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Millimeter-wave (mmWave) massive multiple-input multiple-output (M-
MIMO) technology brings significant improvements in data transmission
rates for communication systems. A key to the design of mmWave
M-MIMO systems is beamforming techniques, which focus signals toward
specific directions but rely on expensive, energy-intensive radio frequency
(RF) chains. To address this issue, hybrid beamformers (HB) have been
introduced as a partial solution, and deep learning (DL) has proven effective
for HB design. However, previous works utilizing machine learning (ML)
networks have primarily focused on the spectral efficiency (SE) metric for
constructing HB. In this paper, we present a convolutional neural network
(CNN) architecture whose loss function is defined to maximize energy

Energy efficiency efficiency (EE) directly. The network jointly learns analog and digital
Hybrid beamformers beamformers by evaluating EE (throughput per total power, including phase
M-MIMO shifters, switches, digital-to-analog converters (DACs), and RF chains) and
selecting the configuration that yields the highest EE. The CNN takes a
channel matrix as input and outputs RF and baseband beamformer matrices.
Simulation results validate the effectiveness of the proposed M-MIMO EE
scheme, achieving significant EE improvements by optimizing hybrid
precoding and reducing RF chain usage.
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1. INTRODUCTION

The Massive multiple-input multiple-output (M-MIMO) has become a cornerstone of 5G and is
projected to play an equally central role in 6G, where it is expected to address the demands for ultra-high data
rates, massive connectivity, and low latency by leveraging large antenna arrays to enhance spectral efficiency
(SE), coverage, and link reliability [1], [2]. At millimeter-wave (mmWave) frequencies, fully digital (FD)
beamforming demands as many power-hungry RF chains as antennas, making it impractical for real-world
systems. Hybrid precoding (HP) addresses this by splitting the beamforming into a low-dimensional digital
stage and an analog network of phase shifters or switches, thereby approximating FD performance with
significantly fewer RF chains [3]-[4]. Most HP schemes have been developed to maximize SE, including
spatially sparse codebooks [3], alternating-minimization algorithms [5], subsequent innovations introduced
dynamic-stream assignment for uplink multiuser orthogonal frequency division multiplexing (OFDM) [6],
switch-based analog networks [7], and per-RF-chain clustering in centralized cell-free systems [8], More
recent contributions leverage met heuristic optimizations such as genetic-algorithm based HP [9], and beam-
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division multiple access with zero-forcing and orthogonal user-beam pairing to reach near-digital SE with
fewer RF chains [10], Additionally, relay-reflecting intelligent surfaces have been shown to simultaneously
amplify and steer signals, further enhancing SE in cell-free M-MIMO [11]. As networks density, energy
efficiency (EE) has emerged as a key design criterion. Techniques such as low-resolution DACs, adaptive
subarray allocation, and channel-matrix optimization have significantly improved EE in massive MIMO
[12]-[13]. Recent work like hybrid analog and digital Beamformers with low resolution (HANDBALL) [14]
further integrates sensing with coarse-quantized beamforming. However, few hybrid precoding studies embed
EE directly into their optimization, instead relying on heuristic power reductions following SE-driven design.

Recently, deep learning (DL) has proven effective for HB design. In the context of HP design,
CNN-based methods have been employed to jointly optimize analog and digital components under imperfect
CSI, improving SE over conventional designs [15], [16]. Further enhancements address EE by integrating
adaptive fully-connected networks [17]. Complementary studies explore CNNs for subarray configurations
[18], reinforcement learning for dynamic beam selection [19], and deep unfolding for fast, trainable HP [20].
Unsupervised approaches also eliminate the need for labeled data and codebooks, proving effective in
distributed and quantized settings [21]-[22]. In parallel, extensive surveys of machine learning in massive
MIMO highlight both the opportunities and open challenges in applying DL to hybrid beamforming [23].

To the best of our knowledge, this is the first DL-based HP optimization that directly incorporates
EE criteria. Our solution is a CNN based HB design for mmWave M-MIMO that directly targets EE rather
than SE. Specifically, we introduce an EE-aware loss function that combines SE and realistic hardware
power consumption (phase shifters, switches, DACs, RF chains), steering the network toward beamformer
configurations that maximize EE. We embed this hardware power model in the CNN so that both analog and
digital weightings intrinsically account for actual energy usage.

The organization of this article is as follows: section 2 presents the theoretical foundations of the
study, including the signal model, energy efficiency, and problem formulation. The proposed CNN-based
beamforming strategy is also described in this section. Section 3 details the simulation environment and
system parameters used in MATLAB, along with the CNN training strategy and hyperparameter
configuration. Section4 reports and analyzes the simulation results, highlighting the performance gains
achieved in terms of energy and spectral efficiency under various RF configurations. Finally, section 5
concludes the paper and outlines potential directions for future work.

Notation: a denotes a scalar, a is a vector and A is a matrix. For a vector a, the notation [a]; denotes
its i-th element. Similarly, for a matrix A, [A].; and [A]; ; represent the i-th column and the (i, j)™ entry,
respectively. The superscripts (.)7 and ()Y indicate transpose, and Hermitian operations. The Frobenius
norm is represented by ||. ||z and Iy is an identity matrix of size N. In this context, [A],; refers to the full
column vector composed of all rows at the i-th column position.

2. THEORETICAL FOUNDATION AND PROPOSED APPROACH
2.1. SIGNAL MODEL

Figure 1 depicts a mmWave M-MIMO system equipped with Ngg transmitting antennas that serves
a single-user mobile station with Ny receiving antennas. The transmitter provides N streams of data
symbols to the receiver over the network. Figure 1 shows how the base station (BS) precodes the data
streams using Ntpr X N digital precoders F, and Ngg X Ntpr analog precoders F,. The discrete-time data
streams are represented by the vector s = [s;, Sy, ...,Sy]7. The covariance matrix of s vector is E[ss”] =
Iy /N under the assumption of independence and a Gaussian distribution with zero mean and unit variance.
Afterward, the transmitted signal is expressed as x = F,Fps . The transmitter is subject to power limitation
according to the constraint ||F,Fp ||z = N, and the analog beamformers are unitary matrices with equal-norm
elements, i.e., [[FA]:‘i[FA]i’i]” = 1/Ngs. For a narrowband block-fading channel, the signal received at the

Ny s antennas can be written as:

r = /pHF,Fys +n 1))

where 1 is the Ny X 1 received signal vector, H is the channel matrix with Ny X Ngg dimensions, p is the
average received power, and n is the additive white Gaussian noise (AWGN) i.e., n~N (0, aﬁINMS).

The received signal is processed by Nys X Nrgr analog combiner W, with the constraint
[[WA]:,i[WA]f’i]” = 1/Nys , and Nrgr X N digital combiner W, as (2):

f = /pWE W/ HF,F,s + Wi Wi n )
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Figure 1. Single user mmWave M-MIMO system with HB

The Saleh-Valenzuela (SV) channel model [24] can be utilized to represent the mmWave
transmission environment, where the contribution of N¢; clusters of N,.q,, paths are employed as:

H =y 3 3 aTR (09 (09 ag (097)al (097) 3)

=1 &j=1

The parameter y = \/NggNys/NeiNyrqy is the normalization factor and o is the complex channel gain
connected to the i scattering cluster and j** ray fori = 1,... ,N; andj = 1, ..., Nyqy. Angles of arrival and

departure are denoted by ng) = ((;bg, GE and G),(Fij) = (¢¥, G}j), respectively. We refer to the azimuth and
elevation angles, by the angular parameters ¢ and 6. The gains of the transmit and receive antenna elements,
respectively, are FR(G)SD) and FT(G)(TiD). Finally, the normalized receive and transmit array response vectors
at the azimuth (elevation) angle qbg (912) and d)iTj (QET) are represented by the vectors aR((E)SD) and aT((BEFij))
respectively. [aR(G)gj) )] = exp {—%pﬁr(@ﬁj) )} is the n®"® component of the steering vector aR((BSj)),
where p, = [X5, Y Zn] T denotes the position of the n'" receive antenna in the Cartesian coordinate system
and 1(0F”) = [sin(¢pn) cos(6y), sin(py) sin(6y) , cos(6y)]. Similar toag(y”), the transmit side

steering vector aT(G)gj)) can be described.

2.2. Energy efficiency

Energy efficiency stands as a crucial metric in evaluating the performance of communication
systems. It refers to the operational state of a system in which energy consumption is minimized while
providing an identical service. Here, EE measures the relationship between the SE of the system and its static
power consumption [25] in the presence of RF hardware losses.

2.2.1. Power consumption and loss models

For the downlink hybrid beamforming architecture, the receiver’s power consumption is negligible
compared to the transmitter’s and is therefore omitted. In a fully connected structure, the transmitter employs
Ntgr of DAC/RF chain pairs. In addition, the architecture utilizes NpsNtgr phase-shifters, resulting in a
static power consumption of:

PC=PLO+PPA+NtRF[2PDAC+PRF]+NtRFNBSPPS (4)

where P, refers to a local oscillator shared by all chains, while Pp, is the power used by all amplifiers with a
power-added efficiency 1 expressed as P, /n [26]. The transmitted power P, accounting RF losses as defined

in (Section II-D in [12]) is calculated as P, = E[||x]|3] = éP,;, here, Py = E[|IZ|I3] = (1 — pp)|IF4Fp |2 +

tr(F4R,.F{) and R,, is the quantization error matrix [12]. Ppg stands for a single passive phase-shift
element's power consumption with bpg bits of resolution. The power consumed by dividers and combiners is
generally unkempt. The power consumption of DACs is Pp,e = a,29 + b, f,q, where f; the sampling rate at
the transmitter is, ¢ is the resolution of the DACs, the factor a; = 1.5 X 1075, indicates a coefficient of the
static power consumption, while factor b, =9 X 10712 expresses a coefficient of the dynamic power
consumption. Finally, Ppr represents the power consumption of a single RF chain including two low-pass
filters, each denoted as (P, pr), two mixers, each labeled as (Pyy) and a 90° hybrid with buffers (Pyp).

Convolutional neural network-based hybrid beamforming ... (Hanane Ayad)
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The power Py is given by:
Pc = Py + Pps + Ntgp[2Ppac + Prp] + NtgpNpsPps @)

Then, the Energy efficiency can be derived as (6):
EE = —log, (| 1y + 2 Ry W W/ HE, F, x F{F/H W,W,|) (6)
c

where R;! = 02WHWX W, W), is the noise covariance matrix after the combining block.

2.3. Problem formulation
The joint optimization problem for HB estimation can be written as (7):

argmax EE
FA, FD, WA, WD

subject to: Fy € Frp, W, € Wyp,
| Fy Fp 2= N @)

The sets of analog beamformers that are technically possible under F, and W, constraints are denoted by
Frr and Wy respectively. For a more detailed explanation with slightly different notation, please refer to
article [16]. To simplify and solve the optimization problem quoted in (7), we divide the combined
precoder/combiner design issue into two distinct sub-problems by separately estimating the precoders
(F, and Fp) and combiners (W, and W,). Initially, to find the estimated precoders, we compute all
combinations of Ly paths selected from the entire set of transmission paths, generating all conceivable
antenna response vectors to construct a precoder matrix. Subsequently, Ntgr columns must be chosen from

aT(G)(TiD) which achieves the maximum EE when the combiner is taking FD optimal W,,.. Then, the

estimated precoders are constructed from TR(;F ),

Algorithm 1. Energy-efficiency HB for M-MIMO systems
1: Input:H, Ngg Nyg, Ntgp, N1gg, N.

2: Output: F, Fp, W, W,
_ Ncl Nray) _ (Ncl Nray)
3: Compute Lg = ( Negp AND Ly, = Nrp
4: for lp=1: Lpdo
5 . F(lF) T(ZF) F FE‘ZF) .
6: F“F) = (FY FA) VFHF i FD =Fg"
7: EEQ) = 5o=10g |1y +-2 e (Wi W o) "W HE, ), x FEFTHAW,,
8: end for
9: [~, 'llp] = argmax (EE(:,l))

10: Fy=FP,F, = ;P

11: Use the finding F, and F, for calculate W, and W,
12: for ly=1: Ly, do

13: w(lw) WR(;W)' WA — W(lW)

14: w“W) (WiYw,) " (WHYw,,,); W, = ww

16: Y = 2HF,F,FiFiH" + 021y,

171 BE(ly) = 5-2s10g, |1y + L (WEWHW, W, X WIWE) ™ x HF,F, x FEF{RAW, 0,
18: end for

19: [~Iy] = argmax (EE(:,1))

20: W, = I/VA(IW), w,= WD(.Z.W);

21: [~, 'l.F] = argmax (EE(:,l))

The FD optimal precoder and combiner are denoted F,,. and W, respectively. The channel
matrix H is processed to singular value decomposition (SVD), in order to make H = USV¥. Leveraging the
mentioned decomposition, [3] indicates that F,,, corresponds to the first N columns of V as F,,, = v
wich can be used to obtain the FD optimal precoding matrix and W,,, can be calculated using the
unconstrained beamformer F,,; as (8):
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1 No3 -1 H
Wope = (2 (FipcHIH Fope + 2221, ) Bl ") ®)

We then estimate hybrid combiners using the findings of the hybrid precoders obtained through the same

methodology. The estimated combiners are constructed from WR(? ). The optimization sub-problem for HB is
described in Algorithm 1.

2.4. CNN-based beamformers design

In this section, we present the architecture of the proposed network for joint analog precoder and
combiner optimization, depicted in Figure 2. This figure illustrates the architecture comprising two CNNss.
One of them focuses on optimizing precoders by extracting essential features from the channel matrix. It
generates optimal phases for the precoder, steering signal power in desired directions, ultimately enhancing
EE. The other CNN is dedicated to combiner design. It processes channel data through convolutional layers,
generating phases to optimize combiners. This leads to efficient signal reception, contributing to overall EE
improvement. Each CNN comprises eight layers and has a similar structure, except for the final layer. In data
generation, to enhance the processing capability of imperfect channel state information (CSI), we first
construct randomly P, perfect channel matrices H<h) for different user locations. Then, we adopt L noisy
channel matrices for each generated perfect channel matrix, introducing element-wise synthetic noise. The
level of synthetic noise is determined by the formula:

[H]; :
SNRypaiv = 20 logq, (| i ),

O-’Iz‘rain

where 02.,, represents the variance of the noise in the training phases associated with the channel
component [H]; ;. To account for variations in the wireless environment, we use three different levels of
SNR7pan- These values (15, 20, and 25 dB) reflect realistic training scenarios ranging from low to moderate
SNR conditions, as adopted in [16]. Prior to feeding the complex-valued channel matrix H into the real-
valued neural networks, we further modify it to facilitate feature extraction and enhance performance. Thus,
we go for an input layer of size Ny X Npg X 3. The first input [[X] :';’1]1_], = |[H] i ]-| is the element-wise

absolute value of the channel matrix. [[X]:‘:_z]ij = Re{[H]i‘ j} and [[X]:,:,?,]ij = Im{[H] i ]-} are respectively,

the second and third inputs. They represent the real and imaginary parts of the channel matrix. The matrix
[[X]:,:,m]” is the three-dimensional input data of the network.

64@3x3 64@35 « 3 1024 1024 2NgsNige(2NysNrge)

Output

3@MNygs <N put
@Nus xNas Fa (W)

FC Layer

_FC Layer

Input
ConvLayer ConvLayer

Figure 2. Proposed CNN model for joint beamformers design

The rest of the network structure includes convolutional layers with Np;; filters of size k X k used in
the second and third layers to extract and select data feature vectors. The activation functions in the
convolutional layers are all rectified linear unit (ReLU) functions. The fourth and sixth layers are FC with
Npc units. To prevent overfitting, dropout layers with a pgr,, probability are included after FC layers,
specifically in the fifth and seventh layers. The output layer of the CNNy is based on the vectorized form of
the F, phases, resulting in a size of NpgNtpr X 1. Similarly, the output layer of CNNy, has a size of
Ny sNrge X 1. The generated data for P, = x;, and L = x, feed the CNNs during the training and validation

Convolutional neural network-based hybrid beamforming ... (Hanane Ayad)
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phases. The training and validation datasets are created by randomly dividing the total data into 0..q;, for
training and 1 — 0;,.4;, for validation. The Adam optimization Algorithm is used to train the model.

Algorithm 2. CNN-EE based HB optimizer

1: Input: L, P, Ngg, Nys, Ntge, Nvgp, SNRrgaiy -

Output: Training data CNNpand CNNy

Generate {H(p)}gi"l

for 1<p<H® and 1<I<L do
[H(l'p)]i,j“‘N([Hl]i,jJUTZRAIN)-

Use Algorithm 1 to get F(lp), and W(lp)as labels

labels,g P) = svec(F,}, labels(l P = zvec{W,},
Input data:

[[Xap) ] [[Xap) Z]i and [[Xap) 3]11

10: Construct the input-output pair (X(l'w,labelsél’p)) for CNNp and (X(l"’),labelsv(;'p)) for CNNy,
11: end for p and 1
12: training data for CNNp and CNNy

O 00 J o U b w N

3. METHODOLOGY
3.1. Simulation setup

This work is implemented in MATLAB R2022a, where a hybrid Beamforming using DL approaches
based on the EE criterion (M-MIMO EE) system designed using the following parameters Ngg = 64,
Nys =16, SNRrpsr = 10dB and f; = 28 GHz. The propagation channel environment is modeled with
Ny =4and Npq, =4 for each cluster, and 0? = 5° for all transmit and receive azimuth and elevation
angles, randomly chosen within the intervals [—60°,60°] and [—20°,20°]. This paper utilizes actual values
Pro =225 mW, Pyx = 03 mW, Pypr = 14 mW, Py = 3mW and n = 0.27 [12]. The study examines the
effect of different RF chain configurations, specifically testing systems with 4 RF chains and 6 RF chains at
both the transmitter and receiver sides. The simulation evaluates the system's performance based on EE
criterion (M-MIMO EE) system with FD precoding (iFullOPT) solution and SE deep learning based hybrid
beamforming design solution based on SE (M-MIMO SE) as presented in [16]. Additionally, we perform a
comparative analysis of various MIMO setups, including 4x4 MIMO, 9x9 MIMO, and a large-scale 64x16
M-MIMO system.

3.2. CNN training and implementation

The CNN input dataset, previously introduced in section 2.4, is split into a 70/30 training-validation
ratio. The model is trained using the Adam optimizer, with the configuration summarized in Table 1.

Table 1. CNN training hyperparameters and structural settings

Symbol Description Value
P, Perfect channel realizations 8.6
L Noisy augmentations per realization 100
Otrain Training data fraction 70 %
1= Orain Validation data fraction 30%
u Adam learning rate 0.0005
B Batch size 100
Nepoch Training epochs 200
Neige Conv. filters per layer 64
kxk Filter kernel size 3x3
Ngc Neurons in fully connected layers 1024
Parop Dropout probability 50 %

4. RESULTS AND DISCUSSION

This section begins by analyzing the scalability of M-MIMO and provides insights into the trade-
offs between RF chain optimization and system efficiency, emphasizing the advantages of M-MIMO for
enhancing energy performance in modern communication systems. Figure 3 presents the performance of a
M-MIMO EE system with Ngg = 64 and Ny = 16 under two RF chain configurations: Ntz = 4 and
Nty = 6. Figure 3(a) compares the SE versus SNR, while Figure 3(b) depicts the EE versus SNR for both
configurations. Figure 3(a) illustrates that SE increases linearly with the SNR, as expected. A zoomed-in
region highlights that the configuration with 4 RF chains achieves slightly higher SE compared to 6 RF
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chains, emphasizing the impact of RF chain optimization on system performance. Figure 3(b) plots EE versus
SNR for the same configurations, revealing that Nty = 4 outperforms Ntz = 6 due to the reduced power
consumption associated with fewer RF chains. This analysis highlights a trade-off: reducing the number of
RF chains improves EE without significantly compromising SE, making Ntz = 4 a more EE and practical
choice for M-MIMO systems.

+MRF =4, NrRF =4

—E—N(RF =6, NrRF =6

Spectral Efficiency [bits/s/Hz]
5
T
I

2 L L 1 L 1 L 1
-20 -156 -10 5 0 5 10 15 20

SNR [dB)
(a)

25 T T T T T T T

—e—NtRF =4, NrRF =4
+NIRF =8, NrRF =6

Energy Efficiency [bits/Hz/J)

0 1 1 1 1 1 1 1
=20 =15 -10 -5

0
SNR [dB]

(b)

Figure 1. Performance analysis of different RF chain configurations in M-MIMO with Nzg = 64, Ny = 16.
(a) SE versus SNR and (b) EE versus SNR

Figure 4 shows the EE performance versus SNR for M-MIMO EE, M-MIMO SE, and iFullOPT.
The M-MIMO EE method achieves the best EE across all SNR levels, highlighting its superior optimization
for energy consumption. In contrast, iFullOPT demonstrates very low EE due to the high-power consumption
of RF chains required for digital precoding. This highlights the advantage of M-MIMO EE, which leverages
HP to reduce RF chain usage and improve EE.

Figure 5 compares the EE performance of 4x4 MIMO, 9x9 MIMO, and 64x16 M-MIMO. The
results clearly show that M-MIMO EE with a larger antenna array (64X16) outperforms smaller
configurations, achieving higher EE across all SNR values. This improvement is particularly significant at
low SNR, where M-MIMO EE benefits from HP to optimize energy usage and reduce RF chain
consumption. As the SNR increases, the advantage of M-MIMO EE becomes even more apparent, proving its
efficiency and scalability for large-scale MIMO systems.
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Figure 4. EE performance vs SNR for M-MIMO EE, M-MIMO SE, and iFullOPT

25

MIMO 4 x 4
—F—MIMO9x 9
—5—M-MIMO B4 x 16
0} >
=)
I
2 / A
5
5 b e
w o~
Z0f / —
2 B
z A
_~ -
-
S e
A
o 1
-20 15 10 5 0 5 10 15 20
SNR [dB]

Figure 5. Comparative evaluation of MIMO systems: 4x4, 9x9, and 64x16 configurations

5. CONCLUSION

In this work, we presented an energy-efficient approach for hybrid beamforming in mmWave
M-MIMO systems, with a particular focus on maximizing EE. Simulation results demonstrate that the
proposed M-MIMO EE configuration particularly with a 64x16 antenna setup significantly outperforms
smaller MIMO systems in terms of EE. Moreover, the analysis showed that optimizing the number of RF
chains, such as using 4 RF chains instead of 6, offers a notable improvement in EE without a substantial loss
in SE. These findings underline the potential of EE-based approaches in enhancing the performance and
scalability of Massive MIMO systems, making them a promising solution for future energy-efficient
communication networks. For future work, the consideration of multiuser scenarios with reconfigurable
intelligent surfaces can be explored, with attention to the energy contribution of each element.
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