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 Decomposition of the surface electromyography (sEMG) signal is vital for 

separating the composite, complex, noisy signals recorded from muscles into 

their integral motor unit action potentials (MUAPs). By precisely identifying 

each motor unit’s activity, this method offers greater insights into the 

functioning of the neuromuscular system, which helps isolate each motor 

unit's contribution, making it essential for understanding muscle 

coordination and diagnosing neuromuscular disorders. In this study, we 

employ the maximal overlapping discrete wavelet transform (MODWT), 

which is well-suited for analyzing signals in the time-frequency domain. The 

study decomposed the sEMG signal into six levels to identify the neural 

activity of finger movements and analyzed the motor unit action potential 

(MUAP). In the frequency range of 30.2 and 64.6 Hz, the signal exhibits the 

highest MUAP which is independent of movement. Using inverse MODWT, 

it was rebuilt from the decomposed levels. With 95.8% accuracy, the 

similarity between the reassembled signal and the original signal was 

determined using correlation analysis to assess the efficacy of the method. 
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1. INTRODUCTION 

Surface electromyography (sEMG) is a flexible and non-invasive method for estimating muscle 

force, which has been utilized in neuromuscular physiology, movement disorder investigation, control of 

assistive devices such as prosthetic hands, and for diagnosing neuromuscular diseases. Information about 

muscle movements and neural activity is obtained by measuring the electric currents produced in muscles 

during contraction. The raw EMG signal is a mixture of overlapping motor unit action potentials (MUAPs) 

from multiple muscle fibers. Decomposing this complex signal helps isolate individual MUAPs, allowing 

researchers and medical professionals to analyze the contribution of specific motor units for a more accurate 

assessment of muscle health and function. In physiological research, motor unit features and muscle motor 

control mechanisms are studied using both the MUAP waveform characteristics and the statistics of the inter-

pulse intervals [1]. The unique characteristics of a degraded MUAP can yield important information about 

the state of the nervous system—information that is necessary for clinically diagnosing myopathies and 

neuropathies [2], stroke patients [3], research into the neuromuscular control loop [3], and the prediction of 

human movements in prosthetics and exoskeletons [4], [5]. Decomposition of sEMG data into motor unit 
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discharge patterns provides information on the recruitment and discharge behavior of motor neurons for 

investigating the neural control of movement.  

Decomposition of EMG signals requires a technique that can handle four levels of complexity: 

changing action potentials due to sensor movement, similar shapes at different times, superimposed action 

potentials, and a wide dynamic range of amplitudes, making the decomposition process more challenging [6]. 

Various decomposition approaches, such as blind source separation (BSS), convolution kernel compensation 

(CKC), independent component analysis (ICA), empirical mode decomposition (EMD), and the Fourier 

decomposition method (FDM) that have been used for several decades to decode motor neuron activities in 

the sEMG-based system. 

Negro et al. [7] and Mohebian et al. [8] applied the convolutive BSS method in decomposition 

algorithms to segregate individual motor unit action potentials. The BSS method of sEMG enhances motor 

unit study with non-invasive recordings, but challenges persist, including varying success rates across 

conditions, muscles, and individuals [9]. Besides, it brings substantial challenges due to its unique 

characteristics, including low signal-to-noise ratio, high similarity, and severe superposition of MUAP 

waveforms [10]. The EMD base decomposition was used by Wei et al. [11] for the recognition of lower limb 

movements, but EMD has limitations due to the mix-mode effect brought on by intermittent signal 

components [12]. The mix-mode effect was addressed by an enhanced version called ensemble EMD 

(EEMD), which also brought the difficulty of including residual supplemental noises during signal 

reconstruction [13]. Fatimah et al. [14] applied the Fourier decomposition method to decompose the surface 

EMG signal for the recognition of hand gestures. Fourier analysis's assumption of signal stationarity results 

in inaccurate frequency representation over time and lacks time resolution, making it challenging to track 

transient features like muscle activation patterns. Chen et al. [15] applied the CKC method for individual 

segments to decode the motor unit discharges from each motor neuron. According to the studies [16] [17] 

when more motor activities are involved, the traditional CKC approach is unable to find enough MUs for 

myoelectric control. The wavelet transform decomposition method was used by Liu et al. [18] and Duan  

et al. [19] and Phinyomark [20] to recognize different hand motions for prosthetic hands. Wavelet-based 

methods have advanced, but have drawbacks like dependency on wavelet function selection, inability to 

combine smoothness with numerical characteristics, and difficulty handling non-stationary EMG signals, 

limiting precise denoising and reconstruction [21]–[23]. 

This study uses a multiresolution decomposition method based on the maximal overlapping discrete 

wavelet transform (MODWT) to offer adequate denoising and reconstruction of multi-class EMG signals. 

Because of its improved noise reduction capabilities using the wavelet coefficient, the MODWT is a suitable 

method for more accurate multiresolution analysis of complex, noisy data [24]. The main contribution of this 

research is: 

a. The work proposes a novel technique based on multiresolution decomposition using MODWT for the 

appropriate denoising decomposition and reconstruction of multi-class EMG signals. 

b. The method potentially identified the specific frequency band where the motor neurons activate during 

different movements of single and multiple fingers. 

c. Identified the dominant channels from eight-channel sEMG data by effectively measuring the average 

relative energy. 

 

 

2. MATERIALS AND METHODS 
2.1.  Work flowchart   

The research work was completed in several phases. The different phases of the work are presented 

by a flow diagram in Figure 1.  

 

 

 
 

Figure 1. Flow diagram of the work 
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2.2.  Data acquisition 

This study made use of the dataset obtained from Khushaba and Kodagoda [25] where fifteen classes 

of movement data were obtained from eight volunteers (six males and two females, aged between 20 to 35) 

using 8 channels. Fifteen classes of movements were collected during the flexion of each of the individual 

fingers, i.e., thumb (TT), index (II), middle (MM), ring (RR), little (LL), and the combined fingers-thumb-

index (TI), thumb-middle (TM), thumb-ring (TR), thumb-little (TL), index-middle (IM), middle-ring (MR), 

ring-little (RL), index-middle-ring (IMR), middle-ring-little (MRL), and hand close class (HC). 

 

2.3.  Preprocessing and segmentation 

The sEMG signals are often tainted by background noises caused by electronic equipment, subject 

movements, and physiological factors. Proper detection and processing using efficient and cutting-edge 

techniques can be a basic prerequisite for its use in various domains. The EMG power spectrum can be 

shaped using a variety of band-pass, notch, high-pass, and low-pass filters. Typically, surface EMG signals 

are band-pass filtered between 20 Hz and 500 Hz to remove noise at frequencies below 20 Hz and above  

500 Hz [26]–[28]. In this study, the collected data was sampled at 4000 Hz, amplified to a total gain of  

1000 dB, and to eliminate the 50 Hz line interference, the signal was band-pass filtered with a 20 Hz to  

450 Hz filter. To reduce processing time, the preprocessed signal must be extracted based on a threshold to 

determine the part of the signal that corresponds to each movement [29]. Therefore, the collected signal is 

sectioned into four non-overlapping segments of equal length, and the segment with the highest PSD is 

considered for decomposition. 

 

2.4.  Decomposition using maximal overlapping discrete wavelet transform  

The time-frequency analysis method evaluates time-varying non-stationary signals using the wavelet 

transform, which uses orthogonal bases with different resolutions. It distributes signal decomposition in 

narrow frequency bands, filters without altering patterns, and handles time domain data without compromising 

frequency domain precision [30]. The MODWT is a DWT variation that uses a high-pass and low-pass filter to 

decompose a time signal into detailed and approximation signals, allowing for multiresolution analysis of 

smooth and detailed coefficients [31]. MODWT performs multi-resolution analysis of a signal, which is a 

scale-based additive decomposition like DWT. Within precise and approximative components, the MODWT 

module does not generate phase changes [32]. The MODWT filters the input signal according to the number of 

levels at which it eliminates the noise coefficients from the signal. MODWT offers flexibility in signal starting 

points, can handle any sample size, and is more efficient than DWT as its smooth and detailed coefficients are 

associated with zero-phase filters [33]. For noisy data analysis, MODWT frequently uses the Daubechies 

wavelet function, and it provides a balance in the time-frequency localization [34]. The Daubechies wavelet 

function in MODWT yields the least error and allows for more coherent structure extraction compared to the 

Haar, Coiflet, Symmlet, and Biorthogonal functions [35], [36], and is therefore used in this analysis. MODWT 

splits the frequency spectrum of the input signal into scaling and wavelet coefficients, as shown in Figure 2. 

Any segmented signal N that is an integer multiple of 2j, for 𝑗 = 1, 2, 3, …  𝐽 can be implemented using the 

MODWT, where J is the level and j is the scale of the decomposition. 

 

 

 
 

Figure 2. Wavelet decomposition 

 

 

The MODWT scaling filters h̃l and wavelet filters g̃l are represented as [34], [37]. 

 

ℎ̃𝑙 =
ℎ𝑙

√2
  (1) 

 

𝑔̃𝑙 =
𝑔𝑙

√2
 (2) 
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The quadrature mirror filters used in MODWT are expressed as (3) and (4), 

 

 ℎ̃𝑙 = (−𝑙)𝑙+1ℎ𝐿−1−𝑙   (3) 

 

𝑔̃𝑙  = (−𝑙)𝑙+1𝑔𝐿−1−𝑙 (4) 

 

where l=0, 1, 2, ..., 𝐿 − 1, and 𝐿 is the length of the wavelet filter.  

The nth element of the first-stage wavelet coefficients (W̃l,n) and scaling coefficients (Ṽl,n) of 

MODWT with the input time series signal X (n) is presented as (5), (6), 

 

𝑊̃𝑙,𝑛 = ∑ ℎ̃𝑙
𝐿1−1
𝑙=0  𝑋𝑛−𝑙 𝑚𝑜𝑑 𝑁 (5) 

 

𝑉̃𝑙,𝑛 = ∑ 𝑔̃𝑙
𝐿1−1
𝑙=0   𝑋𝑛−𝑙 𝑚𝑜𝑑 𝑁 (6) 

 

where n=1, 2, 3, ..., N, and N is the length of the signal in a sample to be analyzed. The equations (7) and (8) 

can be used to calculate the first-level approximations and details. 

 

𝐴̃𝑙,𝑛 =  ∑ 𝑔̃𝐿1−1
𝑙=0 𝑙

𝑋𝑛−𝑙 𝑚𝑜𝑑 𝑁 (7) 

 

𝐷̃𝑙,𝑛 = ∑ 𝑔̃𝑙
𝐿1−1
𝑙=0  𝑊̃𝑙,𝑛+𝑙 𝑚𝑜𝑑 𝑁  (8) 

 

For a time, series X of random sample size N, the jth level MODWT wavelet coefficients (𝑊̃𝑗𝑛) and scaling 

coefficients (𝑉̃𝑗𝑛) are defined in (9) and (10): 

 

𝑉̃𝑗𝑛 = ∑ 𝑔̃𝑗,𝑙
𝐿1−1
𝑙=0   𝑋𝑛−𝑙 𝑚𝑜𝑑 𝑁  (9) 

 

𝑊̃𝑗𝑛 = ∑ ℎ̃𝐿1−1
𝑙=0 𝑗𝑙

 𝑋𝑛−𝑙 𝑚𝑜𝑑 𝑁 (10) 

 

Similarly, equation (11) and (12) give the approximations Aj and the details 𝐷𝑗  of the nth element of the jth stage 

MODWT. 

 

𝐴̃𝑗,𝑛 =  ∑ 𝑔̃𝑙  𝑋𝑛−𝑙 𝑚𝑜𝑑 𝑁
𝐿1−1
𝑙=0  (11) 

 

𝐷̃𝑗 , 𝑛 = ∑ ℎ̃𝐿1−1
𝑙=0 𝑙

 𝑊̃𝑙,𝑛+𝑙 𝑚𝑜𝑑 𝑁 (12) 

 

where g̃l is the MODWT wavelet filter periodized to length N and h̃l is the MODWT scaling filter periodized 

to length N. Thus, the original time series signal can be expressed using the following estimates and details:  

 

𝑋(𝑛) =  ∑ 𝐷𝑗̃ + 𝐴𝑗̃
𝑗
𝑙=0  (13) 

 

The fundamental block diagram of MODWT is shown in Figure 3, and the complete procedure is explained 

in Algorithm 1. 

 

2.5.  Reconstruction using inverse maximal overlapping discrete wavelet transform (MODWT) 

Restoring a continuous-time signal from discrete samples is known as signal reconstruction. To 

reconstruct the signal, the approximation and detail coefficients at each level must be combined again. The 

inverse transform reconstructs the detail and approximation coefficients for every level j and is expressed as: 

 

X(t)=∑ (𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑂𝐷𝑊𝑇(𝐷𝑗̃(𝑡)) + 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑂𝐷𝑊𝑇(𝐴̃𝑗(𝑡)))𝐽
𝑗=1  (14) 

 
The inverse MODWT uses the scaling filters h̃l and wavelet filters g̃l to reverse the decomposition using: 

 

X(n)= ∑ 𝐴̃𝑗[𝑘]𝑘 ℎ̃𝐽−𝑘 (t) +∑ ∑ 𝐷̃𝑗[𝑘]𝑘
𝐽
𝑗=1 𝑔̃𝑗−𝑘 (t) (15) 

 

By recombining all detail coefficients and approximation levels, the inverse MODWT reconstructs the 

original signal while preserving its length and resolution [34]. 
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Figure 3. Decomposed and reconstructed signal using MODWT [38] 

 

 

Algorithm 1. Algorithm of sEMG signal decomposition and reconstruction 
Initialization 

• Input the sEMG signal X(t) of length N. 

• Specify the level of decomposition J. 

• Select the wavelet filter  

Decomposition using MODWT 

1. For l=1, 2..., L 
2. Apply the MODWT scaling filter h̃l  to obtain approximation coefficients Ãl 
3. Apply the MODWT wavelet filter g̃l  to extract detail coefficients Dl̃ 
4. Repeat steps 1 to 3 for all levels l until the maximum level L is reached 
5. Store the approximation coefficients Ãl   from the highest level and the detail 

coefficients Dl̃ from each level l 

Reconstruction using Inverse MODWT 

1. Initialize the reconstructed signal Xr(t) as a zero vector of length N. 
2. Reconstruct the signal using the approximation and detail coefficients from all levels: 

 

Xr(t)=Ãl(t) 

 

3. For each level l=1, 2..., L, reconstruct the contribution from the detail coefficients: 
 

Xr(t)= Xr(t) + Dl̃ (t) 

 

4. End 
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3. RESULTS AND ANALYSIS 

The sEMG signal was decomposed with multiresolution analysis methods using a 4th-order 

Daubechies filter (db4) up to level 6. Upon increasing the levels from 4 to 7, we found that the optimal 

results were obtained at level 6. Inverse MODWT was used to reconstruct the original signal. The frequency 

range that matched the detail and approximation coefficients at each wavelet level of decomposition is 

displayed in Table 1, and the result of decomposition is presented in Figure 4, where Figure 4(a) represents 

the original signal and Figure 4(b) shows the decomposed signals.  

To identify the possible frequency range of MU firings and find the relative energy at each level, we 

decomposed the dataset for each of the fifteen classes of movement. Table 2 presents the results of 

decomposition for each class of movement signal from different channels, and Table 3 displays the results of 

the average MUAP for all 15 classes, considering all subjects. 

 

 

Table 1. Frequency band corresponding to each wavelet level 
Decomposition level Frequency range (Hz) Bandwidth (Hz) Overlapping frequency (Hz) 

Level-1 1000- 2000 1000 40 
Level-2 483 -1040 557 34 

Level-3 241 - 517 276 17 

Level-4 121 - 258 137 8 
Level-5 60.3-129 68.7 4.3 

Level-6 30.2-64.6 34.4 
 

Approx. 0-31.1 
  

 

 

 
(a) 

 

 

 
(b) 

 

Figure 4. Decomposition using MODWT (a) original sEMG signal and (b) signal after decomposition  

into 6 levels 
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Table 2. The percentage of the relative energy of the decomposed signal for different movements (Sub-2) 
Freq levels HC II IM IMR LL MM MR MRL RL RR TI TL TM TR TT 

Level-1 0.01 0.01 0.03 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 

Level-2 0.43 0.58 0.96 0.50 0.50 0.75 0.60 0.49 0.44 0.45 0.52 0.38 0.59 0.45 0.62 

Level-3 4.84 5.40 6.42 4.63 5.05 6.76 5.25 4.21 3.61 4.38 5.18 3.95 5.32 4.41 5.80 

Level-4 18.27 14.58 14.10 13.12 15.09 14.77 12.02 11.69 10.54 13.78 16.11 14.51 17.24 15.73 15.53 

Level-5 34.81 28.93 27.99 30.87 32.41 28.25 27.58 28.73 30.28 31.75 34.71 31.60 33.19 34.72 29.27 

Level-6 37.10 42.91 42.57 46.45 40.36 42.36 48.93 50.99 50.20 42.65 38.52 44.35 38.47 39.61 41.45 

Approx. 4.55 7.59 7.94 4.43 6.58 7.10 5.60 3.82 4.92 6.98 4.96 5.20 5.19 5.02 7.31 

 

 

Table 3. Average of the relative energy for different motor neuron activities (Ch-2) 
Freq levels HC II IM IMR LL MM MR MRL RL RR TI TL TM TR TT 

Level-1 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 

Level-2 0.89 0.72 0.88 1.00 0.48 0.55 0.73 0.30 0.20 0.44 0.66 0.54 0.96 0.52 0.78 

Level-3 7.42 9.94 10.83 9.27 6.92 8.06 7.69 2.20 2.91 6.39 7.77 7.35 9.94 6.85 8.95 

Level-4 11.61 28.35 26.66 14.86 25.87 27.78 13.71 3.62 16.20 25.95 24.48 27.84 22.95 24.72 26.68 

Level-5 21.75 35.63 29.14 21.02 34.79 38.12 21.08 19.67 34.46 37.31 36.88 38.53 30.20 36.61 35.52 

Level-6 54.53 21.8 29.94 52.17 27.58 21.45 54.87 73.00 42.14 25.13 25.87 22.44 32.80 27.32 24.15 

Approx. 3.87 3.55 2.52 1.66 4.35 4.02 1.9 1.20 4.09 4.77 4.33 3.30 3.13 3.96 3.90 

 

 

According to the decomposition result, level 6, or the frequency range of 30.2 to 64.6 Hz, showed 

the maximum concentration of action potentials as shown in Figure 5. Furthermore, we found that neither the 

subject, as illustrated in Figure 6, nor the specific movement of any subject, as illustrated in Figure 7, affects 

the average relative energy of any level 

For each class of movement, the signal was reconstructed by combining all the decomposed levels 

using inverse MODWT; the original signal is shown in Figure 8, and the reconstructed signal of the 

corresponding movement is shown in Figure 9. The signal was also reconstructed from the level-5 and 

level-6 coefficients, as shown in Figure 10, because the highest energy was found at these levels, and we 

observed that the resulting signal appears close to the signal reconstructed from the coefficients of all levels. 

 

 

 
 

Figure 5. Average MUAP at different frequencies for levels 

 

 

 
 

Figure 6. Average MUAP of different frequency levels of different subjects 
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Figure 7. Average MUAP of different frequency levels for different movements  

 

 

 
 

Figure 8. The original surface EMG signal 

 

 

 
 

Figure 9. The reconstructed signal with inverse MODWT 

 

 

 
 

Figure 10. The signal reconstructed from the coefficients of level 5 and level 6 

 

 

After decomposition and reconstruction of the sEMG signals, we perform a correlation analysis 

between the original and reconstructed signals to evaluate the accuracy. Correlation analysis is one of the 

popular techniques for determining the similarities or differences between two sets of multidimensional data. 

If the shapes of two curves are identical, the cross-correlation coefficient R=1; if not, it will be any value 
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between 0 and 1. Tables 4 and 5 display the value of the correlation coefficients for each of the fifteen classes 

of data from subjects 4 and 5, and Table 6 shows the average value of the correlation for all subjects.  

The average accuracy of decomposition and reconstruction was found to be 95.8%. Figure 11 shows 

the decomposition accuracy over the fifteen classes of movement. Figure 12 shows the decomposition 

accuracy of all fifteen classes of movement for all the subjects, respectively. 

We investigated the decomposition and reconstruction accuracy results for various movements and 

channels. About different subjects as shown in Figure 14 and diverse movements as shown in Figure 15, the 

investigation discovered that channel 2 had the highest average accuracy of 95.8%. The outcome confirms 

the earlier finding from [39] where Ch-2 and 4 were found to be dominating for the 15 classes of movements 

during the classification of the movements. This leads to a reduction in overhead and dimensionality, which 

are crucial to wearable and real-time prosthetic applications. 

 

 

Table 4. Correlation between the original and reconstructed signals (S-4) 
CH HC II IM IMR LL MM MR MRL RL RR TI TL TM TR TT 

Ch-1 0.805 0.859 0.839 0.868 0.824 0.867 0.864 0.849 0.867 0.875 0.756 0.751 0.801 0.838 0.857 

Ch-2 0.950 0.952 0.950 0.962 0.960 0.952 0.947 0.932 0.947 0.960 0.936 0.978 0.988 0.980 0.967 

Ch-3 0.815 0.867 0.849 0.908 0.881 0.867 0.838 0.901 0.900 0.884 0.838 0.874 0.872 0.806 0.863 
Ch-4 0.860 0.801 0.817 0.798 0.827 0.819 0.828 0.900 0.848 0.906 0.769 0.791 0.956 0.830 0.824 

Ch-5 0.918 0.827 0.809 0.830 0.829 0.816 0.856 0.806 0.815 0.833 0.856 0.817 0.955 0.902 0.807 

Ch-6 0.883 0.731 0.666 0.735 0.768 0.731 0.690 0.719 0.734 0.773 0.841 0.652 0.942 0.892 0.769 
Ch-7 0.742 0.892 0.845 0.872 0.897 0.873 0.817 0.861 0.721 0.902 0.754 0.875 0.834 0.911 0.881 

Ch-8 0.780 0.817 0.804 0.849 0.832 0.815 0.640 0.490 0.478 0.921 0.571 0.854 0.724 0.793 0.820 

 

 

Table 5. Correlation between the original and reconstructed signals (S-5) 
  HC II IM IMR LL MM MR MRL RL RR TI TL TM TR TT 

Ch-1 0.979 0.964 0.980 0.974 0.812 0.948 0.976 0.979 0.867 0.966 0.837 0.892 0.936 0.871 0.764 

Ch-2 0.991 0.991 0.989 0.985 0.981 0.988 0.988 0.991 0.988 0.992 0.987 0.990 0.983 0.981 0.984 

Ch-3 0.970 0.973 0.953 0.959 0.956 0.961 0.964 0.951 0.952 0.946 0.961 0.968 0.950 0.954 0.970 
Ch-4 0.953 0.958 0.918 0.927 0.939 0.949 0.932 0.928 0.906 0.954 0.950 0.931 0.940 0.918 0.962 

Ch-5 0.677 0.781 0.754 0.777 0.854 0.803 0.793 0.787 0.697 0.743 0.895 0.935 0.828 0.781 0.798 

Ch-6 0.801 0.730 0.737 0.843 0.713 0.761 0.932 0.757 0.695 0.718 0.930 0.928 0.917 0.755 0.719 
Ch-7 0.716 0.880 0.853 0.788 0.882 0.921 0.863 0.914 0.857 0.883 0.917 0.970 0.795 0.855 0.836 

Ch-8 0.917 0.907 0.880 0.883 0.903 0.907 0.851 0.920 0.912 0.932 0.888 0.953 0.799 0.910 0.833 

 

 

Table 6. Average correlation between the original and reconstructed signals 
 HC II IM IMR LL MM MR MRL RL RR TI TL TM TR TT 

S-1 0.932 0.929 0.914 0.899 0.898 0.943 0.980 0.898 0.941 0.939 0.948 0.944 0.899 0.940 0.958 

S-2 0.899 0.959 0.893 0.940 0.912 0.949 0.987 0.943 0.945 0.914 0.900 0.957 0.977 0.937 0.976 

S-3 0.969 0.987 0.898 0.931 0.939 0.957 0.946 0.911 0.930 0.953 0.927 0.957 0.921 0.936 0.988 
S-4 0.950 0.952 0.950 0.962 0.960 0.952 0.947 0.932 0.947 0.960 0.936 0.978 0.988 0.980 0.967 

S-5 0.991 0.991 0.989 0.985 0.981 0.988 0.988 0.991 0.988 0.992 0.987 0.990 0.983 0.981 0.984 
S-6 0.955 0.845 0.820 0.961 0.973 0.947 0.969 0.967 0.950 0.864 0.867 0.977 0.874 0.868 0.839 

S-7 0.886 0.945 0.956 0.892 0.973 0.897 0.897 0.857 0.881 0.898 0.967 0.931 0.930 0.968 0.939 

S-8 0.899 0.882 0.940 0.927 0.896 0.911 0.939 0.973 0.963 0.920 0.915 0.915 0.907 0.938 0.874 

 

 

  
  

Figure 11. Average decomposition accuracy of 

different classes of movement (Ch-2) 

Figure 12. Average decomposition accuracy of 

different subjects 
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Figure 14. Average decomposition accuracy of 

different channels 

Figure 15. Average decomposition accuracy of 

different channels for different movement 

 

 

4. CONCLUSION 

Decomposition of EMG signals is challenging due to the complexity and unpredictable nature of 

muscle activity patterns. Therefore, a comprehensive assessment of signal processing techniques and 

validation methodologies is required to ensure the correctness and dependability of the results. This paper 

presents a successful method for multiresolution decomposition and denoising of surface EMG data from 

fifteen finger movements using the MODWT and a 4th-order Daubechies filter. The most significant finding 

of this work is the identification of particular frequency bands with the highest levels of motor neuron 

activation. This finding shows that the quality and interpretability of sEMG signals linked to finger motions 

are successfully improved by the suggested MODWT-based multiresolution decomposition technique. We 

also found that the average relative energy of each level remains independent of the movement of any 

individual or subject. Additionally, the channel selection technique based on average relative energy reduces 

computational complexity without sacrificing performance, which is essential for embedded and wearable 

systems that require real-time applications. A correlation examination between the original and reconstructed 

signals revealed that the average reconstruction and decomposition accuracy was 95.8%. The detection of 

particular frequency bands that correlate with the firing of motor neurons during finger motions is a 

remarkable result. This knowledge has physiological ramifications since it can help with the creation of 

neuromuscular models and neuroprosthetic adaptive control algorithms. As interest in biomedical signal 

processing and human-centered computing grows, we hope that this research will contribute to improving the 

functionality of control systems in gesture-based interfaces, rehabilitation equipment, and prosthetics.  
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