
determine a code's minimum distance codeword)
DQSA-Dec Degenerate Quantum simulated annealing k Code dimension (number of information
algorithm a Hard decoder of a Goppa code bits).
AWGN Additive white Gaussian noise k/n Coding ratio of code
BER Bit error rate, measuring the proportion of tc Error correcting capability of code
errors in the received bits
GF(q) Finite field of size ¢ H= (hjj)n-kxn Parity-check matrix of the code
m Degree of the finite field extension S(RV) Syndrome of the received vector RV
g Goppa polynomial of degree r Primary search system (PSS) PSS
a Primitive element of a finite field in GF(2™)  Equivalence search system ESS
(ESS)
L Set of points defining the support of the E Function to evaluate Hamming weight
Goppa polynomial. of'a code word
Wu(V) Hamming weight of a codeword V T Temperature is a control parameter of
DQSA
dy Hamming distance T, Ty Initial temperature, final temperature
U= (uy, ..., w) Information vector ) Rate of temperature reduction in DQSA
G = (gijdrxn Generator matrix of the code Patterson dec An algebraic decoding algorithm
specifically designed for Goppa codes
CL(n,n—k) Dual code CodeTable An online database containing

parameters of optimal linear codes [25]

2. ERRORS CORRECTING CODES
2.1. Goppa codes

Error-correcting codes are divided into two main families: linear and non-linear codes. Common
types include block codes (where data is broken into blocks) and convolutional codes (where information is
processed in streams). Goppa codes are linear codes that form a type of error-correcting codes defined from
polynomials and algebraic curves. Valerii Goppa [7] invented Goppa codes in 1970. They were first studied
for their properties as error-correcting codes, and then, with the appearance of the MCELIECE cryptosystem,
they were studied for their cryptographic properties.
Definition:

A Goppa code is built on a finite field GF (q™) where m > 1 is an integer and q is a power of a prime
number n < q™. Let g a polynomial of degree r, g € GF(q™) [x] and L = {ay,...,a,} € GF(q™). The ¢;
are two distinct by two. (card(L) = n), g(a;) # 0 foralli = 1,...,n. The Goppa code denoted I'(L, g) is:

F(L,g) = {w= Wy, ., wy e GF(g™)/51, 2 = 0 mod g(2)} )

ai

g(2) is called the Goppa polynomial; and I'(L, g) is a linear code of length n, dimension k > n — mr and
minimum distance d > r + 1.

2.2. Linear binary block codes

In this paper, we concentrate on linear binary block codes where the g = 2. Consider a block code
C(n, k, dpp). Each member VeC is referred to as a codeword, there are 2* codewords in total, forming a
k-dimensional subspace of the vector space GF (2)"™. When the modulo-2 sum of any two codewords is also a
codeword, the code C is referred to as linear. For a codeword V, the number of nonzero components is the
Hamming weight, or W (V). Two codewords V; and V, differ in the number of locations they occupy, which
is known as the Hamming distance, or dy (V4,V,). The lowest distance between any two different codewords
in the code is known as the minimum Hamming distance or the minimum distance (d,,;,,) of code C.

dmin = dy(V;,V;) VV,V; € C 2)
It can be easily shown that the Hamming distance between two codewords in a linear block code C is equal to
the Hamming weight of the modulo-2 sum () of the two codewords, as expressed,
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dmin = Wy(V, ® V) VV,V, € C 3)

The code C’s generator is G denoted G = (g;j)kxn Where its rows form a collection of basis vectors for the

subspace GF(2)*. A unique representation of each codeword V = (vy,...,1,) can then be obtained by
combining the rows of G in a linear form.

i=1
k
V1S}Sn Uj=® uigij (4)

Where U = (uy, ...,u;) € {0,1}* information vector.

V'eCt e vViecC: V. V=0 5)
“.” indicates the scalar product.
The code C< (n, n — k) which is defined by (5) is linear as well, known as the dual code of C, and its generator
matrix is represented by H = (h;;),_kxn also referred to as the parity-check matrix. S(RV) = HRV is the
vector S that results from multiplying the received vector RV by the matrix H. The syndrome is the name of
this vector S. When the received vector has errors, the syndrome will not be zero.

3.  THE PROPOSED HEURISTIC METHOD

Unlike classical methods to simulated annealing, which rely on a single processing system. Our
proposed heuristic method based on the simulated annealing algorithm, introduces two distinct subsystems,
exploiting the properties of degenerate quantum systems, where several quantum states share the same energy.
This leads to the creation of a new method called degenerate quantum simulated annealing (DQSA) [22]-[24].
The DQSA consists of two distinct processing subsystems: the PSS and the ESS:

a. Primary search system (PSS): This subsystem operates similarly to a traditional simulated annealing
algorithm. It evolves a non-equivalent state using carefully chosen and varied neighbor functions to search
for new neighboring states.

b. Equivalence search system (ESS): When the PSS encounters equivalent states, the ESS takes over. It
explores alternative states with the same energy, generating and evaluating several equivalent states to find
the most promising one.

The DQSA, is adapted to efficiently explore the solution space, offering a DQSA-d,,;, calculator
algorithm capable of determining the minimum distance between code words. At the same time, our DQSA
method allows us to develop a high-performance DQSA-Dec Hard decoder algorithm, optimizing the
correction of errors in a received code word. As a heuristic method, the DQSA-based algorithms performances
depend on several parameters. The initial values of the DQSA-d,,;, calculator in Algorithm 1 and the
DQSA-Dec decoder Algorithm 3), i.e., the initial T; and final temperatures T¢, the cooling rate 6, the number
of iterations N and the Starting subsystem, were optimized through 15 numerical tests. In each trial, these
parameters were varied and combined to assess their influence on performance. After analyzing the results, the
average of the best-performing configurations was selected as the optimal configuration.

4. DQSA-d,;, CALCULATOR ALGORITHM

To show how DQSA applies to computing the minimum distance of Goppa codes, we present an
analogy between the physical model of DQSA and its algorithmic (DQSA-d,,; Calculator) use in
optimization. Concepts like energy states are mapped to cost functions, enabling an efficient search for optimal
codes. This relationship is detailed in algorithm 1 and summarized in Table 2.

4.1. Determination of the Function (E) to evaluate in algorithm 2 of DSA-d,,,;,, calculator
By substituting (2) into (3) and taking into account the fact that.

Wy(V) = X1y “
L k
We have dmin ;{g:)ll}nk27=1(i=1@uigij) (7
UES
Lt E(W) = Si(i@ugy) Y
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where U = (uq,...,u) € {0,1}* — {0}

Thus, the function E (V) returns the Hamming weight of the codeword V.

Table 2. The analogy between DQSA and DQSA-d,,;,, calculator

DQSA method DQSA-d,,;,lculator
PSS state The information vector's codeword having a specific Hamming weight.
ESS state The information vector’s codeword having the same given Hamming weight.
Energy (E) E= value of the Hamming weight of a given codeword
Neighbor state Generating a new information vector having in the case of:
1. PSS treatment: a specific Hamming Weight
2. ESS treatment: the same Hamming Weight
Temperature Controlling the calculator via iterations number
final state Final result (codeword having the least Hamming weight)

4.2. DSA-d,,;, calculator algorithm

Algorithm 1 represents the steps of our DSA-d,,;,, calculator.

Algorithm 1. DSA-d,,,;;; minimum Hamming weight calculator
Inputs:

1.
2.
3.

Tl I: Total Iterations by temperature value, Tl I € [20, 5000]

T;=1.5, T=0.002, 5=0.89
Starting subsystem= PSS

Output:
Value of codeword having the least Hamming weight

1.
2.
3.

@ 3 o U

9.

10.
11.
12.
13.
14.
15.

While (T > T¢ do:
For iteration from 1 to Tl I do:

If the current subsystem is PSS then Generate neighbor state

processing;

Else generate neighbor state (U;iy;) from ESS processing;

End if

Evaluate AE = E (Vixa) - E (Vi);

If AE < 0 then U; <« Ui/

Else if (random (0, 1) < Exp (-AE/T))
Then U; <« U;¢:;

End if
End if
End For
With certain probability, switch between PSS and ESS;
T « O*T;
End while

4.3. Algebraic construction

The Goppa codes used in this study were constructed algebraically, from specific polynomials g(z)
and L-sets points defined on a finite field. The minimum distance cannot be determined directly, it is
estimated based on the error correction capability ¢, but This construction has been optimized to ensure
minimum dimensions and distances close to the theoretical limits. In the Table 3 contains our construction of

the Goppa codes on GF (2™) chosen to evaluate our DQSA-d,,;,, calculator.

Table 3. Our construction of Goppa codes

(Ui+;) from PSS

Our construction of Goppa codes Goppa code parameters Minimum distance Code Goppa
Polynomial g(z) Set of Points L n k estimated notation
Z24z+1 {ai/iin[0...20]} = GF(2%) 21 11 5 GC(21,11)
Z+5+1 {ai/iin[1...31]} = GF(2%) 31 11 9 GC(31,11)
254+z+1 {ai/iin[3...64]} =GF(27) 62 20 13 GC(62,20)
2%+ +1 {a!/iin[0...117]} = GF(27) 117 47 21 GC(117,47)
Z4+2+1 {ai/iin[2...127]} € GF(27) 126 77 15 GC(126,77)
4+5+1 {ai/iin[1...195]} = GF(2®) 195 147 13 GC(195,147)
242+ 24z+1 {ai/iin[3...219]} = GF(2®) 217 177 11 GC(217,177)
ZB4+z104 242+ {a!/iin[1...255]} = GF(2®) 255 151 27 GC(255,151)
A A T | {ai/iin[1...255]} = GF(2®%) 255 199 15 GC(255,199)
A A T | {ai/iin[1...305]} = GF(2°) 305 242 15 GC(306,242)
45+ 2 4z+1 {ai/iin[1...315]} = GF(2°) 315 261 13 GC(315,270)
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4.4. Evaluation the DQSA-d,,;,, to compute minimal distance of Goppa codes

The objective of the evaluation is to test the effectiveness of DQS-d,,;,, on Goppa codes whose
estimated minimum distance is calculated. For the Goppa codes constructed in this study, the calculated
minimum distances were systematically compared to the theoretical estimates. In parallel, for each result found
we calculate the number of iterations and the computation time needed to find such a value.

The results in Table 4 present a comparison between the calculated and estimated minimum distances
of various Goppa codes using our DQSA-d,,,;,, Calculator. In general, the calculated distances align closely
with the estimated ones, with minor discrepancies in some cases (e.g., GC(217,177) shows 10 instead of 11,
and GC(315,261) shows 14 instead of 13). The number of iterations varies significantly, with some codes
requiring extensive iterations (e.g., GC(195,147) with over 465,000 iterations), while others converge much
faster (e.g., GC(64,50) with just 345 iterations). Although the computation time is substantial for larger codes,
it remains manageable, with the longest time being 184 seconds. These results indicate that our Calculator is
effective, even as the code length methods 300 and the code rate nears 1/2, which increases computational
complexity. Despite this, DQS-d,,;, successfully finds the estimated values.

Table 4. Results of DQSA-d,,,;, for Goppa codes

GOPPA CODE Minimum distance Minimum distance found Tteration number Run
estimated theoretically by DQSA-d,,,;,, Calculator Time(s)
GC(21,11) 5 5 80 <1
GC(31,11) 9 9 108 <1
GC(62,20) 13 13 305 <1
GC(117,47) 21 21 119087 5
GC(126,77) 15 15 15867 <1
GC(195,147) 13 13 465609 39
GC(217,177) 11 10 107345 10
GC(255,151) 27 29 1414569 184
GC(255,199) 15 15 433467 23
GC(305,242) 15 16 86193 6
GC(315,261) 13 14 145123 10

4.5. Finding the optimal Goppa codes using DQSA-d,,,;,,

Once evaluated and validated, DQSA-d,,;;, was used to identify Goppa codes reaching the theoretical
lower bound of d,,;, for linear codes existing in the literature. This search discovered 12 codes that matched
this bound as reported in the Marcus Grassl database codes [25]. For this, as shown in Algorithm 2, we aim to
find an optimal Goppa code by maximizing the d,,;, while respecting the code parameters. This starts with
initialization, setting d,,;, to zero and constructing the GF(2") and P(x). Using a specified number of
iterations, it randomly generates L sets of GF(2™) elements and a g(z) of the given degree. The algorithm
ensures that g(z) is irreducible and that no element in L is the root of g(z). It then uses the DQSA-d,;in
calculator function to calculate d,,;, for each found configuration of the code. If the resulting d,,;, is the
greatest and equal to or greater than the theoretical lower bound, the corresponding parameters L, g(z), and
code dimensions are stored as optimal. This process continues until the best configuration is identified.

Algorithm 2. To find an optimal Goppa code
Inputs:

1. n: where n<2™.
2. k: where k<n.
3. m: Degree of extension of the GF(2™).
4. Lower bd: lower bound of d;, for linear codes existing in the literature
5. degree g: Degree of the Goppa polynomial g(z).
6. num iterations: Number of iterations for the random search.
7. DQSA-dp; (n,k,L,g) calculator function: Returns d,;, for the Goppa code defined by
n,k,L,qg.
Outputs:

1. Maximum of minimum distance dp,-
2. Optimal elements set L over GF(2").
3. Optimal polynomial g(z).

4. k (effective code dimension).

5. n (effective code length).

A. Initialize: dpjp<— 0, L « 4, g« 1, k « 0
B. Construct: GF(2") and P(x)
C. For i from 1 to num iterations Do:
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~J

: j € [1, n]} in GF(27)
Generate a polynomial g(z) of degree degree g
(g(z) is irreducible AND F x € L such that g(z) =

0)

THEN

. If (dp, 1s maximum AND equal to lower bd) THEN store dp;,, L, g, and k

1. Randomly generate L = {«
2.
3. If
. Calculer dppm « DOSA-dpin (n, k, L, g)
. End If
4. End If
D. End For

The Table 5 highlights the discovery of 12 Goppa codes with n between 100 and 106. These codes
reach the lower limit of d,,;;, for linear codes, the use of the generator polynomial rather than a generating
matrix, makes the coding simplified, and the algebraic operations more efficient. With a coding rate close to
1/2, these codes offer an excellent balance between redundancy and efficiency. In addition, their error
correction capacity, ranging from 4 to 7 errors, makes them ideal candidates for communication systems
requiring reliability and robustness.
For each identified code, the parameters, including the set L, the Goppa polynomial g(z), and other
specifications, were input into the algebraic calculator of Magma [27]. This enabled an independent
recalculation of the d,;,,, confirming the consistency and accuracy of the results obtained using the heuristic
DQSA-d,,;;, calculator, as shown in Table 5. This additional validation strengthens the reliability of our
heuristic method.

Table 5. List of the 12 discovery Goppa code

No Goppa Code Parameters Amin~ Amin’s domin bY Advantages of the
Polynomial g(z) Set of Points L n k foundby Lower Magma [27] found code
DQSA bound Calculator
1 z*+z2°+2z2+z+1 {a'/iin[1...105]} =GF(27) 105 77 9 9 9 1. Reaching the lower
2 Z+z*+z2242°4+2z {a'/iin[1...105]} =GF(27) 105 70 11 11 11 bound of d,y;,, for
+1 equivalent linear
3 Z22+z%+z {ai/iin[1...105]} =GF(27) 105 84 7 7 7 codes.
4 P4zt +2 +22 {ai/iin[1...106]} =GF(27) 106 71 1 1 1 2.Coding based on a
+z polynomial generator
5 ZB+z%4z+1 {a'/iin[1...100]} =GF(27) 100 79 7 7 7 simplifying algebraic
6 z'+z3+z% +z+1 {al/iin[1...100]} =GF(27) 100 72 9 9 9 operations, instead of
7T S+t 428+ 2 {ai/iin[1...102]} =GF(27) 102 67 11 11 11 the generator matrix.
+z74+1 3. Coding rate close to
6 5 4 3 Qi 7 1/2.
8 z+Z+2 z+ z+j 1+ z {al/iin[1...102]} =GF(27) 102 60 13 13 13 4. Conrecting capability
9 27 +25+275 +2*  {ati/iin[L..102]} =GF(27) 102 53 15 15 15 between 4 and 7
+ Z3 + Zz 4z €ITors.
10 z2+2z%+2z {ai/iin[1...103]} =GF(27) 103 82 7 7 7
11 z*+z8422 +z+1 {a'/iin[1...103]} =GF(27) 103 75 9 9 9
12 25+2z%+23 +22 {ai/iin[1...103]} =GF(27) 103 68 11 11 11

+z

5.

DQSA-DEC DECODER

This section introduces the application of the DQSA method to Goppa code decoding through a hard-
decision algorithm named DQSA-Dec. It builds on the analogy between physical principles of DQSA and the
optimization process used in decoding. This correspondence is summarized in Table 6 and formalized in
Algorithm 3 which describes the implementation of the DQSA-Dec decoder.

Table 6. The analogy between DQSA and DQSA-Dec

DQSA method DQSA-Dec
PSS state The information vector’s received vector having a specific Himming weight.
ESS state The information vector’s received vector having the same given Hamming weight.
Energy (E) E=value of the hamming weight of a given codeword
Neighbor state Generating a new information vector having in the case of:
1. PSS treatment: a specific Hamming Weight
2. ESS treatment: the same Hamming Weight
Temperature Controlling the decoder via iterations number
final state final result (Decoded vector ~ codeword)

Optimal design, decoding, and minimum distance analysis of ... (Bouchaib Aylaj)
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Algorithm 3. Which describes the implementation of the DQSA-Dec decoder

Inputs:

. RV: received vector

tc: error correcting capability of code

Tl I: Total Iterations by temperature value, T1 I € [50,2000]

T;=0.3, T=0.002,

. 56=0.89

. Starting subsystem=PSS

Output: Decoded vector

Compute the hard decision version of the received vector RV, denoted h

oUW

J

2. If the syndrome of h is zero, Then output h as the Decoded vector
Else
3. Determine the information vector U associated with h
4. Identify the least reliable positions in RV
5. While (T; > T¢ do:
6. For iteration from 1 to Tl I do:
7. If current subsystem is PSS, then generate a neighbor vector U" using PSS
processing;
8. Else generate U' using ESS processing;
9. End if
10. Compute E(h"), the objective function for the new vector;
11. If (E(h")<tc+l) or (random(0,1)<Exp(-E(h")/Ti)), then update U«U'; h&«h";
12. End if
13. End For
14. With certain probability, switch between PSS and ESS;
15. Decrease temperature T; <« O*Ti;

16. End while
17. Output h as the Decoded vector
End if

5.1. Determination of the function (E) to evaluate in algorithm 3 of DSA-Dec

To evaluate the received vector, we determinate the function E as follows:
Let h = (hy, ..., h,,)€[0,1]" represents the hard-decision version of received vector RV, and U = (uy, ..., Uy)
€ [0,1]* represents the information vector corresponding to 4. For h* = (hj}, ..., h,) € C corresponding to the
information vector of 4" is U* = (uj, ..., u}) € [0,1]% we define:

E(h) = XiLi[h @ (1@ uj )] )

The algorithm of decoder (DSA-Dec) aims to find the information vector U" corresponding to the codeword
h”, this information vector drives E (4*) to a number less or equal to (tc+1) of codes.

5.2. Simulation results DQSA-Dec

To validate the efficiency and performance of our DQSA-Dec decoder, we performed a series of
numerical simulations on an AWGN channel as shown in Table 7 applied to Goppa codes GC(21,11,5),
GC(31,11,9), and GC(62,20,13). These codes, with a coding rate close to 1/2, were tested through multiple
trials, varying the number of iterations between 100 and 10,000. The algorithm 2 of decoder, developed in
C++, was executed on a Windows 11 computer running on an Intel Core i5 (11th Gen, 2.4 GHz) with 8 GB
RAM. All DQSA-Dec performances were compared to the algebraic Patterson decoder [11].

Figure 2 shows that the DQSA-Dec outperforms the Patterson decoder in relation to bit error rate
(BER) on all SNR values, offering a 0.6 dB coding gain at BER = 10*. This highlights the effectiveness of
DQSA-Dec, even with only 100 iterations. In Figure 3 we show that the DQSA-Dec decoder outperforms the
Patterson decoder in terms of BER across all SNR values, with significant improvements as the number of
iterations increases, especially at higher SNR levels. Figure 4 shows that the Patterson decoder outperforms
DQSA-Dec for 3000 and 6000 iterations in terms of BER across all SNR levels, but the performance
improving for DQSA-Dec with 10,000 iterations achieved the same BER values as Patterson decoder.

Table 7. Simulation parameters for DQSA-Dec

Parameter Value
Channel Type AWGN
Modulation Scheme BPSK
Minimum residual bit errors 200
Minimum transmitted blocks 1500
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Figure 4. Performance DQSA-Dec Vs Patterson Dec for GC(62, 20, 13)
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6. CONCLUSION

This work has demonstrated the effectiveness of the DQSA heuristic method as an alternative and
complementary solution, to traditional algebraic techniques, to solve the challenges related to Goppa codes.
We proposed two original tools: DQSA-d,,;, for estimating the minimum distance, and DQSA-Dec for hard
decoding over AWGN channels. DQSA-d,,;,, was validated through close alignment with theoretical
distances, and it led to the discovery of 12 optimal Goppa codes that reach the lower bound of d,,;,, for linear
codes. DQSA-Dec demonstrated superior performance to the Patterson decoder, offering a 0.6 dB coding
gain at BER = 10, which is notable for a hard-decision decoder. Moreover, both tools exhibited
computational efficiency, reducing processing time significantly.

These results pave the way for extending the method to other families of error-correcting codes,
further optimizing its parameters, and exploring potential applications in cryptography and quantum error
correction systems. Additionally, future work will focus on comparing DQSA to other heuristic approaches
and assessing its performance in more complex communication environments.
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