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This article presents a solution that leverages artificial intelligence
techniques to enhance urban freight transportation planning and organization
through the integration of weather forecasting data. We identify key
challenges in the current urban logistics landscape and introduce a range of
machine learning models designed to predict delivery delays. Logistic

regression serves as the foundational model, analyzing historical delivery

data in conjunction with weather conditions to assess the likelihood of
Keywords: delays, thus enabling informed decision-making for companies.
Additionally, we evaluate two other machine learning models to determine
the most effective approach for our specific context, assessing their accuracy
and capacity to deliver actionable insights. By improving the predictive
Random forest capabilities of urban freight systems, this research aims to streamline
Urban logistic operations, reduce costs, and enhance overall service reliability, contributing
Weather forecasting to more efficient and resilient urban transportation networks.
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1. INTRODUCTION

Logistics in the supply chain involves the strategic transportation of goods from manufacturing sites
to consumers, a process increasingly complicated by unpredictable weather conditions. Severe weather
events such as heavy rain, snow, and strong winds pose significant challenges, leading to delivery delays [1],
hazardous road conditions, and disruptions in port operations. These issues affect logistics efficiency and can
result in financial losses and diminished customer satisfaction. The core problem lies in the inability to
effectively predict and respond to these weather-related disruptions, which can cascade through the supply
chain, impacting inventory management and overall operations. As such, logistics management companies
must implement robust planning strategies to mitigate these risks, relying heavily on technology to monitor
and adapt to changing weather conditions [2]. In response to this challenge, we propose a solution that
integrates weather application programming interface (API) into supply chain management systems. These
APIs provide real-time and forecasted weather data, enabling logistics firms to optimize routes and make
informed decisions proactively. By analyzing up-to-date weather forecasts, delivery planners can adjust
routes to avoid adverse conditions, ensuring safer and more timely deliveries. Additionally, predictive
analytics offered by these APIs allow logistics companies to anticipate weather patterns, facilitating better
resource allocation and inventory planning. This strategic approach aims to enhance the resilience of urban
freight transportation, ultimately improving service reliability and operational efficiency.
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2. METHOD

2.1. Architectural overview of the proposed solution

The proposed architecture illustrated in Figure 1 (blue bloc), the MuleSoft batch process “logistics-
weather-enrichment-bch” plays a central role in orchestrating the data flow. First, it retrieves logistics data
from a comma-separated values (CSV) file, which contains details such as delivery locations, delivery status,
and other relevant information. Next, the batch queries a historical weather API for each delivery location to
gather weather data such as temperature, humidity, or precipitation at the delivery time Once the logistics and
weather data are collected, the batch process performs a series of transformations including cleaning,
structuring the data into a consistent format that is suitable for further analysis, and joining the logistics data
with the corresponding weather data for each delivery, ensuring that all the necessary information is aligned.
The enriched data is then stored in “logistics-working-db” database, where it becomes ready for use in
training machine learning models. This dataset will serve as the foundation for training a predictive model
that can forecast delivery delays based on past weather and logistics data. This approach ensures that the
model has access to historical data for both logistics operations and weather conditions, making it more
accurate in its predictions.

The (green bloc) of Figure 1 focuses on training a machine learning (ML) model for predicting
delivery delays based on historical logistics data and weather conditions stored in the database “logistics-
working-db”. The workflow involves data retrieval, model training, model storage in a model registry, and
exposing an API for prediction. Here is how the entire process works:

a. The process begins with retrieving the historical logistics data and weather data stored in the database
“logistics-working-db” where the data has already been enriched with historical weather conditions. This
data includes delivery timestamps, locations, weather data (e.g., temperature and precipitation), and other
relevant logistics information.

b. Once the data is retrieved, the script processes the data, performs feature engineering such as handling
missing values, encoding categorical features, and scaling numerical values, and trains the model using
two algorithms: linear regression and random forests.

c. After training, the model is saved and stored in a model registry that tracks different versions of the
model, which is essential for version control and reproducibility. Each model version has associated
metadata, such as training configuration (hyperparameters used, dataset version) and evaluation metrics
(e.g., accuracy, F1 score).

d. Once the model is trained and registered, a model REST API is created to serve the trained model. The
API accepts the same type of data (delivery details, weather conditions) that the model was trained on,
performs the necessary pre-processing, and returns the predicted delivery delay.

e. The Process API “logistics-weather-enrichment-prc” which will be detailed later in the manuscript, calls
the model REST API to make predictions. This interaction ensures that when new data is processed
through the pipeline, it can trigger a prediction based on the trained model.
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Figure 1. Architecture of machine learning and batch processing pipelines for delivery delay prediction and
weather-enriched logistics data

Once the machine learning model has been trained on historical data, the architecture shown in
Figure 2 is set up to process incoming delivery orders in real-time and predict potential delays. The process
begins when the experience API receives logistic data from the incoming delivery order through a delivery
Webhook. This initiates the flow of data into the system. The experience API then passes the order
information to the Process API, which is responsible for further data processing and integration with external
services. The Process API consolidates this data, including the delivery details and the predicted delay, and
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sends it to the system API. The system API is responsible for storing the enriched data in a database for

future reference and analysis. Let’s break down this architecture illustrated in Figure 2 and explain the role

and functionality of each API in detail:

a. Experience API: it handles the incoming logistics data and serves as the first point of interaction for the
system. It exposes an endpoint that captures the incoming logistic data pushed via the delivery Webhook
and forwards it to the MuleSoft “q.logistics.delivery.vI” queue where it can be subsequently handled by
the Process API for further processing and analysis.

b. Process API: it is responsible for retrieving logistics data from the MuleSoft queue “q.logistics.delivery.vI”.
Once it receives the data, the API performs essential data enrichment tasks. This includes calling the
external Weather API to fetch historical weather data relevant to the delivery location and timeframe. The
Process API also applies core business logic, such as data transformation, validation, and necessary
calculations, to ensure the logistics data is properly prepared for further analysis. In addition, the Process
API calls the prediction ML API to generate accurate delivery delay predictions based on the enriched
data. Once the prediction is generated, the Process API indexes the enriched data in Elasticsearch to
enable real-time analytics. It then forwards the enriched and predicted data to the MuleSoft queue
“q.logistics.weather.delivery.vl” for downstream consumption, allowing the system API to manage
storage and indexing for future use.

c. System API: it is responsible for capturing the enriched logistics data, including the delivery predictions,
from the MuleSoft queue “q.logistics.weather.delivery.vl”. Once the data is retrieved, the system API
stores the enriched data, including both the original logistics details and the generated delivery predictions
in the database “logistics-working-db”. This ensures the data is securely saved and made available for
future reference, reporting, and further analysis. This architecture ensures that the system can process and
predict delivery delays effectively in real-time, using historical data for prediction while also enabling
continuous monitoring and reporting through Elasticsearch.
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Figure 2. High-level design for logistics data processing and delivery delay forecasting
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In the current architecture, the solution is designed to continuously evolve and enhance its
predictions over time. By integrating real-time data and regularly retraining the machine learning model, the
system ensures that its predictions remain both accurate and relevant. The system API plays a crucial role in
this process by triggering model retraining. As shown in Figure 3, when the volume of new data stored in the
database exceeds a predefined threshold, the system API activates a separate batch” logistics-weather-
training-bch” (as detailed in Figure 2) to initiate the retraining of the model. This approach ensures that the
machine learning model is continuously updated with the latest data, improving its accuracy and predictive
capabilities [3].
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Figure 3. Continuous model improvement and retraining process

2.2. Data exploration and preprocessing

Our system leverages an application programming interface (API) to retrieve historical weather data,
providing crucial insights into past weather conditions. The weather REST API (https://archive-api.open-
meteo.com/v1/era/5) functions efficiently by using the input data from the CSV file as query parameters
specified in Table 1 to fetch the relevant weather information. By integrating the weather API, our system
gains access to historical weather patterns, which play a key role in predicting delivery delays. This historical
weather data enriches our predictions, improving our forecasts’ accuracy and reliability [4]. The historical
weather API appears as:

Table 1. Weather API input specifications

Parameter Format Required Value (example) Description
Latitude, Floating point Yes 18.35909462 Geographical WGS84 coordinate of
longitude 66.07995606 the location
Start_date, String (yyyy- No 2018-02-03 The time interval to get weather
end date mm-dd) 20218-02-06 data
Timezone String No Auto All timestamps are returned as local
daily time
String array No Rain_sum,weathercode, A list of daily weather variable
Precipitation_sum, precipitation_hours, aggregations

snowfall sum

Data cleaning is a crucial step in the machine learning pipeline [5], involving the identification and
correction of errors, inconsistencies, and inaccuracies in the dataset. High-quality, clean data is fundamental
for building reliable and accurate machine learning models. Below are some of the common data-cleaning
techniques we applied to our dataset:

a. Handling missing values: identify and address missing data by removing rows and columns with
excessive missing values and using imputation techniques [6] to fill in the gaps.

b. Data type conversion: ensure that the data types used in the dataset are compatible with the machine
learning algorithm. For instance, we converted categorical variables into a numerical format using
methods like one-hot encoding [7] and label encoding [8].

c. Removing duplicates: identify and eliminate duplicate [9] records to avoid redundancy and improve
model accuracy.

d. Encoding categorical data: convert categorical variables into a format suitable for machine learning
models.

Enhancing supply chain agility with advanced weather forecasting (Imane Zeroual)
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We used one-hot or label encoding techniques, which transform non-numeric data into numerical values.
Cleaning time-series data: for time-series data, we address challenges such as missing timestamps, irregular
intervals, and seasonality by filling gaps or resampling the data to ensure consistency. Effective data cleaning
[10] significantly improves the performance and reliability of machine learning models by ensuring that the
data is well-prepared for analysis.

The logistics data contains various variables related to the delivery of different products. These
variables include information such as “days for shipping (actual),” “days for shipment (scheduled),” “delivery
status,” “late delivery risk,” and more. Table 2 provides an overview of some of the values in these columns.

Table 2. Examples of column values in the logistics dataset
Column name Type Values (example) Description
A binary variable, coded as 0 or 1. 1 indicates that the delivery is

Late delivery risk  Numerical Oorl late, while 0 indicates it’s on time
Advance shipping,
Delivery status Categorical Late delivery, Represents the status of the order delivery
Shipping on time
Latitude Numerical 18.35909462 Represents the geographical location of the delivery destination

The dataset includes several columns irrelevant to our analysis, as they either lack utility or do not
significantly contribute to the predictive modeling tasks. As a result, we will initiate a data selection process
to improve model efficiency. Feature selection is a key step in the machine learning pipeline [11] where we
identify and retain the most relevant features from the original dataset. This process is important for several
reasons:

a. Dimensionality reduction: by removing irrelevant or redundant features, we reduce the dimensionality of
the dataset [12], which helps in faster model training and improves model generalization.

b. Improved model performance: selecting only the most informative features can enhance the model’s
accuracy while reducing the risk of overfitting.

c. Enhanced interpretability: fewer features typically make the model easier to interpret and understand,
which is particularly important in practical applications.

There are several methods for feature selection, including:

a. Correlation-based methods: identifying highly correlated features [13] to eliminate redundant variables.
Tree-based methods: using decision trees or tree ensemble methods (e.g., random forests) to rank feature
importance [14].

b. Dimensionality reduction: techniques such as principal component analysis (PCA) [15] to reduce the
number of features.

c. Feature importance scores: estimating the relevance of each feature based on how it contributes to model
predictions [16].

We have chosen to rely on feature importance scores because they are well-suited to our dataset and
the machine learning algorithms we plan to use. Moreover, it is often beneficial to experiment with different
feature selection techniques and assess their impact on model performance through cross-validation [17].
This process will guide us in selecting the most significant features for our predictive model. We proceeded
to a feature important score from a feature selection analysis. The scores in Table 3 demonstrate how
important each feature is in predicting the target variable (late delivery risk):

Table 3. Selected features from the feature selection process

Feature Importance
4 Latitude 0.290747
5 Longitude 0.261602
0 Elevation 0.226257
1 Rain avg 0.122533
2 Precipitation_hours_avg 0.084280
3 Snowfall sum 0.014581

Feature importance scores help quantify the contribution of each variable to the model’s predictions.
Features with higher scores, such as Latitude and Longitude, are considered more influential in determining
the target variable:
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a. Longitude: ranking second with a score of about 0.2616, Longitude also plays a critical role in forecasting
the target variable. Like Latitude, changes in Longitude substantially affect the model’s predictions.

b. Elevation: with a feature importance score of around 0.2263, Elevation is important but less so than
latitude and longitude. Despite its relatively lower importance, changes in Elevation still have a notable
effect on the model’s predictions.

c. Rain avg: with a score of approximately 0.1225, Rain avg contributes less than the geographical features
(Latitude, Longitude, and Elevation), but it still holds significant predictive power in the model.

d. Precipitation hours avg: this feature has a significance score of about 0.0843. While it is less influential
than Rain_avg, it still provides valuable information for the model’s predictions.

e. Snowfall sum: at 0.0146, snowfall sum has the lowest feature importance score. This indicates that
relative to the other variables, it has the least influence on predicting (late delivery risk).

2.3. Machine learning models used for predicting delivery delays

We employed two machine learning models to predict delivery delay: Logistic regression and
random forest. These models were chosen for their proven effectiveness in classification tasks and their
ability to handle different types of data relationships:

a. Logistic regression is a widely used machine learning algorithm for predictive tasks in various domains. It
is commonly used for both binary and multi-class classification, making it versatile for different scenarios
[18].

b. Random forest is a popular machine learning algorithm often used for classification and regression tasks.
It is an ensemble learning algorithm that constructs multiple decision trees, each trained on a random
subset of features at each split, to minimize the variance between correlated trees. By averaging the
predictions of individual trees, it enhances predictive accuracy and helps mitigate overfitting, resulting in
a more robust model [19].

3.  RESULTS AND DISCUSSION

Let’s now explore the accuracy of the results obtained through these methods and examine how each
contributes to enhancing the overall performance of the delivery delay prediction system. As shown in
Table 4, the logistic regression model achieves an accuracy of 0.61, indicating its ability to make correct
predictions. However, the random forest model outperforms it significantly, with an accuracy of 0.98. This
considerable difference suggests that the random forest model excels at identifying patterns and making
precise predictions regarding delivery delays. Given these results, the random forest model has proven to be
more effective for this prediction task, offering valuable insights for identifying and mitigating late deliveries.

Table 4. Accuracy metrics for delivery delay prediction models

Model Accuracy
Logistic regression 0.61
Random forest 0.98

Next, we employed a confusion matrix to evaluate the performance of both models [20]. The
confusion matrix is an NXN table, where N represents the number of target classes. It is used to compare the
actual values of the target variable against the predictions made by the machine learning model. Since we are
dealing with a binary classification problem [21], we used a 2x2 matrix. The outcomes of the confusion
matrix for both models are presented below in Figures 4(a) and 4(b).

To further evaluate the performance of both models, we generated a classification report that
provides a comprehensive view of each model’s predictive capabilities as shown in Figure 5(a) and 5(b). The
classification report includes key metrics such as precision, recall, F1-score, and support, which give insight
into how well each model performs across different classes. These metrics not only assess overall accuracy
but also highlight the model’s behavior when handling imbalanced classes or more challenging predictions.
By analyzing these key metrics, we can gain a deeper understanding of each model’s strengths and
weaknesses. This is crucial for identifying areas where the models may need improvement, particularly in
cases where a higher precision or recall might be more important depending on the specific business
requirements, such as minimizing false positives in delivery delays or reducing missed delays. Let’s break
down the key metrics in the classification report:

The classification report provides a detailed evaluation of a classification model’s performance, such
as logistic regression and random forest, using various metrics. Let’s break down the key metrics presented in
the classification report:
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a. Logistic regression:

Precision (0): measures how many instances predicted as 0 (no late delivery) were 0. It is calculated as

TPIFP In this case, the precision is 0.62, meaning that 62% of the instances predicted as (no late

delivery) were correctly classified as (No Late Delivery).
Recall (0): measures how many actual 0 (No Late Delivery) instances were correctly predicted as 0. It is

calculated as The recall for 0 is 0.71, indicating that 71% of the actual (no late delivery) instances

TP+FN’
were correctly predicted.

F1-score (0): is the harmonic mean of precision and recall [22], providing a balance between the two. It

. isi u .
is calculated as ZX(Pre_Cl_Slon xRecall) . For class 0, the F1-score is 0.66.
Precision XRecall
Support (0): represents the number of actual instances of class 0 in the test set. In this case, the support is

210,969.

Confusion Matrix Confusion Matrix
200000
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175000
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No Late Delivery 61636 No Late Delivery 209407 150000
120
] = 125000
2 110 2
uEJ - % 100000
[ [
, 900 75000
Late Delivery 93441 95790 Late Delivery 186153 50000
800
700 25000
No Late Delivery Late Delivery No Late Delivery Late Delivery
Predicted label predicted label
(a) (b)

Figure 4. Confusion matrix comparison: (a) logistic regression and (b) random forest

Classification Report for Logistic Regression:
precision recall fl-score support

0 0.62 0.71 0.66 210969

1 0.61 8.51 0.55 189231

accuracy 0.61 400200

macro avg 0,61 0.61 0,61 400200

weighted avg 0.61 8.61 0.61 400200
(a)

Classification Report for Random Forest:
precision  recall fl-score support

] 0.99 0.99 0.99 210969

1 0.99 0.98 0.99 189231

accuracy 0.99 400200

macro avg 0.99 0.99 0.99 400200

weighted avg 0.99 0.99 0.99 400200
(b)

Figure 5. Classification evaluating classification model performance: a comparison of (a) logistic regression

and (b) random forest

Now, let’s interpret the metrics for class 1 (late delivery):

Precision (1): precision for class / is 0.61, meaning that among the instances predicted as (late delivery),
61% were correctly classified as (late delivery).

Int J Elec & Comp Eng, Vol. 15, No. 6, December 2025: 5904-5913



Int J Elec & Comp Eng ISSN: 2088-8708 a 5911

— Recall (1): recall for class 7 is 0.51, indicating that 51% of the actual (late delivery) instances were
correctly predicted.

— F1-Score (1): the F1-score for class / is 0.55, balancing precision and recall for this class.

— Support (1): the support for class 7 is 189,231, representing the actual instances of (late delivery) in the
test set.

— Accuracy: the overall accuracy of the logistic regression model is 0.61, meaning that the model correctly
predicted the class labels [23] for 61% of the instances in the test set.

— Macro Avg: the macro average is the average of precision, recall, and Fl-score for both classes,
providing an overall summary of model performance across all classes [24]. In this case, the macro
average is 0.61.

— Weighted Avg: the weighted average is the average of precision, recall, and F1-score, weighted by the
number of instances for each class [25]. This gives a performance measure that takes class imbalances
into account. In this case, the weighted average is also 0.61.

b. Random forest

The interpretation of the classification report for random forest is like that of logistic regression.
However, the random forest model demonstrates exceptional performance with significantly higher precision,
recall, and Fl-scores for both classes (0 and 7). This indicates that random Forest achieved an impressive
99% accuracy in correctly classifying instances.

In summary, when comparing the two models, random Forest outperforms logistic regression across
accuracy, precision, recall, and F1-score for both classes. This suggests that random Forest is more effective
at classifying instances of both (no late delivery) and (late delivery) based on the given features. A good
model is one with high true positive (TP) and true negative (TN) rates and low false positive (FP) and false
negative (FN) rates.

The use of logistic regression and random forest algorithms to forecast late deliveries is a powerful
way to address a significant challenge in the logistics industry [26], [27]. Logistic Regression is an effective
method for predicting binary outcomes, such as whether a delivery will be late. By analyzing historical
supply chain data, logistic regression can estimate the probability of late deliveries based on factors like prior
delivery times, routes, and shipment characteristics. When combined with real-time weather data from APIs,
logistic regression can further incorporate weather-related variables such as precipitation, temperature, and
road conditions, offering a more comprehensive and accurate forecast. On the other hand, the random forest
technique provides a more complex and robust modeling approach [28].

3. CONCLUSION

In conclusion, using logistic regression and random forest algorithms to predict late deliveries, in
combination with supply chain data and weather API integration, offers a data-driven strategy with the
potential to transform the logistics industry. These algorithms enable logistics professionals to anticipate and
minimize disruptions by leveraging both historical data and real-time weather information. As a result, they
enhance delivery reliability and customer satisfaction in an increasingly complex and unpredictable world.
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