
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 15, No. 6, December 2025, pp. 5443~5452 

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i6.pp5443-5452      5443  

 

Journal homepage: http://ijece.iaescore.com 

Convolutional neural network-based hybrid beamforming 

design based on energy efficiency for mmWave M-MIMO 

systems 
 

 

Hanane Ayad, Mohammed Yassine Bendimerad, Fethi Tarik Bendimerad 
LTT Laboratory, Department of Telecommunication, University Abou Baker Belkaïd, Tlemcen, Algeria 

 

 

Article Info  ABSTRACT 

Article history: 

Received Dec 27, 2024 

Revised Jul 25, 2025 

Accepted Sep 16, 2025 

 

 Millimeter-wave (mmWave) massive multiple-input multiple-output (M-

MIMO) technology brings significant improvements in data transmission 

rates for communication systems. A key to the design of mmWave  

M-MIMO systems is beamforming techniques, which focus signals toward 

specific directions but rely on expensive, energy-intensive radio frequency 

(RF) chains. To address this issue, hybrid beamformers (HB) have been 

introduced as a partial solution, and deep learning (DL) has proven effective 

for HB design. However, previous works utilizing machine learning (ML) 

networks have primarily focused on the spectral efficiency (SE) metric for 

constructing HB. In this paper, we present a convolutional neural network 

(CNN) architecture whose loss function is defined to maximize energy 

efficiency (EE) directly. The network jointly learns analog and digital 

beamformers by evaluating EE (throughput per total power, including phase 

shifters, switches, digital-to-analog converters (DACs), and RF chains) and 

selecting the configuration that yields the highest EE. The CNN takes a 

channel matrix as input and outputs RF and baseband beamformer matrices. 

Simulation results validate the effectiveness of the proposed M-MIMO EE 

scheme, achieving significant EE improvements by optimizing hybrid 

precoding and reducing RF chain usage. 
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1. INTRODUCTION 

The Massive multiple-input multiple-output (M-MIMO) has become a cornerstone of 5G and is 

projected to play an equally central role in 6G, where it is expected to address the demands for ultra-high data 

rates, massive connectivity, and low latency by leveraging large antenna arrays to enhance spectral efficiency 

(SE), coverage, and link reliability [1], [2]. At millimeter-wave (mmWave) frequencies, fully digital (FD) 

beamforming demands as many power-hungry RF chains as antennas, making it impractical for real-world 

systems. Hybrid precoding (HP) addresses this by splitting the beamforming into a low-dimensional digital 

stage and an analog network of phase shifters or switches, thereby approximating FD performance with 

significantly fewer RF chains [3]–[4]. Most HP schemes have been developed to maximize SE, including 

spatially sparse codebooks [3], alternating‐minimization algorithms [5], subsequent innovations introduced 

dynamic‐stream assignment for uplink multiuser orthogonal frequency division multiplexing (OFDM) [6], 

switch‐based analog networks [7], and per‐RF‐chain clustering in centralized cell‐free systems [8], More 

recent contributions leverage met heuristic optimizations such as genetic‐algorithm based HP [9], and beam‐
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division multiple access with zero‐forcing and orthogonal user‐beam pairing to reach near‐digital SE with 

fewer RF chains [10], Additionally, relay–reflecting intelligent surfaces have been shown to simultaneously 

amplify and steer signals, further enhancing SE in cell‐free M-MIMO [11]. As networks density, energy 

efficiency (EE) has emerged as a key design criterion. Techniques such as low‐resolution DACs, adaptive 

subarray allocation, and channel‐matrix optimization have significantly improved EE in massive MIMO  

[12]–[13]. Recent work like hybrid analog and digital Beamformers with low resolution (HANDBALL) [14] 

further integrates sensing with coarse‐quantized beamforming. However, few hybrid precoding studies embed 

EE directly into their optimization, instead relying on heuristic power reductions following SE‐driven design.  

Recently, deep learning (DL) has proven effective for HB design. In the context of HP design, 

CNN-based methods have been employed to jointly optimize analog and digital components under imperfect 

CSI, improving SE over conventional designs [15], [16]. Further enhancements address EE by integrating 

adaptive fully-connected networks [17]. Complementary studies explore CNNs for subarray configurations 

[18], reinforcement learning for dynamic beam selection [19], and deep unfolding for fast, trainable HP [20]. 

Unsupervised approaches also eliminate the need for labeled data and codebooks, proving effective in 

distributed and quantized settings [21]–[22]. In parallel, extensive surveys of machine learning in massive 

MIMO highlight both the opportunities and open challenges in applying DL to hybrid beamforming [23]. 

To the best of our knowledge, this is the first DL-based HP optimization that directly incorporates 

EE criteria. Our solution is a CNN based HB design for mmWave M-MIMO that directly targets EE rather 

than SE. Specifically, we introduce an EE-aware loss function that combines SE and realistic hardware 

power consumption (phase shifters, switches, DACs, RF chains), steering the network toward beamformer 

configurations that maximize EE. We embed this hardware power model in the CNN so that both analog and 

digital weightings intrinsically account for actual energy usage. 

The organization of this article is as follows: section 2 presents the theoretical foundations of the 

study, including the signal model, energy efficiency, and problem formulation. The proposed CNN-based 

beamforming strategy is also described in this section. Section 3 details the simulation environment and 

system parameters used in MATLAB, along with the CNN training strategy and hyperparameter 

configuration. Section 4 reports and analyzes the simulation results, highlighting the performance gains 

achieved in terms of energy and spectral efficiency under various RF configurations. Finally, section 5 

concludes the paper and outlines potential directions for future work. 

Notation: 𝑎 denotes a scalar, a is a vector and A is a matrix. For a vector a, the notation [𝐚]𝑖 denotes 

its i-th element. Similarly, for a matrix A, [𝐀]:,𝑖 and [𝐀]𝑖,𝑗  represent the i-th column and the (i, j)-th entry, 

respectively. The superscripts (. )𝑇 and (. )𝐻 indicate transpose, and Hermitian operations. The Frobenius 

norm is represented by ‖. ‖𝐹 and 𝐈𝑁 is an identity matrix of size 𝑁. In this context, [𝐀]:,𝑖 refers to the full 

column vector composed of all rows at the i-th column position. 

 

 

2. THEORETICAL FOUNDATION AND PROPOSED APPROACH 

2.1.   SIGNAL MODEL 

Figure 1 depicts a mmWave M-MIMO system equipped with 𝑁𝐵𝑆 transmitting antennas that serves 

a single-user mobile station with 𝑁𝑀𝑆 receiving antennas. The transmitter provides 𝑁 streams of data 

symbols to the receiver over the network. Figure 1 shows how the base station (BS) precodes the data 

streams using 𝑁𝑡𝑅𝐹 × 𝑁 digital precoders 𝐅𝐷 and 𝑁𝐵𝑆 × 𝑁𝑡𝑅𝐹 analog precoders 𝐅𝐴. The discrete-time data 

streams are represented by the vector s =  [𝑠1, 𝑠2, … , 𝑠𝑁]𝑇 . The covariance matrix of s vector is 𝔼[𝐬𝐬𝐻] =
𝐈𝑁/𝑁 under the assumption of independence and a Gaussian distribution with zero mean and unit variance.  

Afterward, the transmitted signal is expressed as x = 𝐅𝐴𝐅𝐷s . The transmitter is subject to power limitation 

according to the constraint ‖𝐅𝐴𝐅𝐷‖𝐹 = 𝑁, and the analog beamformers are unitary matrices with equal-norm 

elements, i.e., [[𝐅𝐴]:,𝑖[𝐅𝐴]:,𝑖
𝐻 ]

𝑖,𝑖
= 1 𝑁𝐵𝑆⁄ . For a narrowband block-fading channel, the signal received at the 

𝑁𝑀𝑆 antennas can be written as: 

 

𝐫 = √𝝆𝐇𝐅𝐴𝐅𝐷𝐬 + 𝐧  (1) 

 

where 𝒓 is the 𝑁𝑀𝑆 × 1 received signal vector, 𝑯 is the channel matrix with 𝑁𝑀𝑆 × 𝑁𝐵𝑆 dimensions, 𝝆 is the 

average received power, and 𝒏 is the additive white Gaussian noise (AWGN) i.e., 𝐧~𝑁(0, 𝜎𝑛
2𝐈𝑁𝑀𝑆

). 

The received signal is processed by 𝑁𝑀𝑆 × 𝑁𝑟𝑅𝐹  analog combiner 𝐖𝐴 with the constraint 

[[𝐖𝐴]:,𝑖[𝐖𝐴]:,𝑖
𝐻 ]

𝑖,𝑖
= 1 𝑁𝑀𝑆⁄  , and 𝑁𝑟𝑅𝐹 × 𝑁 digital combiner 𝑾𝐷 as (2): 

 

𝐫̃ = √𝝆𝐖𝐷
𝐻𝐖𝐴

𝐻𝐇𝐅𝐴𝐅𝐷𝐬 + 𝐖𝐷
𝐻𝐖𝐴

𝐻𝐧 (2) 
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Figure 1. Single user mmWave M-MIMO system with HB 

 

 

The Saleh-Valenzuela (SV) channel model [24] can be utilized to represent the mmWave 

transmission environment, where the contribution of 𝑁𝑐𝑙  clusters of 𝑁𝑟𝑎𝑦 paths are employed as: 

 

𝐇 = γ ∑ ∑ αijΓR(ΘR
(ij)

)ΓT(ΘT
(ij)

)𝐚R(ΘR
(ij)

)𝐚𝐓
𝐇(ΘT

(ij)
)

𝑁𝑟𝑎𝑦

i=1

𝑁𝑐𝑙
i=1  (3) 

 

The parameter γ = √𝑁𝐵𝑆𝑁𝑀𝑆/𝑁𝑐𝑙𝑁𝑟𝑎𝑦 is the normalization factor and αij is the complex channel gain 

connected to the 𝑖𝑡ℎ scattering cluster and 𝑗𝑡ℎ ray for 𝑖 = 1, … , 𝑁𝑐𝑙 and 𝑗 = 1, … , 𝑁𝑟𝑎𝑦. Angles of arrival and 

departure are denoted by ΘR
(ij)

= (𝜙R
ij

, 𝜃R
ij

) and ΘT
(ij)

= (𝜙T
ij

, 𝜃T
ij

), respectively. We refer to the azimuth and 

elevation angles, by the angular parameters 𝜙 and 𝜃. The gains of the transmit and receive antenna elements, 

respectively, are ΓR(ΘR
(ij)

) and ΓT(ΘT
(ij)

). Finally, the normalized receive and transmit array response vectors 

at the azimuth (elevation) angle 𝜙R
ij

(𝜃R
ij

) and 𝜙T
ij

(𝜃RT
ij

) are represented by the vectors 𝐚R(ΘR
(ij)

) and 𝐚T(ΘT
(ij)

) 

respectively. [𝐚R(ΘR
(ij)

)]
𝑛

= 𝑒𝑥𝑝 {−
2𝜋

𝜆
𝐩n

T𝐫(ΘR
(ij)

)} is the 𝑛𝑡ℎ component of the steering vector 𝑎𝑅(ΘR
(ij)

), 

where 𝐩n = [𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛] T denotes the position of the 𝑛𝑡ℎ receive antenna in the Cartesian coordinate system 

and 𝐫 (ΘR
(ij)

) = [𝑠𝑖 𝑛(𝜙R
ij

) 𝑐𝑜𝑠(𝜃R
ij

) , 𝑠𝑖𝑛(𝜙R
ij

) 𝑠𝑖𝑛(𝜃R
ij

) , 𝑐𝑜𝑠(𝜃R
ij

)]. Similar to 𝐚R(ΘR
(ij)

), the transmit side 

steering vector 𝐚T(ΘT
(ij)

) can be described. 

 

2.2.  Energy efficiency 

Energy efficiency stands as a crucial metric in evaluating the performance of communication 

systems. It refers to the operational state of a system in which energy consumption is minimized while 

providing an identical service. Here, EE measures the relationship between the SE of the system and its static 

power consumption [25] in the presence of RF hardware losses. 

 

2.2.1. Power consumption and loss models 

For the downlink hybrid beamforming architecture, the receiver’s power consumption is negligible 

compared to the transmitter’s and is therefore omitted. In a fully connected structure, the transmitter employs 

𝑁𝑡𝑅𝐹 of 𝐷𝐴𝐶/𝑅𝐹 chain pairs. In addition, the architecture utilizes 𝑁𝐵𝑆𝑁𝑡𝑅𝐹  phase-shifters, resulting in a 

static power consumption of:  

 

𝑃𝐶 = 𝑃𝐿𝑂 + 𝑃𝑃𝐴 + 𝑁𝑡𝑅𝐹[2𝑃𝐷𝐴𝐶 + 𝑃𝑅𝐹] + 𝑁𝑡𝑅𝐹𝑁𝐵𝑆𝑃𝑃𝑆  (4) 

 

where 𝑃𝐿𝑂 refers to a local oscillator shared by all chains, while 𝑃𝑃𝐴 is the power used by all amplifiers with a 

power-added efficiency η expressed as 𝑃𝑥 η⁄  [26]. The transmitted power 𝑃𝑥 accounting RF losses as defined 

in (Section II-D in [12]) is calculated as 𝑃𝑥 = 𝔼[‖𝐱‖2
2] =

1

𝐿𝑅𝐹
𝑃𝑥, here, 𝑃𝑥 = 𝔼[‖𝐱̃‖2

2] = (1 − 𝜌𝑏)‖𝐅𝐴𝐅𝐷‖𝐹
2 +

𝑡𝑟(𝐅𝐴𝐑𝑒𝑒𝐅𝐴
𝐻) and 𝐑𝑒𝑒 is the quantization error matrix [12]. 𝑃𝑃𝑆 stands for a single passive phase-shift 

element's power consumption with 𝑏𝑃𝑆 bits of resolution. The power consumed by dividers and combiners is 

generally unkempt. The power consumption of DACs is 𝑃𝐷𝐴𝐶 = 𝑎12𝑞 + 𝑏2𝑓𝑠𝑞, where 𝑓𝑠 the sampling rate at 

the transmitter is, q is the resolution of the DACs, the factor 𝑎1 = 1.5 × 10−5, indicates a coefficient of the 

static power consumption, while factor 𝑏2 = 9 × 10−12 expresses a coefficient of the dynamic power 

consumption. Finally, 𝑃𝑅𝐹  represents the power consumption of a single RF chain including two low-pass 

filters, each denoted as (𝑃𝐿𝑃𝐹), two mixers, each labeled as (𝑃𝑀𝑋) and a 90° hybrid with buffers (𝑃𝐻𝐵).  
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The power 𝑃𝑅𝐹  is given by: 

 

𝑃𝐶 = 𝑃𝐿𝑂 + 𝑃𝑃𝐴 + 𝑁𝑡𝑅𝐹[2𝑃𝐷𝐴𝐶 + 𝑃𝑅𝐹] + 𝑁𝑡𝑅𝐹𝑁𝐵𝑆𝑃𝑃𝑆  (5) 

 

Then, the Energy efficiency can be derived as (6): 

 

𝐸𝐸 =  
1

 𝑃𝐶
𝑙𝑜𝑔2 (| 𝐈𝑁 +

𝜌

𝑁
𝐑𝑛

−1𝐖𝐷
𝐻𝐖𝐴

𝐻𝐇 𝐅𝐴 𝐅𝐷 × 𝐅𝐷
𝐻𝐅𝐴

𝐻𝐇𝐻 𝐖𝐴𝐖𝐷|)  (6) 

 

where 𝐑𝑛
−1 = 𝜎𝑛

2𝐖𝐷
𝐻𝐖𝐴

𝐻 𝐖𝐴𝐖𝐷 is the noise covariance matrix after the combining block. 

 

2.3.  Problem formulation 

The joint optimization problem for HB estimation can be written as (7):  

 

𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐸 

𝑭𝐴, 𝑭𝐷, 𝑾𝐴, 𝑾𝐷 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑭𝐴  ∈ ℱ𝑅𝐹 , 𝑾𝐴 ∈  𝒲𝑅𝐹 , 
∥ 𝑭𝐴 𝑭𝐷 ∥ = 𝑁𝐹

2     (7) 

 

The sets of analog beamformers that are technically possible under  𝐅𝐴 and  𝐖𝐴 constraints are denoted by 

ℱ𝑅𝐹 and 𝒲𝑅𝐹  respectively. For a more detailed explanation with slightly different notation, please refer to 

article [16]. To simplify and solve the optimization problem quoted in (7), we divide the combined 

precoder/combiner design issue into two distinct sub-problems by separately estimating the precoders 

(𝐅̃𝐴 and 𝐅̃𝐷) and combiners (𝐖̃𝐴 and 𝐖̃𝐷). Initially, to find the estimated precoders, we compute all 

combinations of 𝐿𝐹 paths selected from the entire set of transmission paths, generating all conceivable 

antenna response vectors to construct a precoder matrix. Subsequently, 𝑁𝑡𝑅𝐹 columns must be chosen from 

𝐚T(ΘT
(ij)

) which achieves the maximum EE when the combiner is taking FD optimal 𝐖𝑜𝑝𝑡. Then, the 

estimated precoders are constructed from ℱ𝑅𝐹
(𝑙𝐹̈)

. 

 

Algorithm 1. Energy-efficiency HB for M-MIMO systems 
 1: Input:𝐇, 𝑁𝐵𝑆, 𝑁𝑀𝑆 , 𝑁𝑡𝑅𝐹 , 𝑁𝑟𝑅𝐹 , 𝑁.  

 2: Output: 𝑭̃𝐴, 𝑭̃𝐷, 𝑾̃𝐴, 𝑾̃𝐷 

 3: Compute 𝐿𝐹 = (
𝑁𝑐𝑙  𝑁𝑟𝑎𝑦

𝑁𝑡𝑅𝐹
)  𝐴𝑁𝐷 𝐿𝑊 = (

𝑁𝑐𝑙  𝑁𝑟𝑎𝑦

𝑁𝑟𝑅𝐹
)  

 4: for 𝑙𝐹 = 1 ∶  𝐿𝐹 𝐝𝐨 

 5:       𝑭𝐴
(𝑙𝐹)

= ℱ𝑅𝐹
(𝑙𝐹)

; 𝑭̈𝐴 = 𝑭𝐴
(𝑙𝐹)

; 

 6:       𝑭𝐷
(𝑙𝐹)

= (𝑭̈𝐴
𝐻𝑭̈𝐴)−1𝑭̈𝐴

𝐻𝑭𝑜𝑝𝑡; 𝑭̈𝐷 = 𝑭𝐷
(𝑙𝐹)

 

 7:       𝐸𝐸(𝑙𝐹) =
1

𝑃𝐶(𝑙𝐹)
𝑙𝑜𝑔2 |𝑰𝑁 +

𝜌

𝑁𝜎𝑛
2 (𝑾𝑜𝑝𝑡

𝐻 𝑾𝑜𝑝𝑡)
−1

𝑾𝑜𝑝𝑡
𝐻 𝐇𝑭̈𝐴𝑭̈𝐷 × 𝑭̈𝐷

𝐻𝑭̈𝐴
𝐻𝐇𝐻𝑾𝑜𝑝𝑡| 

 8: end for 

 9: [~, 𝑙𝐹̈] = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐸𝐸(: ,1)) 

10: 𝑭̃𝐴 = 𝐹𝐴
(𝑙𝐹̈)

, 𝑭̃𝐷 = 𝐹𝐷
(𝑙𝐹̈)

 

11: Use the finding 𝑭̃𝐴 and 𝑭̃𝐷 for calculate 𝑾̃𝐴 and 𝑾̃𝐷 

12: for 𝑙𝑊 = 1 ∶  𝐿𝑊 do 

13: 𝑾𝐴
(𝑙𝑊)

=  𝒲𝑅𝐹
(𝑙𝑊)

; 𝑾̈𝐴 = 𝑊𝐴
(𝑙𝑊)

 

14: 𝑾𝐷
(𝑙𝑊)

= (𝑾̈𝐴
𝐻𝚼𝑾̈𝐴)

−1
(𝑾̈𝐴

𝐻𝚼𝑾𝑜𝑝𝑡); 𝑊̈𝐷 = 𝑾𝐷
(𝑙𝑊)

 

16: 𝚼 =
𝜌

𝑁
𝐇𝑭̃𝐴𝑭̃𝐷𝑭̃𝐷

𝐻𝑭̃𝐴
𝐻𝐇𝐻 + 𝜎𝑛

2𝑰𝑁𝑀𝑆
; 

17: 𝐸𝐸(𝑙𝑊) =
1

𝑃𝐶(𝑙𝐹)
𝑙𝑜𝑔2 |𝑰𝑁 +

𝜌

𝑁𝜎𝑛
2 (𝑾̈𝐷

𝐻𝑾̈𝐴
𝐻𝑾̈𝐴𝑾̈𝐷 × 𝑾̈𝐴

𝐻𝑾̈𝐷
𝐻)

−1
× 𝐇𝑭̃𝐴𝑭̃𝐷 × 𝑭̃𝐷

𝐻𝑭̃𝐴
𝐻𝐇𝐻𝑾̈𝐴𝑾̈𝐷| 

18: end for 

19: [~, 𝑙𝑊̈] = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐸𝐸(: ,1)) 

20: 𝑾̃𝐴 = 𝑊𝐴
(𝑙𝑊̈)

, 𝑾̃𝐷 = 𝑊𝐷
(𝑙𝑊̈)

; 

21: [~, 𝑙𝐹̈] = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐸𝐸(: ,1)) 

 

The FD optimal precoder and combiner are denoted  𝐅𝑜𝑝𝑡  and  𝐖𝑜𝑝𝑡, respectively. The channel 

matrix 𝐇 is processed to singular value decomposition (SVD), in order to make 𝐇 = 𝐔𝐒𝐕𝐻. Leveraging the 

mentioned decomposition, [3] indicates that  𝐅𝑜𝑝𝑡  corresponds to the first N columns of 𝐕 as  𝐅𝑜𝑝𝑡 = 𝐕(1) 

wich can be used to obtain the FD optimal precoding matrix and  𝐖𝑜𝑝𝑡 can be calculated using the 

unconstrained beamformer  𝐅𝑜𝑝𝑡 as (8): 
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 𝐖𝑜𝑝𝑡 = (
1

𝜌
(𝐅𝑜𝑝𝑡

𝐻 𝐇𝐻𝐇 𝐅𝑜𝑝𝑡 +
𝑁𝜎𝑛

2

𝜌
𝐈𝑁)

−1

𝐅𝑜𝑝𝑡
𝐻 𝐇𝐻)

𝐻

  (8) 

 

We then estimate hybrid combiners using the findings of the hybrid precoders obtained through the same 

methodology. The estimated combiners are constructed from 𝒲𝑅𝐹
(𝑙𝐹̈)

. The optimization sub-problem for HB is 

described in Algorithm 1. 

 

2.4.  CNN-based beamformers design 

In this section, we present the architecture of the proposed network for joint analog precoder and 

combiner optimization, depicted in Figure 2. This figure illustrates the architecture comprising two CNNs. 

One of them focuses on optimizing precoders by extracting essential features from the channel matrix. It 

generates optimal phases for the precoder, steering signal power in desired directions, ultimately enhancing 

EE. The other CNN is dedicated to combiner design. It processes channel data through convolutional layers, 

generating phases to optimize combiners. This leads to efficient signal reception, contributing to overall EE 

improvement. Each CNN comprises eight layers and has a similar structure, except for the final layer. In data 

generation, to enhance the processing capability of imperfect channel state information (CSI), we first 

construct randomly 𝑃𝑐ℎ perfect channel matrices 𝐇(𝑃𝑐ℎ) for different user locations. Then, we adopt 𝐿 noisy 

channel matrices for each generated perfect channel matrix, introducing element-wise synthetic noise. The 

level of synthetic noise is determined by the formula: 

 

𝑆𝑁𝑅𝑇𝑅𝐴𝐼𝑁 = 20 𝑙𝑜𝑔10 (
|[𝐇]𝑖,𝑗|

2

𝜎𝑇𝑟𝑎𝑖𝑛
2 ),  

 

where 𝜎𝑇𝑟𝑎𝑖𝑛
2  represents the variance of the noise in the training phases associated with the channel 

component [𝐇]𝑖,𝑗. To account for variations in the wireless environment, we use three different levels of 

𝑆𝑁𝑅𝑇𝑅𝐴𝐼𝑁. These values (15, 20, and 25 dB) reflect realistic training scenarios ranging from low to moderate 

SNR conditions, as adopted in [16]. Prior to feeding the complex-valued channel matrix 𝐇 into the real-

valued neural networks, we further modify it to facilitate feature extraction and enhance performance. Thus, 

we go for an input layer of size 𝑁𝑀𝑆 × 𝑁𝐵𝑆 × 3. The first input [[𝐗]:,:,1]
𝑖,𝑗

= |[𝐇]𝑖,𝑗| is the element-wise 

absolute value of the channel matrix. [[𝐗]:,:,2]
𝑖,𝑗

= 𝑅𝑒{[𝐇]𝑖,𝑗} and [[𝐗]:,:,3]
𝑖,𝑗

= 𝐼𝑚{[𝐇]𝑖,𝑗} are respectively, 

the second and third inputs. They represent the real and imaginary parts of the channel matrix. The matrix 

[[𝐗]:,:,1:3]
𝑖,𝑗

 is the three-dimensional input data of the network. 

 

 

 
 

Figure 2. Proposed CNN model for joint beamformers design 

 

 

The rest of the network structure includes convolutional layers with 𝑁𝑓𝑖𝑙𝑡  filters of size 𝑘 × 𝑘 used in 

the second and third layers to extract and select data feature vectors. The activation functions in the 

convolutional layers are all rectified linear unit (ReLU) functions. The fourth and sixth layers are FC with 

𝑁𝐹𝐶  units. To prevent overfitting, dropout layers with a 𝑝𝑑𝑟𝑜𝑝 probability are included after FC layers, 

specifically in the fifth and seventh layers. The output layer of the 𝐶𝑁𝑁𝐹 is based on the vectorized form of 

the 𝐅𝐀 phases, resulting in a size of 𝑁𝐵𝑆𝑁𝑡𝑅𝐹 × 1. Similarly, the output layer of 𝐶𝑁𝑁𝑊 has a size of 

𝑁𝑀𝑆𝑁𝑟𝑅𝐹 × 1. The generated data for 𝑃𝑐ℎ = 𝑥1 and 𝐿 = 𝑥2 feed the CNNs during the training and validation 
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phases. The training and validation datasets are created by randomly dividing the total data into 𝜎𝑡𝑟𝑎𝑖𝑛 for 

training and 1 − 𝜎𝑡𝑟𝑎𝑖𝑛 for validation. The Adam optimization Algorithm is used to train the model.  

 

Algorithm 2. CNN-EE based HB optimizer 
  1: Input: 𝐿, 𝑃𝑐ℎ , 𝑁𝐵𝑆,  𝑁𝑀𝑆, 𝑁𝑡𝑅𝐹 , 𝑁𝑟𝑅𝐹 , 𝑆𝑁𝑅𝑇𝑅𝐴𝐼𝑁. 

 2: Output: Training data 𝐶𝑁𝑁𝐹  and 𝐶𝑁𝑁𝑊 

 3: Generate {𝐇(𝑝)}𝑝=1
𝑃𝑐ℎ   

 4: for 1 ≤ 𝑝 ≤ 𝐇(𝑝𝑐ℎ) and 1 ≤ 𝑙 ≤ 𝐿 do 

 5: [𝐇(𝑙,𝑝)]𝑖,𝑗~𝑁([𝐇𝑙]𝑖,𝑗 , 𝜎𝑇𝑅𝐴𝐼𝑁
2 ). 

 6: Use Algorithm 1 to get 𝐹̃𝐴
(𝑙,𝑝)

, and 𝑊̃𝐴
(𝑙,𝑝)

as labels 

 7: 𝑙𝑎𝑏𝑒𝑙𝑠𝐹
(𝑙,𝑝)

= ∠𝑣𝑒𝑐{𝐹̃𝐴}, 𝑙𝑎𝑏𝑒𝑙𝑠𝑊
(𝑙,𝑝)

= ∠𝑣𝑒𝑐{𝑊̃𝐴}, 
 8: Input data: 

 9: [[𝑋(𝑙,𝑝)]
:,:,1

]
𝑖,𝑗

, [[𝑋(𝑙,𝑝)]
:,:,2

]
𝑖,𝑗
and [[𝑋(𝑙,𝑝)]

:,:,3
]

𝑖,𝑗
 

10: Construct the input-output pair (𝑋(𝑙,𝑝), 𝑙𝑎𝑏𝑒𝑙𝑠𝐹
(𝑙,𝑝)

) for 𝐶𝑁𝑁𝐹 and (𝑋(𝑙,𝑝), 𝑙𝑎𝑏𝑒𝑙𝑠𝑊
(𝑙,𝑝)

) for 𝐶𝑁𝑁𝑊 

11: end for p and l  

12: training data for 𝐶𝑁𝑁𝐹 and 𝐶𝑁𝑁𝑊 

 

 

3. METHODOLOGY 

3.1.  Simulation setup 

This work is implemented in MATLAB R2022a, where a hybrid Beamforming using DL approaches 

based on the EE criterion (M-MIMO EE) system designed using the following parameters 𝑁𝐵𝑆 = 64,  

𝑁𝑀𝑆 = 16, 𝑆𝑁𝑅𝑇𝐸𝑆𝑇 = 10 dB and 𝑓𝐶 = 28 GHz. The propagation channel environment is modeled with 

𝑁𝑐𝑙 = 4 and 𝑁𝑟𝑎𝑦 = 4 for each cluster, and 𝜎2 = 5° for all transmit and receive azimuth and elevation 

angles, randomly chosen within the intervals [−60°, 60°] and [−20°, 20°]. This paper utilizes actual values 

𝑃𝐿𝑂 = 22.5 𝑚𝑊, 𝑃𝑀𝑋 = 0.3 𝑚𝑊, 𝑃𝐿𝑃𝐹 = 14 𝑚𝑊, 𝑃𝐻𝐵 = 3 𝑚𝑊 and 𝜂 = 0.27 [12]. The study examines the 

effect of different RF chain configurations, specifically testing systems with 4 RF chains and 6 RF chains at 

both the transmitter and receiver sides. The simulation evaluates the system's performance based on EE 

criterion (M-MIMO EE) system with FD precoding (iFullOPT) solution and SE deep learning based hybrid 

beamforming design solution based on SE (M-MIMO SE) as presented in [16]. Additionally, we perform a 

comparative analysis of various MIMO setups, including 4×4 MIMO, 9×9 MIMO, and a large-scale 64×16 

M-MIMO system. 

 

3.2.  CNN training and implementation 

The CNN input dataset, previously introduced in section 2.4, is split into a 70/30 training-validation 

ratio. The model is trained using the Adam optimizer, with the configuration summarized in Table 1. 

 

 

Table 1. CNN training hyperparameters and structural settings 
Symbol Description Value 

𝑃𝑐ℎ Perfect channel realizations 8.6 
𝐿 Noisy augmentations per realization 100 

𝜎𝑡𝑟𝑎𝑖𝑛 Training data fraction 70 % 
1 − 𝜎𝑡𝑟𝑎𝑖𝑛 Validation data fraction 30 % 

𝜇 Adam learning rate 0.0005 
𝐵 Batch size 100 

𝑁𝑒𝑝𝑜𝑐ℎ Training epochs 200 
𝑁𝑓𝑖𝑙𝑡 Conv. filters per layer 64 

𝑘 × 𝑘 Filter kernel size 3 × 3 
𝑁𝐹𝐶 Neurons in fully connected layers 1024 

𝑝𝑑𝑟𝑜𝑝 Dropout probability 50 % 

 

 

4. RESULTS AND DISCUSSION 

This section begins by analyzing the scalability of M-MIMO and provides insights into the trade-

offs between RF chain optimization and system efficiency, emphasizing the advantages of M-MIMO for 

enhancing energy performance in modern communication systems. Figure 3 presents the performance of a 

M-MIMO EE system with 𝑁𝐵𝑆 = 64 and 𝑁𝑀𝑆 = 16 under two RF chain configurations: 𝑁𝑡𝑅𝐹 = 4 and 

𝑁𝑡𝑅𝐹 = 6. Figure 3(a) compares the SE versus SNR, while Figure 3(b) depicts the EE versus SNR for both 

configurations. Figure 3(a) illustrates that SE increases linearly with the SNR, as expected. A zoomed-in 

region highlights that the configuration with 4 RF chains achieves slightly higher SE compared to 6 RF 
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chains, emphasizing the impact of RF chain optimization on system performance. Figure 3(b) plots EE versus 

SNR for the same configurations, revealing that 𝑁𝑡𝑅𝐹 = 4 outperforms 𝑁𝑡𝑅𝐹 = 6 due to the reduced power 

consumption associated with fewer RF chains. This analysis highlights a trade-off: reducing the number of 

RF chains improves EE without significantly compromising SE, making 𝑁𝑡𝑅𝐹 = 4 a more EE and practical 

choice for M-MIMO systems. 

 

 

 
(a) 

 

 
(b) 

 

Figure 1. Performance analysis of different RF chain configurations in M-MIMO with 𝑁𝐵𝑆 = 64, 𝑁𝑀𝑆 = 16. 

(a) SE versus SNR and (b) EE versus SNR 

 

 

Figure 4 shows the EE performance versus SNR for M-MIMO EE, M-MIMO SE, and iFullOPT. 

The M-MIMO EE method achieves the best EE across all SNR levels, highlighting its superior optimization 

for energy consumption. In contrast, iFullOPT demonstrates very low EE due to the high-power consumption 

of RF chains required for digital precoding. This highlights the advantage of M-MIMO EE, which leverages 

HP to reduce RF chain usage and improve EE. 

Figure 5 compares the EE performance of 4×4 MIMO, 9×9 MIMO, and 64×16 M-MIMO. The 

results clearly show that M-MIMO EE with a larger antenna array (64×16) outperforms smaller 

configurations, achieving higher EE across all SNR values. This improvement is particularly significant at 

low SNR, where M-MIMO EE benefits from HP to optimize energy usage and reduce RF chain 

consumption. As the SNR increases, the advantage of M-MIMO EE becomes even more apparent, proving its 

efficiency and scalability for large-scale MIMO systems. 
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Figure 4. EE performance vs SNR for M-MIMO EE, M-MIMO SE, and iFullOPT 

 

 

 
 

Figure 5. Comparative evaluation of MIMO systems: 4×4, 9×9, and 64×16 configurations 

 

 

5. CONCLUSION  

In this work, we presented an energy-efficient approach for hybrid beamforming in mmWave  

M-MIMO systems, with a particular focus on maximizing EE. Simulation results demonstrate that the 

proposed M-MIMO EE configuration particularly with a 64×16 antenna setup significantly outperforms 

smaller MIMO systems in terms of EE. Moreover, the analysis showed that optimizing the number of RF 

chains, such as using 4 RF chains instead of 6, offers a notable improvement in EE without a substantial loss 

in SE. These findings underline the potential of EE-based approaches in enhancing the performance and 

scalability of Massive MIMO systems, making them a promising solution for future energy-efficient 

communication networks. For future work, the consideration of multiuser scenarios with reconfigurable 

intelligent surfaces can be explored, with attention to the energy contribution of each element. 
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