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 Ultrasound tomography is a powerful and widely utilized imaging technique 

in the field of medical diagnostics. Its non-invasive nature and high 

sensitivity in detecting small objects make it an invaluable tool for 

healthcare professionals. However, a significant challenge associated with 

ultrasound tomography is that the reconstructed images often contain noise. 

This noise can severely compromise the accuracy and interpretability of the 

diagnostic information derived from these images. In this paper, we propose 

and rigorously evaluate the application of a median filter to address and 

mitigate noise artifacts in the reconstructed images obtained through the 

distorted born iterative method (DBIM). The primary aim is to enhance the 

quality of these images and thereby improve diagnostic reliability. The 

effectiveness of our proposed noise reduction approach is quantitatively 

assessed using the normalized error evaluation metric, which provides a 

precise measure of improvement in image quality. Furthermore, to enhance 

the interpretability and utility of the reconstructed images, we incorporate a 

basic machine learning technique known as K-means clustering. This 

method is employed to automatically segment the reconstructed images into 

distinct regions that represent objects, background, and noise. Hence, it 

facilitates a clearer delineation of different components within the images. 

Our results demonstrate that K-means clustering, when applied to images 

processed with the proposed median filter method, effectively delineates 

these regions with a significant reduction of noise. This combination not 

only enhances image clarity but also ensures that critical diagnostic details 

are preserved and more easily interpreted by medical professionals. The 

substantial reduction in noise achieved through our approach underscores its 

potential for improving the accuracy and reliability of ultrasound 

tomography in medical diagnostics. 
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1. INTRODUCTION 

According to alarming statistics from the World Health Organization (WHO), approximately  

10 million women worldwide succumb to breast cancer each year. This staggering figure underscores the 

critical importance of early detection in the battle against this pervasive disease. Early detection is not just 

beneficial but can be life-saving, as it significantly enhances survival rates—potentially increasing them by 

up to 25% [1]. Therefore, identifying abnormal tumors while they are still in their early stages is absolutely 

crucial. Mammography [2] is a widely employed screening tool for breast cancer, particularly among 

https://creativecommons.org/licenses/by-sa/4.0/
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postmenopausal women. However, its effectiveness is notably reduced in women under the age of 50. This 

age group typically has denser breast tissue, which poses a significant challenge for mammography. The 

dense tissue provides less contrast, making it difficult to detect small tumors. As a result, many cases may be 

missed, delaying critical treatment. In contrast, ultrasound technology presents a highly promising alternative 

for breast cancer diagnosis in younger women. Unlike mammography, ultrasound can penetrate dense breast 

tissue and visualize small tumors that might otherwise remain undetected. This makes it a valuable tool for 

early diagnosis and intervention in women who are under 50. The ability of ultrasound to effectively identify 

these small tumors could lead to earlier and more accurate diagnoses, ultimately improving survival rates and 

outcomes for this demographic [3]. Thus, integrating ultrasound into routine screening protocols for younger 

women could be a game-changer in the fight against breast cancer, potentially saving countless lives each 

year.  

Ultrasound with frequencies ranging from 1 to 20 MHz [4] is one of the most widely used 

paradigms in biomedical imaging due to its safety, noninvasiveness, and non-ionizing nature, making it an 

invaluable tool for clinical diagnosis. This imaging modality has gained extensive application in medical 

settings, being utilized for a wide range of purposes, from obstetrics to cardiology and beyond. Despite its 

widespread use, conventional ultrasound machines rely on reflected signals, which present a significant 

limitation: they cannot accurately reproduce structures smaller than the wavelength of the ultrasound waves. 

In contrast, the ultrasound tomographic method offers a superior imaging approach with numerous 

advantages over traditional techniques such as X-ray [5], computed tomography (CT) [6], and magnetic 

resonance imaging (MRI) [7]. Ultrasound tomography operates on the principle of backscatter, enabling it to 

resolve structures smaller than the wavelength of the incident wave. This capability sets it apart from 

traditional imaging methods, which primarily rely on echo techniques. By leveraging material properties such 

as sound contrast, attenuation, and density, ultrasound tomography can effectively identify and visualize 

small-sized objects within the body. These advanced imaging capabilities not only enhance the accuracy of 

diagnoses but also expand the potential applications of ultrasound in medical practice. For instance, the 

improved resolution and contrast can aid in early detection of tumors, detailed imaging of soft tissues, and 

precise assessment of blood flow. Consequently, ultrasound tomography represents a significant 

advancement in medical imaging, offering a combination of safety, efficiency, and detailed resolution that is 

unmatched by many other imaging technologies. 

Ultrasound tomography typically employs the Born approximation, which assumes that the 

scattering field is significantly smaller compared to the incident field. This approximation is widely accepted 

and has become a foundational concept in the field. In the realm of diffraction tomography, the distorted born 

iterative method (DBIM) is particularly popular due to its effectiveness in handling complex scattering 

problems [8]–[10]. Currently, the main application of this technique is only for breast imaging in women to 

detect cancer-causing cells [11]–[13]. However, the imaging process is often plagued by inherent noise, 

which can compromise the efficacy and clarity of DBIM-reconstructed images. To address this issue, we 

introduce a median filtering technique aimed at reducing noise without compromising the structural integrity 

of the images. Our study involves several key steps: the acquisition of ultrasound tomographic data, the 

reconstruction of these data using the DBIM method, and the subsequent application of the median filter to 

the reconstructed images. We meticulously analyze the impact of the median filter on noise reduction and 

overall image quality. To quantitatively assess the effectiveness of our approach, we employ evaluation 

metrics such as normalized error, which provides a robust measure of noise reduction efficacy. Moreover, 

various solutions leveraging machine learning algorithms have been proposed to enhance the quality of 

ultrasound images [14]–[18]. These approaches often involve complex computational techniques to improve 

image clarity and diagnostic accuracy. By integrating median filtering with DBIM and exploring machine 

learning enhancements, our study aims to provide a comprehensive solution to the challenges posed by noise 

in ultrasound tomography. The results demonstrate that our proposed method significantly reduces noise 

while maintaining the essential structural details of the images, thus improving the overall quality and 

reliability of ultrasound tomographic imaging.  

In addition to devising an image restoration algorithm in DBIM utilizing the median filter, this study 

also advocates for the utilization of a machine learning algorithm to segment the reconstructed image into 

distinct domains of object, background, and noise. Image segmentation is a critical task in image processing, 

and while there are several sophisticated algorithms available for this purpose—such as mean-shift, the 

watershed algorithm, graph cut, region growing, the active contour model, convolutional neural networks 

(CNN), U-Net, and fuzzy C-means clustering—the simplicity and computational efficiency of K-means 

clustering make it the preferred choice for this study. Each of these advanced algorithms has its own 

strengths and applications; however, their complexity often demands significant computational resources and 

expertise, which may not be necessary for the segmentation needs in this context. Thus, a straightforward 

machine learning approach, K-means clustering, is employed to automatically divide the reconstructed image 
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into distinct domains representing objects, background, and noise. K-means clustering operates by 

partitioning the image data into clusters based on pixel intensity values, ensuring that pixels within the same 

cluster are more similar to each other than to those in different clusters. This method is not only efficient but 

also highly effective for the purpose of this study. The results demonstrate that K-means clustering 

effectively discriminates the regions in images obtained via the proposed method, significantly reducing the 

presence of noise in the recovered images. This enhancement in image quality underscores the potential of 

combining median filtering with K-means clustering for improved image segmentation and restoration in 

ultrasound tomography. 

While the DBIM is a powerful inversion framework for ultrasound tomography, it is highly 

sensitive to noise in the measured data, often producing artifacts that obscure structural boundaries. Current 

methods either apply post-processing filters after reconstruction or rely on computationally intensive deep 

learning models, both of which pose limitations in real-time or resource-constrained applications. This study 

addresses that gap by embedding a computationally efficient median filtering step within each iteration of 

DBIM, thereby reducing noise accumulation early in the reconstruction process. Additionally, we introduce 

K-means clustering as a post-reconstruction segmentation tool to delineate meaningful regions in the image 

without requiring annotated training data. Together, these enhancements form a lightweight yet effective 

framework for improving image quality in practical ultrasound tomographic systems. 

The remainder of this paper is organized as follows. Section 2 presents the theoretical foundation of 

ultrasound tomography, describes the DBIM, and introduces the proposed enhancement framework 

integrating median filtering and K-means clustering. Section 3 provides the simulation setup, evaluation 

metrics, and experimental results comparing the proposed method with conventional DBIM and dual-

frequency DBIM. Section 4 discusses the key findings, compares with related work, addresses limitations, 

and outlines directions for future research. Finally, section 5 concludes the paper. 

 

 

2. METHOD 

The transceiver configuration diagram illustrates the setup of the ultrasound tomography system 

utilized in the DBIM, depicted in Figure 1. This diagram delineates the arrangement of transmitters and 

receivers within the system. The object under investigation is a minute cylindrical entity positioned within an 

expansive and uniform medium (in this case, a water environment). Our primary aim is to create a 

comprehensive image of this cylindrical object, designated as the region of interest (ROI). This ROI is 

meticulously partitioned into 𝑁×𝑁 squares, with each square representing a pixel, all sized uniformly at h. 

The configuration includes 𝑁𝑡 transmitters and 𝑁𝑟 receivers. The crux of our analysis lies in the objective 

function 𝑄(𝑟), which is determined by (1): 

 

𝚀(𝑟) = {
(2𝜋𝑓)2 (

1

𝑠1
2 −

1

𝑠0
2)  𝑖𝑓 𝑟 ≤ 𝑎

0 𝑖𝑓  𝑟 > 𝑎
 (1) 

 

where 𝑠1 represents the speed of wave propagation through the object, while 𝑠0 stands for the speed of 

propagation in the water medium. Meanwhile, the variable 𝑓 denotes the ultrasonic wave frequency and a 

signifies the radius of the object. 

Let's imagine an expansive realm characterized by a uniform medium, such as an endless expanse of 

water with a given wave number represented as 𝑘0. In this context, the governing equation for the 

propagation of waves within this system can be succinctly expressed as (2): 

 

𝛻2𝓅(𝑟) + 𝑘0
2𝓅(𝑟) = −∅𝑖𝑛𝑐(𝑟) − 𝚀(𝑟)𝓅(𝑟) (2) 

 

where 𝓅(𝑟) represents the aggregate sound pressure throughout the given space, while ∅inc(r⃗) signifies the 

sound source, with r⃗ denoting the positional vector. The resolution of (2) becomes feasible through the 

utilization of Green's function 𝐺0(r⃗): 

 

𝓅𝑠𝑐(𝑟) = 𝓅(𝑟) − 𝓅𝑖𝑛𝑐(𝑟) =∫ 𝚀(𝑟′⃗⃗⃗)𝓅(𝑟′⃗⃗⃗)𝐺0(𝑟, 𝑟′⃗⃗⃗⃗ ) 𝑑𝑟′⃗⃗⃗⃗
Ω

 (3) 

 

where 𝓅𝑠𝑐(𝑟) represents the scattering pressure, which signifies the pressure resulting from the scattering 

phenomenon. Conversely, 𝓅𝑖𝑛𝑐(𝑟) denotes the incident wave pressure generated by the source ∅inc(r⃗). The 

parameter Ω pertains to the spatial extent of the object intended for imaging.  
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Figure 1. Transceiver configuration diagram 

 

 

Given the assumption of a uniform environment surrounding the object, the Green function is found 

to be proportional to the zero-order Hankel function, denoted as 𝐻0
(2)

(𝑘0𝑟) or 𝑒(−𝑖𝑘0𝑟)/𝑟, extending to both 

two-dimensional and three-dimensional spaces. Equation (3) delineates the forward problem equation, 

serving the purpose of computing the pressure at any point outside Ω, once the aggregate pressure for all 𝑟 

within Ω has been determined.  

 

0(𝑟 = 𝑘(𝑟)2 − 𝑘0
2 

 

Equation (3) lends itself to discretization through the method of moments (MoM) [8], wherein it can 

be represented in matrix form. This process involves transforming the continuous equations into a discrete 

form suitable for computational analysis. By discretizing (3) using MoM, we derive a matrix equation 

governing the calculation of sound pressure within the region of interest (ROI):  

 

𝓅̅  = (𝐼 ̅ − 𝑉̅. 𝐷(𝚀̅))𝓅𝑖𝑛𝑐 (4) 

 

The calculation of scattering pressure outside the ROI area is performed as (5):  

 

𝓅̅𝑠𝑐 = 𝑈. 𝐷(𝚀̅). 𝓅̅ (5) 

 

where 𝐼 ̅ represents the identity matrix, and 𝐷(•) denotes the diagonalization operator, 𝑈 emerges as the 

matrix embodying coefficients pertinent to the Green function 𝐺0(𝑟, 𝑟′) originating from each pixel point 

towards the receiver. Conversely, 𝑉̅ embodies coefficients associated with the Green function 𝐺0(𝑟, 𝑟′) 

delineating interactions between pixels. Both 𝑈 and 𝑉̅ matrices undergo calculation as (6):  

 

𝐺(𝑟, 𝑟𝑚 𝑛)=∫ 𝐺0(𝑟, 𝑟′⃗⃗⃗⃗ )𝑏𝑚𝑛(𝑟′⃗⃗⃗⃗ ) 𝑑𝑟′⃗⃗⃗⃗  (6) 

 

here, 𝑏𝑚𝑛(𝑟′⃗⃗⃗⃗ ) represents the basic sinc function. In the inverse problem, our objective is to determine 𝚀(r⃗) 

given a set of measurements of the sound field 𝓅(𝑟, 𝑘) within the scattering region. However, if the wave 

number 𝑘(𝑟) is unknown, then (3) cannot be directly utilized to compute the object function because 𝓅(𝑟, 𝑘), 

where r⃗ ∈ Ω, is also unknown. Introducing the function 𝑘(𝑟) into consideration, Equation (3) can be 

reformulated as (7): 

 

𝓅(𝑟,⃗⃗⃗ 𝑘) = 𝓅𝑖𝑛𝑐,𝑘𝑟(𝑟)+∫ ∆𝚀(𝑟′⃗⃗⃗⃗ )𝓅(𝑟′⃗⃗⃗⃗ , 𝑘)𝐺𝑟(𝑟, 𝑟′⃗⃗⃗⃗ ) 𝑑𝑟′⃗⃗⃗⃗
Ω

 (7) 

 

within this context, the symbol 𝓅(𝑟′⃗⃗⃗⃗ , 𝑘) denotes the sound pressure corresponding to the wave number 

function 𝑘(𝑟), 𝓅𝑖𝑛𝑐,𝑘𝑟(𝑟) represents the sound pressure up to the background wave number 𝑘𝑟(𝑟) and 

 

∆𝚀(𝑟) = 𝚀(𝑟) − 𝚀𝑟(𝑟) (8) 
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𝚀𝑟(𝑟) = kr
2(𝑟) − k0

2 (9) 

 

In order to transform the inverse problem into a linear form that incorporates the unknown function 

𝑘(𝑟), we employ the first-order Born approximation method, wherein 𝓅(𝑟,⃗⃗⃗ 𝑘) ≈ 𝓅𝑖𝑛𝑐,𝑘𝑟(𝑟) = 𝓅(𝑟,⃗⃗⃗ 𝑘𝑟). This 

approximation facilitates the simplification of the complex relationship between the measured data and the 

unknown function 𝑘(𝑟), enabling a more tractable solution to be obtained. By adopting this method, we 

effectively linearize the problem as (10):  

 

𝓅(𝑟,⃗⃗⃗ 𝑘) −  𝓅(𝑟,⃗⃗⃗ 𝑘𝑟) ≈ ∫ ∆𝚀(𝑟′⃗⃗⃗⃗ )𝓅(𝑟′⃗⃗⃗⃗ , 𝑘𝑟)𝐺𝑟(𝑟, 𝑟′⃗⃗⃗⃗ ) 𝑑𝑟′⃗⃗⃗⃗  (10) 

 

Equation (10) serves as the foundational inverse problem equation. When a specific value for 𝑘𝑟(𝑟) 

is selected, it enables the computation of 𝓅(𝑟,⃗⃗⃗ 𝑘𝑟) and 𝐺𝑟(𝑟, 𝑟′⃗⃗⃗⃗ ) utilizing the forward problem approach. 

Central to (10) lies the unknown variable 𝑘(𝑟), which encapsulates vital information. Moreover, (10) holds 

the potential for discretization through the method of moments (MoM) as (11), (12): 

 

𝛥𝓅̅𝑠𝑐 = 𝑀̅. 𝛥𝚀̅ (11) 

 

M̅ = U̅. D(𝓅̅) (12) 

 

In this context, 𝛥𝓅̅𝑠𝑐 represents the difference between two vectors, where 𝓅̅𝑠𝑐 denotes the vector containing 

the values of the predicted scattering field 𝓅(𝑟,⃗⃗⃗ 𝑘𝑟), and 𝓅̅𝑠𝑐,𝑚 denotes the vector containing the values of the 

measured scattering field 𝓅(𝑟,⃗⃗⃗ 𝑘). Essentially, 𝛥𝓅̅𝑠𝑐 quantifies the deviation between the predicted and 

measured scattering fields. Additionally, 𝛥𝚀̅ stands for another vector comprising the values of 𝛥𝚀(𝑟). 

Noted that the unknown vector 𝚀̅ consists of 𝑁×𝑁 variables, which corresponds to the number of 

pixels within the ROI. The process of estimating the object function involves iterative procedures that 

iteratively update the elements of 𝚀̅ to converge towards the optimal solution. These iterative processes are 

essential for accurately reconstructing the object function from the ultrasound tomography data, as they 

refine the estimation of pixel values within the ROI, enhancing the overall quality of the reconstructed image. 

 

𝚀̅n = 𝚀̅(n−1) + ∆𝚀̅(n−1), (13) 

 

at the current step, 𝚀̅𝑛 and 𝚀̅(𝑛−1) denote the object functions representing the present and previous states, 

respectively. To quantify the variation between these states, we compute 𝚀̅, signifying the change in 𝚀̅, which 

can be determined by addressing the l2 nonlinear regularization problem. This problem aims to optimize the 

regularization parameter to minimize the discrepancy between 𝚀̅𝑛 and 𝚀̅(𝑛−1), thereby providing insight into 

the evolution of the object functions across iterations. Consequently, this approach facilitates a 

comprehensive understanding of the iterative process, enhancing the effectiveness of the optimization 

scheme in achieving convergence towards an optimal solution. 

 

Δ𝚀̅ = arg min
∆𝚀̅

‖∆𝓅̅sc
t

− Mt
̅̅̅̅ ∆𝚀̅‖

2

2
+ ϵ‖∆𝚀̅‖2

2, (14) 

 

here, ∆𝓅̅𝑠𝑐 represents a vector of dimensions 𝑁𝑡𝑁𝑟 × 1, encapsulating the disparities between the anticipated 

and actual scattered ultrasound signals. Concurrently, 𝑀̅𝑡 denotes the system matrix with dimensions 

𝑁𝑡𝑁𝑟 × 𝑁2. Lastly, ϵ serves as the regularization parameter, influencing the regularization process within the 

system. This parameter plays a crucial role in balancing the trade-off between fitting the observed data and 

controlling the complexity of the solution. Adjusting ϵ allows for the fine-tuning of the reconstruction 

process, ensuring optimal results tailored to the specific characteristics of the ultrasound tomography system 

under consideration. Therefore, understanding and appropriately selecting the value of ϵ are fundamental 

steps in achieving accurate and reliable reconstructions. 

In the context of a two-dimensional scenario, the incident pressure corresponding to a zero-order 

Bessel beam can be succinctly expressed as (15): 

 

𝓅
inc

=  J0(k0|r − rk|), (15) 

 

here, 𝐽0 refers to the zeroth-order Bessel function, the term |𝑟 − 𝑟𝑘| denotes the Euclidean distance between 

the transmitter and the 𝑘th point within the ROI.  
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The median filter is widely utilized in image processing due to its numerous advantages, particularly in 

the realms of noise reduction and image feature preservation. When it comes to noise reduction, the median 

filter stands out for its efficacy in addressing various types of noise present in images, such as salt-and-pepper 

noise and impulse noise. By substituting pixel values with the median value derived from neighboring pixels, 

the filter effectively eliminates outliers and irregularities induced by noise, resulting in a more refined and 

cleaner image. In terms of preserving edges and intricate details, the median filter offers distinct advantages 

over mean filters, which tend to blur edges and fine features. Due to the inherent robustness of the median value 

to extreme values, the filter excels in retaining the structural integrity of the image while concurrently reducing 

noise, making it particularly suitable for applications where edge preservation is paramount. Furthermore, the 

median filter boasts a straightforward implementation process, rendering it relatively easy to deploy and 

computationally efficient. This simplicity renders it a favored option for real-time image processing tasks, 

especially when confronted with filter windows of moderate size. Consequently, the versatility and efficiency of 

the median filter make it an indispensable tool in various image processing applications, contributing 

significantly to enhancing image quality and extracting pertinent information. 

Algorithm 1 outlines the procedure for the filtered distorted born iterative method (Filtered DBIM). 

This method incorporates a series of steps to effectively address noise artifacts in the reconstructed images. 

Initially, the algorithm begins by acquiring the noisy input image by using the DBIM. Subsequently, it 

applies a median filter to the input image to reduce the noise present. Following the noise reduction step, the 

filtered image undergoes reconstruction using the DBIM, which aims to produce a clearer representation of 

the underlying structure. Throughout this process, the algorithm iteratively refines the reconstructed image 

until a satisfactory level of accuracy is achieved. By integrating the median filtering technique into the DBIM 

framework, the algorithm enhances the quality of the reconstructed images, thus improving the overall 

effectiveness of the ultrasound tomography imaging system. 

 

Algorithm 1. The Filtered DBIM 
Set up the transceiver configuration for imaging system  

Opt initial values: 𝚀̅(𝑛)= 𝚀̅(0) and 𝓅
0

=  𝓅
𝑖𝑛𝑐
 by (15) 

For 𝑛 = 1 𝑡𝑜 𝑁𝑠𝑢𝑚, do 

1. Determine 𝑈̅ and 𝑉̅ 

2. Determine 𝓅,  𝓅̅𝑠𝑐corresponding to 𝚀̅(𝑛) by (4, 5) 

3. Determine ∆𝓅̅𝑠𝑐 by (11) 

4. Determine ∆𝚀̅(𝑛) by (14) 

5. Determine 𝚀̅(𝑛+1) = 𝚀̅(𝑛) + ∆𝚀̅(𝑛) 

6. Remove noise for 𝚀̅(𝑛+1) by median filter.  

End For 

 

The resulting image encompasses areas representing the object, background, and noise, providing 

crucial insights into the underlying structure of the data. Thus, the continued utilization of the K-means 

clustering method aims to delineate these regions automatically, facilitating the identification of anomalous 

objects and the observation of regions heavily affected by noise. K-means clustering stands as a widely 

employed algorithm for image segmentation, tasked with partitioning an image into distinct segments or 

regions, thereby aiding in the extraction of meaningful information. This algorithm allocates each pixel to 

one of 𝐾 clusters based on its intensity values, effectively grouping together pixels with similar 

characteristics. In our simulation scenario, we opt for a cluster count (K) of three, aligning with the three 

specific regions of interest: the area containing the object, the background area, and the noise-affected area. 

This deliberate choice enables a focused analysis of each region, allowing for a more nuanced understanding 

of the underlying data distribution and enhancing the accuracy of subsequent processing steps. 

To clarify the contributions, we summarize the proposed method as follows. The core innovation 

lies in integrating a 2D median filter directly into the iterative reconstruction loop of DBIM. After each 

DBIM iteration, the reconstructed object function is denoised using a median filter to suppress localized 

noise without blurring critical structural edges. This intra-loop filtering reduces error accumulation and 

improves convergence stability. Once the final image is obtained, we apply K-means clustering (with K=3) to 

segment the image into distinct zones: the object (target), the homogeneous background, and residual noise. 

This post-processing step is designed to enhance the interpretability of the reconstruction and to isolate 

relevant diagnostic features. The algorithmic workflow is outlined in Algorithm 1 and validated in Section 3. 

 

 

3. SIMULATIONS AND RESULTS 

The simulation parameters for this study encompass various facets essential for the accurate 

depiction of ultrasound tomography. Specifically, the incident frequency f is set at 1 MHz in order to satisfy 
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the Born approximation condition. To ensure comprehensive coverage, both the number of transmitters (Nt) 

and the number of receivers (Nr), collectively defining the number of measurements (Nt×Nr), are 

meticulously calibrated. Moreover, to achieve robust convergence and precise reconstruction, a total of 

Nsum=5 iterations are iteratively executed. The spatial resolution within the region of interest is finely 

partitioned into N=12 pixels per axis, thereby yielding N2=144 variables in two-dimensional space. 

Additionally, the scattering area diameter, spanning 10 mm, and the sound contrast set at 10% are tailored. 

Finally, the distances from both transmitters and receivers to the center of the object are defined at 60 mm. 

To simulate realistic conditions, we incorporated additive Gaussian noise into the measured 

scattered field data. Specifically, we added zero-mean Gaussian noise with a standard deviation 

corresponding to 5% of the maximum amplitude of the measured signal. This choice reflects the typical noise 

encountered in practical ultrasound systems, including electronic noise, amplifier-induced variations, and 

environmental disturbances during wave propagation.  

Figure 2 depicts the ideal inverse-scattering pattern requiring reconstruction. Figure 3 illustrates the 

normalized error observed after Nsum iterations of both the conventional DBIM and the filtered DBIM for 

Nt=Nr=6. It is evident from the overall trend that the filtered DBIM consistently surpasses the conventional 

DBIM in terms of reducing normalized error. This trend underscores the significant contribution of the 

filtering process within the DBIM framework towards enhancing accuracy and facilitating convergence 

across multiple iterations. Notably, when comparing the two approaches, the filtered DBIM exhibits reduced 

percentages in normalized error from the initial iteration to the fifth iteration, amounting to 6.84%, 36.73%, 

51.95%, 58.52%, and 62.78%, respectively. These reduced percentages serve as quantitative indicators of the 

enhancement achieved by the filtered DBIM. Higher reduction percentages signify a more efficacious 

filtering process, leading to a considerable decrease in normalized error and consequently, enhanced 

accuracy. This discernible improvement in accuracy compared to the conventional DBIM highlights the 

efficacy of the filtering process throughout the iterations, a phenomenon further elucidated in Figure 4. 

 

 

 
 

Figure 2. Ideal inverse scatter target 

 

 

 
 

Figure 3. Normalized error after 𝑁𝑠𝑢𝑚 iterations of the conventional DBIM and filtered DBIM when Nt=Nr=6 
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Figure 4. Recovered images after each iteration of the conventional DBIM and filtered DBIM when Nt=Nr=6 

 

 

Figure 5 illustrates the evolution of normalized error over multiple iterations of both the 

conventional DBIM and the filtered DBIM methods with 𝑁𝑡 = 𝑁𝑟 =10. Initially, during the first iteration, 

the filtered DBIM exhibits a modest yet discernible decrease in normalized error, amounting to 

approximately 0.97% compared to the conventional DBIM. As the iterations progress, the superiority of the 

filtered DBIM becomes increasingly evident. By the final iteration, it achieves a remarkable reduction of 

approximately 86.39% in normalized error compared to the conventional DBIM. This consistent 

outperformance is observed throughout all iterations, with reductions ranging from 0.97% to 86.39%. The 
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trend underscores a significant and escalating enhancement in performance as iterations advance, 

underscoring the efficacy of the filtering mechanism within the DBIM framework. Moreover, Figure 6 

provides a visual representation indicating the convergence of the recovery function towards the ideal 

objective function after each iteration. This convergence suggests that the filtered DBIM method steadily 

approaches the desired outcome with each successive iteration, further affirming its efficacy and potential for 

practical application in ultrasound tomography. 

Figure 7 illustrates the progression of normalized error throughout Nsum iterations for both the 

conventional DBIM and the filtered DBIM when Nt=Nr=12. In the initial iteration, the normalized errors for 

the conventional and filtered DBIM are recorded as 0.9697 and 0.9472, respectively. Conversely, in the final 

iteration, the normalized errors for the conventional and filtered DBIM decrease to 0.1711 and 0.0934, 

respectively. Notably, during the initial iteration, the discrepancy in normalized error between the two 

methods remains minimal, with the filtered DBIM exhibiting a slight advantage, showcasing a 2.32% 

reduction in normalized error compared to the conventional DBIM approach. However, as the iterations 

progress, the superiority of the filtered DBIM becomes more pronounced. By the final iteration, the filtered 

DBIM outperforms the conventional DBIM significantly, demonstrating a notable 45.40% reduction in 

normalized error. This consistent pattern of improved performance is observed across all iterations, with the 

disparity between the two methods becoming more evident towards the end of the process. For a 

comprehensive visualization of this trend, refer to Figure 8, which further elucidates the widening gap in 

performance between the conventional and filtered DBIM approaches. 

Analysis reveals that Figures 3, 5, and 7 illustrate the normalized error following Nsum iterations for 

both the conventional DBIM and the filtered DBIM under different scenarios, specifically for Nt=Nr=6, 

Nt=Nr=10, and Nt=Nr=12, respectively. Notably, a significant decrease in normalized error is observed for the 

cases where Nt=Nr=6, Nt=Nr=10, indicating the considerable efficacy of the proposed method when the 

number of measurements is less than the number of variables. This observation aligns with practical 

scenarios in high-resolution imaging, where such conditions frequently occur due to various constraints. 

Consequently, the findings suggest the potential robustness and applicability of the proposed method across a 

range of practical settings in the field of imaging. 

Figure 9 illustrates the comparison between the ideal, reconstructed, and segmented images obtained 

using both the conventional DBIM and the filtered DBIM methods for two scenarios: when Nt=Nr=6 and 

Nt=Nr=10 after Nsum iterations. In the segmentation process, three clusters (K) are utilized to represent distinct 

regions within the images: those containing objects, background areas, and noise. The outcomes indicate a 

notable difference between the two methods. The image reconstructed via the conventional DBIM approach 

exhibits substantial noise interference, with noise artifacts apparent within both the object and spread across 

the background. Conversely, the reconstructed image obtained through the filtered DBIM method displays 

minimal noise presence, showcasing the effectiveness of this technique in noise reduction. Furthermore, the 

resulting image from the filtered DBIM closely resembles the ideal image, underscoring the accurate 

separation of object and background regions achieved through K-means clustering. This starkly contrasts 

with the conventional DBIM method, where even after the final iteration, the decomposed object notably 

deviates from the ideal reference image. These findings emphasize the superior noise reduction capabilities 

and overall effectiveness of the filtered DBIM method in image reconstruction compared to its conventional 

counterpart. 

 

 

 
 

Figure 5. Normalized error after 𝑁𝑠𝑢𝑚 iterations of the conventional DBIM and filtered DBIM when  

𝑁𝑡 = 𝑁𝑟 = 10 
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Figure 6. Recovered images after each iteration of the conventional DBIM and filtered DBIM when Nt=Nr=10 
 

 

 
 

Figure 7. Normalized error after Nsum iterations of the conventional DBIM and filtered DBIM when 

Nt=Nr=12 
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Figure 8. Recovered images after each iteration of the conventional DBIM and filtered DBIM when Nt=Nr=12 

 
 

To illustrate the efficacy of the filtered DBIM method under conditions where the number of 

measurements is smaller than the number of variables, we conduct a comparative analysis of the normalized 

error between the filtered DBIM and dual-frequency DBIM (DF-DBIM) [19]–[22] techniques, as outlined in 

Table 1. The DF-DBIM methodology leverages two distinct frequencies, namely f1 (low) and f2 (high), to 

estimate sound contrast in Nf1 and Nf2 iterations correspondingly. This dual-frequency approach offers the 

inherent advantage of expediting convergence speed during the process of image restoration. Specifically, 

simulation parameters in DF-DBIM are defined as f1=1 MHz, f2=2 MHz, Nf1=2, Nf2=3, while keeping other 

parameters constant. As delineated in Table 1, the filtered DBIM method exhibits a notably superior 

convergence rate compared to the DF-DBIM method, as evidenced by the diminished normalized error 

observed at each iteration. Remarkably, right from the initial iteration, the filtered DBIM technique visibly 

showcases a superior convergence pace over DF-DBIM. This disparity underscores the enhanced 

performance of the filtered DBIM approach, particularly when dealing with a constrained number of 

measurements relative to variables. 

It should be noted that the current study uses simulated ultrasound data generated under controlled 

conditions using a physical forward model and known ground-truth objects. While real clinical ultrasound 

images have not yet been evaluated in this work, the use of simulation allows for precise quantification of 

reconstruction errors and direct benchmarking against ideal targets. This provides a rigorous foundation for 

future application of the method to real-world datasets, which we plan to address in subsequent studies. 
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Figure 9. The ideal, recovered and segmented images by the conventional DBIM and the filtered DBIM  

after Nsum iterations 

 

 

Table 1. Normalized error evaluation of the DF-DBIM and Filtered DBIM approaches 
Scenarios Methods Normalized error after each iteration 
Nt=Nr=6 DF-DBIM 0.9157 0.8583 0.5153 0.5145 0.5200 

 Filtered DBIM 0.8520 0.5433 0.4091 0.3526 0.3171 
Nt=Nr=10 DF-DBIM 0.822 0.5684 0.2374 0.1818 0.1698 

 Filtered DBIM 0.8144 0.3929 0.2223 0.1280 0.0721 

 

 

4. DISCUSSION 

This study introduces a filtered image reconstruction framework for ultrasound tomography by 

embedding median filtering within the iterative process of the DBIM, followed by post-reconstruction  

K-means clustering for segmentation. The simulation results consistently demonstrate that the proposed 

method significantly reduces normalized error in comparison with both conventional DBIM and dual-

frequency DBIM (DF-DBIM) methods across different configurations. The enhanced reconstructions closely 

approximate the ideal object function, with sharper boundaries and less noise interference. Furthermore, the 

application of K-means clustering provides a clear delineation between object, background, and noise 

regions, thereby improving the interpretability of the reconstructed images. 

Our approach distinguishes itself from prior works that either apply denoising as a post-processing 

step or rely on complex deep learning architectures for enhancement. Previous studies such as [19] and [22] 

leveraged dual-frequency strategies to improve convergence and contrast but remained susceptible to noise in 

low-measurement regimes. By integrating a denoising operation directly into the DBIM iterative loop, our 

method effectively suppresses the propagation of noise throughout the inversion process. Additionally, while 

machine learning-based segmentation methods like CNN or fuzzy C-means clustering have been proposed in 

literature [14]–[18], they typically require annotated datasets and greater computational resources. In 

contrast, K-means clustering provides an efficient and unsupervised alternative suitable for deployment in 

low-resource or real-time systems. 

The experimental results have important implications for the practical deployment of ultrasound 

tomography in clinical and low-cost diagnostic settings. In particular, the method's robustness in under-

sampled conditions (i.e., when the number of measurements is fewer than the number of variables) suggests 

its suitability for real-world scenarios where sensor access or scan duration is limited. The combined use of 

median filtering and K-means clustering offers a compact and explainable enhancement pipeline that can be 
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integrated into point-of-care ultrasound systems. Moreover, this framework can improve diagnostic accuracy 

by preserving object integrity and suppressing spurious artifacts, especially in applications such as breast 

cancer screening in young women where ultrasound outperforms mammography. 

Despite the promising results, there are several limitations to our current approach. First, all 

experiments were conducted on synthetic datasets generated using simulated scattering models. Although we 

introduced additive Gaussian noise to emulate real-world imperfections, the generalizability of the proposed 

method to real clinical data remains to be tested. Second, the use of a fixed-size median filter may not adapt 

optimally to different noise distributions or object geometries. Third, while K-means clustering is 

computationally lightweight, it assumes the number of regions is known a priori and may not handle complex 

or heterogeneous tissue structures effectively. 

Machine learning may use all data and information what it has already, beside that machine learning 

can produce result this more accurate than older result. Machine learning not only make automation is 

growing up but also decreasing the possibility that the human operator will make some errors. Over past few 

year, various machine learning techniques have been utilized to enhance the reliability of ultrasound-

nondestructive testing [23]–[28]. Future work will focus on validating the proposed approach on 

experimental and clinical ultrasound data to assess its real-world applicability. We also plan to explore 

adaptive filtering techniques, such as anisotropic diffusion or guided filters, that can adjust based on local 

image characteristics. Furthermore, the segmentation step can be improved by integrating region-growing or 

active contour methods to better handle irregularly shaped lesions. Finally, hybrid frameworks combining the 

current physics-based inversion with learning-based priors or data-driven regularizers may yield further 

improvements in reconstruction quality, especially in challenging imaging scenarios. 

 

 

5. CONCLUSION  

In this work, we propose and evaluate the implementation of a median filter as a means to address 

the noise artifacts that commonly afflict reconstructed images obtained through the DBIM. Initial findings 

indicate a noteworthy decrease in noise levels within the reconstructed images, thereby fostering a 

heightened degree of diagnostic clarity. The median filter adeptly retains crucial anatomical intricacies while 

simultaneously mitigating undesirable noise artifacts, thereby culminating in an overarching enhancement of 

the quality of ultrasound tomographic reconstructions. Additionally, the incorporation of a rudimentary 

machine learning algorithm, specifically K-means clustering, facilitates the automatic segmentation of the 

reconstructed image into distinct partitions, delineating objects, background, and noise regions with 

precision. The outcomes underscore the efficacy of K-means clustering in accurately demarcating regions 

within images generated via the filtered DBIM approach, with a prominent observation being the marked 

reduction in noise evident in the images reconstructed utilizing this method. Consequently, these combined 

methodologies not only serve to ameliorate the visual fidelity of ultrasound tomographic reconstructions but 

also contribute to streamlining the diagnostic interpretation process through the elucidation of clear and well-

defined image components. 
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