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Abstract
The paper presents an extensive and careful stiiddlliptic curve cryptography (ECC) and its applicas. This
paper also discuss the arithmetic involved in éllipcurve and how these curve operations is crugiabletermining the
performance of cryptographic systems. It also presdifferent forms of elliptic curve in variousoedinate system , specifying
which is most widely used and why. It also explaing ligpgenenies between elliptic curve provides theure ECC.
Exentended form of elliptic curve i.e hyperelliptierve has been presented here with its pros and.d@erformance of ECC
and HEC is also discussed based on scalar multiftinaand DLP.
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1. Introduction

Public key cryptosystems are constructed by relginghe hardness of mathematical problem. RSA based
on Integer Factorization Problem and DH based an Dliscrete Logarithm Problem. The main problem of
conventional Public key Cryptosystems is that they ISize has to be sufficiently large in order toetnéhe high
level security requirement, resulting in lower gpaad consumption of more bandwidth.

Elliptic curves have a rich and beautiful histdmgving been studied by mathematicians for overraiired
years.They have been deployed in diverse areas like :Nurifteory( proving Fermat's Last Theorem) in 1985 [
modern physics: String theory(The notion of a ptike particle is replaced by a curve-like stringBlliptic Curve
Cryptography(An efficient public key cryptograplsigstem).

In 1985, Neal Koblitz [2] and Victor Miller [3] inghbendently proposed using elliptic curves to design
public key cryptographic systems. In the late 189&CC was standardized by a number of organizasoch as
ANSI [4, 5], IEEE[4,6], ISO[7, 8], NIST[9, 10] ani started receiving commercial acceptance. Nowad#yis
mainly used in the resource constrained environsjeuch as ad-hoc wireless networks and mobile arkswy
There is a trend that conventional public key avgpaphic systems are gradually replaced with ECTesys.

In Sep’2000 Daniel V. Bailey and Christof Paar [shpwed efficient arithmetic in finite field exteoss
with application irelliptic curve cryptography.

In May 2002, M. Bednara, M. Daldrup, J. ShokrollahiTeich, and J. von zur Gathen[12] , showed apw
elliptic curve coprocessor based on the Montgonadggrithm for curve multiplication can be implemedtusing
our generic coprocessor architecture.

In February, 2005 the NSA announced that it had decided on a glyatd adoptingelliptic curve
cryptographyas part of a US government standard in securingitbee-but-unclassified information. The NSA
recommended group of algorithms called Suite Bluttiag Elliptic-Curve Menezes-Qu-Vanstone and Hidip
Curve Diffie-Hellman for key agreement, and theidit Curve Digital Signature Algorithm for digitaignatures.
The suite also included AES.

In 2010 [13]Brian King provided a deterministic et that guarantees ,the map of a message to an
elliptic curve point can be made without any mawifion.

In 1988 Koblitz suggested for the first time thengrlization of EC to curves of higher genus namely
hyper elliptic curves (HEC)[40]. Since then HEC Hhseen analyzed and implemented in software [41latis]
hardware [46, 47]both.

2. Alternative representations of Elliptic curve
In this section, various forms of elliptic curveshaeen explored

2.1. Weierstrass curve
An elliptic curve E over a field K is defined by aguation (Weierstrass equation)

E:y +axy+ay = X +ax’ +ax + & (1)

where @ & 8 &, 8 € K andA+# 0,
whereA is the discriminant of E and is defined as follows
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A=—d,? dg—8 d;® =27 d® +9 cbd, dg

o =a’+4a, 0= 25 +a

G=a +4a ,
g=a’a+dad-adatad —a .

If both the coordinates of the pointeFE or P=o(the point at infinity, or zero element. The sepofnts on E is:
E(L) = {(x, y) ELxL:y* +axy+ay-x’ - &x° - ax - & = 0}u{=} (2)

2.2. Hessian curve
This curve[14] was suggested for application inp&ti curve cryptography because arithmetic in thisve
representation is faster and needs less memoryattithametic in standard Weierstrass form

2.3. Edwards curve
This curve was introduced in 2007 by Edward[15] amdernstein and Lange [16] pointed out several
advantages of the Edwards form in comparison tartbee well known weierstrass form.

2.4. Twists of curve

In mathematics an elliptic curve E over a fieldhs its quadratic twist, that is another ellipticve which
is isomorphic to E over an algebric of K. In pautar, an isomorphism between elliptic curves isismgeny of
degree 1, that is an invertible isogeny. Some auhave higher order twists such as cubic and queawists. The
curve and its twists have the same j-invariant &hndhown in [17]. Twisted Hessian curve [18] représ a
generalization of Hessian curve. It was introdu@eelliptic curvecryptography to speed up the #ddi and
doubling formulas and to have strongly unified harietic. Twisted Edward curve [19] are plane modélslliptic
curve, a generalisation of Edward curves introdune8ernstein (2007).

2.5. Jacobian curve
It [20] is used in cryptography instead of the Weierstfags because it can provide a defence against simpl
and differential power analysis style (SPA) attaagkd also faster arithmetic compared to the Weasstcurve.

2.6 . Montgomery curve
This curve was introduced by Peter L Montomeryl][2 and it has been used since 1987 for certain
computations,and in particular in different crygptaphy applications.

3. Arithemetic used in Elliptic curve

Let E be an elliptic curve defined over the fiel(biary field , prime field or extension field )h&re is a
chord-and-tangent rule for adding two points in E(K give a third point in E(K). Together with théldition
operation, the set of points E(K) forms an abegjesup witheo serving as its identity. It is this group thatised in
the construction of elliptic curve cryptographicst®ms. This addition and doubling of points rsldést explained
in [ 22]. This is known as group law.

The addition rule is best explained geometnycdlet P = (x1, y1) andQ = (X2, y2) be two distinct points
on an elliptic curvee. Then thesum R of P andQ, is definedas follows. First draw a line throudghandQ; this line
intersects the elliptic curve atthird point. TherR is the reflection of this point about tlkeaxis. This is depicted in
Figure 1.

Similarly the doubler, of P, is defined as follows. First draw the tangen fin the elliptic curve &@. This
line intersects the elliptic curve at a second paiimenR is the reflection of this point about tlxeaxis. This is
depicted in Figure 2.
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Figure 2. Geometric doubling on elliptic curve

Figure 1. Geometric addition on elliptic curve gsin points
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Hasse's theorem on elliptic curves [2dpunds the number of points on an elliptic curvera finite field
above and below. BE(F, ) is the number of points on the elliptic cufz@ver a finite field withg elements,
then Helmut Hasse’s result states that

g+1-2Vgq< #EF,) <g+l+2Vq (3)

4.  Field theory of Elliptic Curve

This section introduces the mathematical conceptessary to understand and implement the arithmetic
operations on an elliptic curve over a finite figdlois field) [23]. Abstractly a finite field carsts of a finite set of
objects called field elements together with thecdpson of two operations - addition and multigton - that can
be performed on pairs of field elements. Theseaimrs must possess certain properties. The fiiligt containing
g elements is denoted bygFGenerally two types of finite fieldsgfare used — finite fields Fwith g=p, p an
odd prime which are called prime finite fields, dimite fields B™ with g=2" for somem>=1 which are called
characteristic two finite fields.

4.1. Finite field F,

The elements of Fshould be represented by the set of integers: {(2.1 ,p-1} with operations as
follows: If a, b € Fp
Addition ;, thena+b =r in F p, wherer € [0.. p-1] is the remainder.
Multiplication : thena. b=sin F p, wheres € [0.. p-1] is the remainder
Additive inverse: then the additive inverseaj-of ain F, is the unique solution to the equati@tx = 0 (modp).
Multiplicative inverse: a#0, then the multiplicative invers®" of a in F, is the unique solution to the equatiarx
=1 (modp).
The prime finite fields Fused should have:
logyp€{112,128;,,160;,192,;224;,256,;384,521}. This resion is designed to facilitate interoperability terms of
computation and communication sinees aligned with word size.

4.2. The Finite Field F,"
The finite field B™ is the characteristic 2 finite field containing @lements. Here the elements of" Bhould
be represented by the set of binary polynomiatiegireem-1 or less:
{amX™+amx™+ ... ... axtag : a €{0;1}}
with addition and multiplication defined in termiam irreducible binary polynomi#l(x) of degream,
known as the reduction polynomial, as follows:

|fa=aﬂ_1xm—l+am_zxm—2+ ..... 'ﬁo,bzbm.lxml‘l'bm_zxmz‘l' ..... ‘|b0€F2,

Addition : thena+b =r in F,", where

F= o X ™ X ™oL {agwith r; =a+b; (mod 2).

Multiplication: thena:b =sin F2m,

wheres = g, X ™Msr, ox ML 15 is the remainder when the polynomab is divided byf (x) with all

coefficient arithmetic performed modulo 2.

In this representation of ,E the additive identity or zero element is the mpolyial 0, and the
multiplicative identity is the polynomial 1. Addit inverses and multiplicative inverses 1" Ean be calculated
efficiently using the extended Euclidean algoritHpivision and subtraction are defined in terms ddliive and
multiplicative inverses. Here the characteristio fimite fields K™ used should have:
me€{113, 131, 163,193, 233, 239, 283, 409,571}

5. Elliptic curve domain parameters

Two types of elliptic curve domain parameters mayused: elliptic curve domain parameters ovgrand
elliptic curve domain parameters ovef"F Domain parameters for Elliptic curve are spedifie [25]. ECC uses
modular arithmetic or polynomial arithmetic for dperations depending on the field chosen.

5.1. Parameters over f

The domain parameters for Elliptic curve ovegrdfep, a, b, G, nandh, wherep is the prime number
defined for finite field F, a and bare the parameters defining the cuyenod p= X + ax + b mod p, G is the
generator point (x Yg), n is the order of the elliptic curve. The scalar foint multiplication is chosen as a number
between 0 and — 1 h is the cofactor where = #E(F,)/n , #E(F,) is the number of points on an elliptic curve.

5.2. Parameters over B
The domain parameters for elliptic curve ovef &em, f(x), a, b, G, n and hwherem is an integer
defined for finite field §™. The elements of the finite field,Fare integers of length at most m bitix) is the
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irreducible polynomial of degree m used for eltiptiurve operations a andb are the parameters defining the curve
Y+ xy=x +ad + b, Gis the generator poir(ks, Ys), a point on the elliptic curve chosen for crypaggtic
operations ,n is the order of the elliptic curve. The scalar oint multiplication is chosen as a number betw@en
andn — 1, his the cofactor where = #E(F,")/n , #E(F,") is the number of points on an elliptic curve.

6. EC representation in different coordinate syiem

In order to add two points on elliptic curve E ameeds, not only several additions and multipliczio
in K, but also an inversion operation. The inversioons to two orders of magnitude slower than muttgion.
Fortunately, points on a curve can be represemnteifferent coordinate systems which do not reqainénversion
operation to add two points. Various coordinatetesysare represented in Table An additional speed-up is
possible if mixed coordinates are used for poiulittawh and doubling[36].

Table 1 Representation of point and number of GF (p) elemds

Coordinate system Coordinates Elements in GF (p)
Affine A X, y) 2
ProjectiveP X,Y, 2) 3
Jacobian) X,Y, 2) 3
Chudnovsky Jacobiad® X,Y, 2,22, 7%) 5
Modified Jacobiad™ (X, Y, Z,az% 4

Table 2 Number of operations for adding and doubling pointsin different coordinate system.

Coordinate system Addition Doubling
Affine A 2M+S +1 2M +2S +|
Projective P 12M + 2S 8M +5S
Jacobian J 12M +4S 4M + 6S
Chudnovsky Jacobian JC 11M +3S 5M + 6S
Modified Jacobian J M 13M + 6S 4M + 4S

7. Integer factorization

Factoring is the act of splitting an integer inteet of smaller integers (factors) which, when iplitd
together, form the original integer. For example factors of 15 are 3 and 5; the factoring probketo find 3 and
5 when given 15. Prime factorization requires 8ptitan integer into factors that are prime numpevery integer
has a unique prime factorization. Multiplying twdrpe integers together is easy, but as far as wesvkifactoring
the product of two (or more) prime numbers is more difficult.

Factoring is the underlying, presumably hard problgpon which several public-key cryptosystems are
based, including the RSA algorithm [33-35]. Faeigran RSA modulus would allow an attacker to figou the
private key; thus, anyone who can factor the maglaAn decrypt messages and forge signatures. Theatgef the
RSA algorithm depends on the factoring problem diifficult and the presence of no other typesttdck. This is
why the size of the modulus in the RSA algorithrtedmines how secure an actual use of the RSA csyptem is.
Namely, an RSA modulus is the product of two lagpgenes; with a larger modulus, the primes becomgelaand
hence an attacker needs more time to factor it.

8. Discrete logarithm problem

If the elliptic curve groups is described using fiplicative notation, then the elliptic curve diste
logarithm problem is: given points P and Q in theup, find a number that Pk = Q; k is called thectite
logarithm of Q to the base P(k =}gg). When the elliptic curve group is described gsauditive notation, the
elliptic curve discrete logarithm problem is: giveoints P and Q in the group, find a number k ghelt Pk = Q . n
a real application, k would be large enough suehithwould be infeasible to determine k.
Eg: What is the least integsuch that 5= 2? [under multiplication modulo 7]

Answer: (5% 5=4)%5=6) %5=2.

So 5 =2. Or, log(2) = 4.

The direct effect of this is that using ellipticreas over smaller finite field yields the same sigas
using discrete log or factoring based public kegptw systems of Diffie-Hellman and RSA with largeoduli.

9. Isogenies of elliptic curve

Isogenies are group homomorphisms [26 — 29]. Theyuaed in algorithms for point counting on ellipti
curves and for computing class polynomials forabmplex multiplication (CM) method. They have apations to
cryptanalysis of elliptic curve cryptosystems. Ttago have constructive applications: preventiorcertain side

IJECE Vol. 1, No. 2, December 2011 : 195 - 201



IJECE ISSN: 2088-8708 0 199

channel attacks; computing distortion maps foripgibased cryptography; designing cryptographihHaactions;
relating the discrete logarithm problem on elligticves with the same number of points.

The first application of isogenies to cryptograplgs as a tool irthe Schoof- Elkies-Atkins (SEA)
algorithm for counting the number of points onglli Curves over finitefields [30]. Originally Scbbhad provided
an algorithm that, when given a curve E defined @eene finite field=q , would return the number of points in the
group of points orE defined oveiFq . Earlier it has the complexity of O(f). Later the SEA improvement results
in a complexity of O(f®.This improvement fundamentally uses isogeniesieMecently, isogenies have been used
as a tool to analyze the computational difficultfy tbe elliptic curve discrete log problem (ECDLP31].
Specifically, the paper shows that isogenies camuded to create a randomized algorithm that willuoe the
ECDLP from one set of curves to a significantlygkar set of curves in polynomial time. Isogeniesehalso been
proposed as a tool in constructing random numbeergg¢ors and hash functions [32].

10. .Hyper elliptic curve

A hyperelliptic curve (over the complex numberspaisalgebraic curve given by an equation of thenfor
y?= f(X), wheref(x) is a polynomial of degree > 4 withn distinct roots. A hyperelliptic function is a fuian from
the function field of such a curve; or possiblytba Jacobian variety on the curve, these beingcomzepts that are
same for the elliptic function case, but differemthis case.

The degree of the polynomial determines the gefitiseocurve: a polynomial of degreg 2 1 or 3 + 2
gives a curve of genugs When the degree is equal tg 2 1, the curve is called an imaginary hypereliifturve.
Meanwhile, the curve that has degrep+22 is mentioned a real hyperelliptic curve. Tsiatement about genus
remains true fog = 0 or 1, but those curves are not called "hyfiptl". Rather, the casg = 1 (if we choose a
distinguished point) is an elliptic curvall curves of genus 2 are hyperelliptic, but fomge> 3 the generic curve
is not hyperelliptic. Hyperelliptic curves can bsed in cryptosystems based on the discerete tbgaproblem
[40]. The security of hyperelliptic cryptosystenss based upon the difficulty of solving the discré&igarithm
problem in the Jacobian of the curve.

11. ECC implementation

ECC can be implemented in software and hardwarg &tware ECC implementation provide moderate
speed, higher power consumption and also haveliweitgd physical security w.r.t key storage. Wharehardware
implementation improves performance in terms okiigity. Also hardware implementation provides gter
security since they cannot be easily modified adrby an outside attacker. [38] specified an apgrda combine
the advantages of software and hardware in newdjganeof computation referred asconfigurable computing.

12. Implementation issues in ecc

The most time consuming operation in ECC cryptogi@schemes is the scalar multiplication (kP).
Efficient hardware and software implementation adlar multiplication have been the main researgicton ECC
in recent years. [38] shows elliptic curve scataultiplication according to three layers. Upperdaghows different
algorithm to perform the multiplication. In middkeyer there are several combinations for finitédfiepresentation
and coordinate system. The lower level is aboulitefifield operation and arithemetic. An efficientplementation
of ECC over binary Galois field in normal and palymal bases has been proposed by Ester and H&8igs [

13. Conclusion

Although ECC is a promising candidtate for publaylcryptosystem, its security has not been conlplete
evaluated. The ECC has been shown to have manytades due to its ability to provide the same |efedecurity
as RSA yet using shorter keys. Implementing EC® wie combination of software and hardware is athgas as
it provides flexibilty and good performance. Itsalivantage is its lack of maturity, as mathematgciaelieve that
not enough research has been done in ECDLP. litplart isogenies can be used as a one way funtttaircan be
used in these cryptographic primitives. Howeveis th now a deep and popular area of research. itls® been
found that hyperelliptic curves of higher gentes potentially insecure from a cryptographic pahtiew[48], yet
the researchers are trying to prove it better thac.
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